Temporal error estimate for statistical downscaling regional meteorological models

  • Egor V. Dmitriev
  • Ilva V. Nogotkov
  • Vladimir S. Rogutov
  • Gueorgui Khomenko
  • Anatoly I. Chavro
Palabras clave: Statistical downscaling, Regional climate, Temporal error estimate, Inverse problems

Resumen

Statistical downscaling models, which are applied for retrieval of small-scale geophysical fields from largescale fields, allow obtaining a priori estimate of variance of the solution error and some other statistical characteristics of error. However, at given instants or even time periods the solution error of the considered problem can be much higher than its estimate that may be very important when using the results of downscaling. This paper is dedicated to testing the stochastic parameter known as "model reliability" as an indicator of temporal changes of the solution accuracy. For this purpose we considered several basic geophysical applications of downscaling. We show below that the probabilistic parameter "reliability of model" can be used for forecasting time points when the small-scale field is retrieved with high errors.

Descargas

Los datos de descargas todavía no están disponibles.

Descarga artículo

Crossmark

Métricas

Publicado
2008-04-15
Cómo citar
Dmitriev E. V., Nogotkov I. V., Rogutov V. S., Khomenko G. y Chavro A. I. (2008). Temporal error estimate for statistical downscaling regional meteorological models. Física de la Tierra, 19, 219-241. https://revistas.ucm.es/index.php/FITE/article/view/FITE0707110219A
Sección
Artículos