Impacts of Covid-19 on air quality, Land Surface Temperature and Urban Heat Island on Local Climatic Zones in the city of Granada (Spain)
- David Hidalgo García Escuela Técnica Superior de Ingeniería de Edificación. Universidad de Granada (España).
Abstract
The COVID-19 outbreak and the lockdown situation have generated a significant negative impact on the world economy but have provided a unique opportunity to understand the impact of human activity on environmental pollution and how it affects the urban climate. This study takes the city of Granada (Spain) in order to carry out an evaluation of the environmental parameters (So2, No2, Co and O3) obtained through Sentinel 5P images and how they affect the Terrestrial Surface Temperature (TST) and the Surface Urban Heat Island (ICUS) obtained through Sentinel 3 images. Knowing the environmental impact on the TST and ICUS of the different Local Climate Zones (ZCL) of the city will have an impact on future urban resilience studies. As a result, and during the confinement period, the following variations have been obtained with respect to environmental pollutants: So2 (-24.0%), No2 (-6.7%), Co (-13.2%) and O3 (+4.0%). The TST has experienced an average reduction of -8.7 ºC (-38.0%) while the ICUS has decreased by -1.6 ºC (-66.0%).
Downloads
References
Alcock, I., White, M. P., Lovell, R., Higgins, S. L., Osborne, N. J., Husk, K., y Wheeler, B.
W. (2015). What accounts for “England’s green and pleasant land”? A panel data analysis of mental health and land cover types in rural England. Landscape and Urban Planning 142, 38–46. https://doi.org/10.1016/j.landurbplan.2015.05.008
Ali, G., Abbas, S., Qamer, F. M., Wong, M. S., Rasul, G., Irteza, S. M., y Shahzad, N. (2021). Environmental impacts of shifts in energy, emissions, and urban heat island during theCOVID-19 lockdown across Pakistan. Journal of Cleaner Production, 291, 125806.https://doi.org/10.1016/j.jclepro.2021.125806
Alqasemi, A. S., Hereher, M. E., Kaplan, G., Al-Quraishi, A. M. F., y Saibi, H. (2021). Impact of COVID-19 lockdown upon the air quality and surface urban heat island intensity over the United Arab Emirates. Science of the Total Environment, 767, 144330. https://doi.org/10.1016/j.scitotenv.2020.144330
Andersson, D., y Nässén, J. (2016). Should environmentalists be concerned about materialism? An analysis of attitudes, behaviours and greenhouse gas emissions. Journal of Environmental Psychology, 48, 1–11. https://doi.org/10.1016/j.jenvp.2016.08.002
Anjos, M., Targino, A. C., Krecl, P., Oukawa, G. Y., y Braga, R. F. (2020). Analysis of the urban heat island under different synoptic patterns using local climate zones. Building and Environment, 185(September). https://doi.org/10.1016/j.buildenv.2020.107268
Arbuthnott, K. G., y Hajat, S. (2017). The health effects of hotter summers and heat waves in the population of the United Kingdom: A review of the evidence. Environmental Health: A Global Access Science Source, 16(Suppl 1), 1–13. https://doi.org/10.1186/s12940-017-0322-5
Arnfield, A. J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23(1), 1–26. https://doi.org/10.1002/joc.859
Avdan, U., y Jovanovska, G. (2016). Algorithm for automated mapping of land Surface temperature using LANDSAT 8 satellite data. Journal of Sensors, 2016. https://doi.org/10.1155/2016/1480307
Bar, S., Parida, B. R., Mandal, S. P., Pandey, A. C., Kumar, N., y Mishra, B. (2021). Impacts of COVID-19 lockdown on NO2 and PM2.5 levels in major urban cities of Europe and USA. Cities, 117(2), 103308. https://doi.org/10.1016/j.cities.2021.103308
Bashir, M. F., Ma, B., Bilal, Komal, B., Bashir, M. A., Tan, D., y Bashir, M. (2020). Correlation between climate indicators and COVID-19 pandemic in New York, USA. Science of the Total Environment, 728, 138835. https://doi.org/10.1016/j.scitotenv.2020.138835
Brousse, O., Georganos, S., Demuzere, M., Vanhuysse, S., Wouters, H., Wolff, E., Linard, C., van Lipzig, N. P. M., y Dujardin, S. (2019). Using Local Climate Zones in Sub-Saharan Africa to tackle urban health issues. Urban Climate, 27(December 2018), 227–242. https://doi.org/10.1016/j.uclim.2018.12.004
Čeplová, N., Kalusová, V., y Lososová, Z. (2017). Effects of settlement size, urban heat island and habitat type on urban plant biodiversity. Landscape and Urban Planning, 159, 15–22. https://doi.org/10.1016/j.landurbplan.2016.11.004
Chen, Y., Li, X., Zheng, Y., Guan, Y., y Liu, X. (2011). Estimating the relationship between urban forms and energy consumption: A case study in the Pearl River Delta, 2005-2008. Landscape and Urban Planning, 102(1), 33–42. https://doi.org/10.1016/j.landurbplan.2011.03.007
Chiang. S. e Ivan, N. (2020). Mapping and Tracking Forest Burnt Areas in the Indio Maiz Biological Reserve Using Sentinel-3 SLSTR and VIIRS-DNB Imagery. Sensors
(Switzerland), 19(2019). https://www.globalwildlife.org/project/indio-maiz-biologicalreserve/
Coleman, R. W., Stavros, N., Hulley, G., y Parazoo, N. (2020). Comparison of Thermal Infrared-Derived Maps of Irrigated and Non-Irrigated Vegetation in Urban and Non-Urban Areas of Southern California. Remote Sensing, 12(24), 4102. MDPI AG. Retrieved from http://dx.doi.org/10.3390/rs12244102
Coppo, P., Ricciarelli, B., Brandani, F., Delderfield, J., Ferlet, M., Mutlow, C., Munro, G., Nightingale, T., Smith, D., Bianchi, S., Nicol, P., Kirschstein, S., Hennig, T., Engel, W., Frerick, J., y Nieke, J. (2010). SLSTR: A high accuracy dual scan temperature radiometer for sea and land surface monitoring from space. Journal of Modern Optics, 57(18), 1815–1830. https://doi.org/10.1080/09500340.2010.503010
Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J. P., Iglesias, A., Lange, M. A., Lionello, P., Llasat, M. C., Paz, S., Peñuelas, J., Snoussi, M., Toreti, A., Tsimplis, M. N., y Xoplaki, E. (2018). Climate change and interconnected risks to sustainable development in the Mediterranean. Nature Climate Change, 8(11), 972–980. https://doi.org/10.1038/s41558-018-0299-2
Das, N., Sutradhar, S., Ghosh, R., y Mondal, P. (2021). Asymmetric nexus between air quality index and nationwide lockdown for COVID-19 pandemic in a part of Kolkata metropolitan, India. Urban Climate, 36(January), 100789. https://doi.org/10.1016/j.uclim.2021.100789
de Castro, M., Gallardo, C., Jylha, K., y Tuomenvirta, H. (2007). The use of a climate-type classification for assessing climate change effects in Europe from an ensemble of nine regional climate models. Climatic Change, 81(S1), 329–341. https://doi.org/10.1007/s10584-006-9224-1
Diallo-Dudek, J., Lacaze, B., y Comby, J. (2015). Land surface temperature in the urban área of Lyon metropolis: A comparative study of remote sensing data and MesoNH model simulation. Joint Urban Remote Sensing Event (JURSE), 2015, pp. 1-4, doi: 10.1109/JURSE.2015.7120528.
Du, J., Xiang, X., Zhao, B. y Zhou, H. (2020). Impact of urban expansion on land Surface temperature in Fuzhou, China using Landsat imagery. Sustainable Cities and Society. 61, 102346. https://doi.org/10.1016/j.scs.2020.102346.
Dwivedi, A., y Mohan, B. K. (2018). Impact of green roof on micro climate to reduce Urban Heat Island. Remote Sensing Applications: Society and Environment, 10, 56–69.
https://doi.org/10.1016/j.rsase.2018.01.003
Emmanuel, R., y Krüger, E. (2012). Urban heat island and its impact on climate change resilience in a shrinking city: The case of Glasgow, UK. Building and Environment, 53, 137–149. https://doi.org/10.1016/j.buildenv.2012.01.020
Equere, V., Mirzaei, P. A., y Riffat, S. (2020). Definition of a new morphological parameter to improve prediction of urban heat island. Sustainable Cities and Society, 56(November 2019). https://doi.org/10.1016/j.scs.2020.102021
Fang, L., y Tian, C. (2020). Construction land quotas as a tool for managing urban expansion. Landscape and Urban Planning, 195(May 2019), 103727. https://doi.org/10.1016/j.landurbplan.2019.103727
Feizizadeh, B., y Blaschke, T. (2013). Examining Urban heat Island relations to land use and air pollution: Multiple endmember spectral mixture analysis for thermal remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3), 1749–1756. https://doi.org/10.1109/JSTARS.2013.2263425
Fujibe, F. (2020). Temperature Anomaly in the Tokyo Metropolitan Area during the COVID-19 (coronavirus) Self-Restraint Period. Scientific Online Letters on the Atmosphere, 16,175–179. https://doi.org/10.2151/SOLA.2020-030
Gallo, K., Hale, R., Tarpley, D., y Yu, Y. (2011). Evaluation of the relationship between air and land surface temperature under clear- and cloudy-sky conditions. Journal of Applied Meteorology and Climatology, 50(3), 767–775. https://doi.org/10.1175/2010JAMC2460.1
García-Santos, V., Cuxart, J., Martínez-Villagrasa, D., Jiménez, M. A., y Simó, G. (2018). Comparison of three methods for estimating land surface temperature from Landsat 8-TIRS Sensor data. Remote Sensing, 10(9), 1–13. https://doi.org/10.3390/rs10091450
Ghosh, S., Das, A., Hembram, T. K., Saha, S., Pradhan, B., y Alamri, A. M. (2020). Impact of COVID-19 induced lockdown on environmental quality in four Indian megacities Using Landsat 8 OLI and TIRS-derived data and Mamdani fuzzy logic modelling approach. Sustainability (Switzerland), 12(13), 1–24. https://doi.org/10.3390/su12135464
He, G., Pan, Y., y Tanaka, T. (2020). COVID-19, City Lockdowns, and Air Pollution: Evidence from China. MedRxiv. https://doi.org/10.1101/2020.03.29.20046649
Hu, Y., Dai, Z., y Guldmann, J. M. (2020). Modeling the impact of 2D/3D urban indicators on the urban heat island over different seasons: A boosted regression tree approach. Journal of Environmental Management, 266(11), 110424. https://doi.org/10.1016/j.jenvman.2020.110424
Hua, L., Zhang, X., Nie, Q., Sun, F., & Tang, L. (2020). The Impacts of the Expansion of Urban Impervious Surfaces on Urban Heat Islands in a Coastal City in China.
Sustainability, 12(2), 475. MDPI AG. Retrieved from http://dx.doi.org/10.3390/su12020475
Huang, X., Ding, A., Gao, J., Zheng, B., Zhou, D., Qi, X., Tang, R., Wang, J., Ren, C., Nie, W., Chi, X., Xu, Z., Chen, L., Li, Y., Che, F., Pang, N., Wang, H., Tong, D., Qin, W., … He, K. (2021). Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. National Science Review, 8(2). https://doi.org/10.1093/nsr/nwaa137
Jiang, P., Fu, X., Fan, Y., Klemeš, J., Chen, P., Ma, S., y Zhang, W. (2021). Spatial-temporal potential exposure risk analytics and urban sustainability impacts related to COVID-19 mitigation: A perspective from car mobility behaviour. Journal of Cleaner Production, 279. https://doi.org/10.1016/j.jclepro.2020.123673
Jiang, S., Lee, X., Wang, J., y Wang, K. (2019). Amplified Urban Heat Islands during Heat Wave Periods. Journal of Geophysical Research: Atmospheres, 124(14), 7797–7812. https://doi.org/10.1029/2018JD030230
Jimenez-Munoz, J. C., Sobrino, J. A., Skokovic, D., Mattar, C., y Cristobal, J. (2014). Land surface temperature retrieval methods from landsat-8 thermal infrared sensor data. IEEE Geoscience and Remote Sensing Letters, 11(10), 1840–1843. https://doi.org/10.1109/LGRS.2014.2312032
Ju, M. J., Oh, J., y Choi, Y. H. (2021). Changes in air pollution levels after COVID-19 outbreak in Korea. Science of the Total Environment, 750, 141521. https://doi.org/10.1016/j.scitotenv.2020.141521
Khamchiangta, D., y Dhakal, S. (2019). Physical and non-physical factors driving urban heat island: Case of Bangkok Metropolitan Administration, Thailand. Journal of Environmental Management, 248(July), 109285. https://doi.org/10.1016/j.jenvman.2019.109285
Labra, R. (2014). Zero panel data guide. (Cátedra UA). file:///U:/Maguilera/DocumentosPersonales MAGUILERA/Master M3F/Trabajo Fin M3F/Revisión parapaper/Referencias/Stata/16_Guia CERO para datos de panel_Un enfoque practico.pdf
Lauri, M. 2020. Analysis: Corona virus has temporarily reduced Chins’s CO2 emissions by534 a quarter. https://www.carbonbrief.org/analysis-coronavirus-has-temporarilyreduced-chinas-co2-emissions-by-a-quarter
Li, J., Song, C., Cao, L., Zhu, F., Meng, X., y Wu, J. (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment, 115(12), 3249–3263. https://doi.org/10.1016/j.rse.2011.07.008
Li, M., Song, Y., Mao, Z., Liu, M., y Huang, X. (2016). Impacts of thermal circulations induced by urbanization on ozone formation in the Pearl River Delta region, China. Atmospheric Environment, 127(2), 382–392. https://doi.org/10.1016/j.atmosenv.2015.10.075
Li, T., y Meng, Q. (2018). A mixture emissivity analysis method for urban land Surface temperature retrieval from Landsat 8 data. Landscape and Urban Planning, 179(July), 63–71. https://doi.org/10.1016/j.landurbplan.2018.07.010
Liu, L., y Zhang, Y. (2011). Urban heat island analysis using the landsat TM data and ASTER Data: A case study in Hong Kong. Remote Sensing, 3(7), 1535–1552. https://doi.org/10.3390/rs3071535
Logan, T. M., Zaitchik, B., Guikema, S., y Nisbet, A. (2020). Night and day: The influence and relative importance of urban characteristics on remotely sensed land Surface temperature. Remote Sensing of Environment, 247(June 2019), 111861. https://doi.org/10.1016/j.rse.2020.111861
Macintyre, H. L., Heaviside, C., Taylor, J., Picetti, R., Symonds, P., Cai, X. M., y Vardoulakis, S. (2018). Assessing urban population vulnerability and environmental risks across an urban area during heatwaves – Implications for health protection. Science of the Total Environment, 610–611, 678–690. https://doi.org/10.1016/j.scitotenv.2017.08.062
Maithani, S., Nautiyal, G., y Sharma, A. (2020). Investigating the Effect of Lockdown During COVID-19 on Land Surface Temperature: Study of Dehradun City, India. Journal of the Indian Society of Remote Sensing, 48(9), 1297–1311. https://doi.org/10.1007/s12524-020-01157-w
Mandal, I., y Pal, S. 2020) COVID-19 pandemic persuaded lockdown effects on environment over stone quarrying and crushing areas. Science of the Total Environment, 732(May 2020), 139281. https://doi.org/10.1016/j.scitotenv.2020.139281
McMillin, L. M. (1975). Estimation of sea surface temperatures from two infrared window measurements with different absorption. Journal of Geophysical Research, 80(36), 5113–5117. https://doi.org/10.1029/jc080i036p05113
Mehmood, K., Bao, Y., Petropoulos, G. P., Abbas, R., Abrar, M. M., Saifullah, Mustafa, A., Soban, A., Saud, S., Ahmad, M., Hussain, I., y Fahad, S. (2021). Investigating connections between COVID-19 pandemic, air pollution and community interventions for Pakistan employing geoinformation technologies. Chemosphere, 272, 129809. https://doi.org/10.1016/j.chemosphere.2021.129809
Meng, X., Cheng, J., Zhao, S., Liu, S., y Yao, Y. (2019). Estimating land surface temperatura from Landsat-8 data using the NOAA JPSS enterprise algorithm. Remote Sensing, 11(2). https://doi.org/10.3390/rs11020155
Mitra, A., Ray Chaudhuri, T., Mitra, A., Pramanick, P., y Zaman, S. (2020). Impact of COVID-19 related shutdown on atmospheric carbon dioxide level in the city of Kolkata.
Parana Journal of Science and Education, 6(3), 84–92. https://sites.google.com/site/pjsciencea
Mukherjee, F., y Singh, D. (2020). Assessing Land Use–Land Cover Change and Its Impact on Land Surface Temperature Using LANDSAT Data: A Comparison of Two Urban Areas in India. Earth Systems and Environment, 4(2), 385–407. https://doi.org/10.1007/s41748-020-00155-9
Nakajima, K., Takane, Y., Kikegawa, Y., Furuta, Y., y Takamatsu, H. (2021). Human behaviour change and its impact on urban climate: Restrictions with the G20 Osaka Summit and COVID-19 outbreak. Urban Climate, 35(October 2020), 100728. https://doi.org/10.1016/j.uclim.2020.100728
Oke, T. R. (1987). Boundary layer climates (Routledge).
Oliveira, A., Lopes, A., y Niza, S. (2020). Local climate zones in five southern European cities: An improved GIS-based classification method based on Copernicus data. Urban Climate, 33(May 2019), 100631. https://doi.org/10.1016/j.uclim.2020.100631
OMS, 2020. OMS Coronavirus Disease (COVID-19) Dashboard [WWWDocument]. URL. https://covid19.who.int/. (Acceso: 20 septiembre 2021).
Pani, S. K., Lin, N. H., y RavindraBabu, S. (2020). Association of COVID-19 pandemic with meteorological parameters over Singapore. Science of the Total Environment, 740, 140112. https://doi.org/10.1016/j.scitotenv.2020.140112
Potter, C., y Alexander, O. (2021). Impacts of the San Francisco Bay Area shelter-in-place during the COVID-19 pandemic on urban heat fluxes. Urban Climate, 37(November 2020), 100828. https://doi.org/10.1016/j.uclim.2021.100828
Prikaziuk, E., y van der Tol, C. (2019). Global sensitivity analysis of the SCOPE model in Sentinel-3 Bands: Thermal domain focus. Remote Sensing, 11(20). https://doi.org/10.3390/rs11202424
Qiu, T., Song, C., Clark, J. S., Seyednasrollah, B., Rathnayaka, N., y Li, J. (2020). Understanding the continuous phenological development at daily time step with a Bayesian hierarchical space-time model: impacts of climate change and extreme weather events. Remote Sensing of Environment, 247(November 2019), 111956. https://doi.org/10.1016/j.rse.2020.111956
Ray, D., Salvatore, M., Bhattacharyya, R., Wang, L., Du, J., Mohammed, S., Purkayastha, S., Halder, A., Rix, A., Barker, D., Kleinsasser, M., Zhou, Y., Bose, D., Song, P., y Banerjee, M. (2020). Predictions, Role of Interventions and Effects of a Historic National Lockdown in India’s Response to the the COVID-19 Pandemic: Data Science Call to Arms. Harvard Data Science Review, 1. https://doi.org/10.1162/99608f92.60e08ed5
Remedios, J., y Emsley, S. (2012). Sentinel-3 Optical Products and Algorithm Definition Land Surface Temperature. 24.
Rongali, G., Keshari, A. K., Gosain, A. K., y Khosa, R. (2018). A mono-window algorithm for land surface temperature estimation from landsat 8 thermal infrared sensor data: A case study of the beas river basin, India. Pertanika Journal of Science and Technology, 26(2), 829–840. Roy, S., Pandit, S., Eva, E. A., Bagmar, M. S. H., Papia, M., Banik, L., Dube, T., Rahman, F., and Razi, M. A. (2020). Examining the nexus between land surface temperature and urban growth in Chattogram Metropolitan Area of Bangladesh using long term Landsat series data. Urban Climate, 32(January), 100593. https://doi.org/10.1016/j.uclim.2020.100593
Ruescas, A. B., Danne, O., Fomferra, N., y Brockmann, C. (2016). The land Surface temperature synergistic processor in beam: A prototype towards sentinel-3. Data, 1(3), 1–14. https://doi.org/10.3390/data1030018
Saaroni, H., Amorim, J. H., Hiemstra, J. A., y Pearlmutter, D. (2018). Urban Green Infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions. Urban Climate, 24(October 2017), 94–110. https://doi.org/10.1016/j.uclim.2018.02.001
Santamouris, M. (2020). Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy and Buildings, 207. https://doi.org/10.1016/j.enbuild.2019.109482
Sarrat, C., Lemonsu, A., Masson, V., y Guedalia, D. (2006). Impact of urban heat island on regional atmospheric pollution. Atmospheric Environment, 40(10), 1743–1758. https://doi.org/10.1016/j.atmosenv.2005.11.037
Schwarz, N., Lautenbach, S., y Seppelt, R. (2011). Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sensing of Environment, 115(12), 3175–3186. https://doi.org/10.1016/j.rse.2011.07.003
Sekertekin, A., y Bonafoni, S. (2020). Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sensing, 12(2). https://doi.org/10.3390/rs12020294
Seto, K. C., y Kaufmann, R. K. (2003). Modeling the drivers of urban land use change in the Pearl River Delta, China: Integrating remote sensing with socioeconomic data. Land Economics, 79(1), 106–121. https://doi.org/10.2307/3147108
Siddiqui, A., Halder, S., Chauhan, P., y Kumar, P. (2020). COVID-19 Pandemic and City-Level Nitrogen Dioxide (NO2) Reduction for Urban Centres of India. Journal of the Indian Society of Remote Sensing, 48(7), 999–1006. https://doi.org/10.1007/s12524-020-01130-7
Smith, R. J., y Hsiao, C. (1988). Analysis of Panel Data. Economica, 55(218), 284. https://doi.org/10.2307/2554479
Sobrino, J. A., Jiménez-Muñoz, J. C., Sòria, G., Ruescas, A. B., Danne, O., Brockmann, C., Ghent, D., Remedios, J., North, P., Merchant, C., Berger, M., Mathieu, P. P., y Göttsche,
F. M. (2016). Synergistic use of MERIS and AATSR as a proxy for estimating Land Surface Temperature from Sentinel-3 data. Remote Sensing of Environment, 179, 149– 161. https://doi.org/10.1016/j.rse.2016.03.035
Sohrabi, C., Alsafi, Z., O’Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Iosifidis, C., y Agha, R. (2020). World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). International Journ
Song, J., Lin, T., Li, X., y Prishchepov, A. V. (2018). Mapping urban functional zones by integrating very high spatial resolution remote sensing imagery and points of interest: A case study of Xiamen, China. Remote Sensing, 10(11). https://doi.org/10.3390/rs10111737
Srivastava, A. K., Bhoyar, P. D., Kanawade, V. P., Devara, P. C. S., Thomas, A., y Soni, V. K. (2021). Improved air quality during COVID-19 at an urban megacity over the Indo-Gangetic Basin: From stringent to relaxed lockdown phases. Urban Climate, 36(September 2020), 100791. https://doi.org/10.1016/j.uclim.2021.100791
Stewart, I. D. (2011). A systematic review and scientific critique of methodology in modern urban heat island literature. International Journal of Climatology, 31(2), 200–217. https://doi.org/10.1002/joc.2141
Stewart, I. D., y Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879–1900. https://doi.org/10.1175/BAMS-D-11-00019.1
Stewart, I., y Oke, T. (2009). Classifying urban climate field sites by “local climate zones”: the case of nagano , japan. The Seventh International Conference on Urban Climate, July, 1–5.
Sur, K., Kumar, V. y Pateriya, B. (2021).Variation of tropospheric NO 2 over Indo-Gangetic plain during COVID-19 outbreak in India. Spatial Information Research. https://doi.org/10.1007/s41324-021-00399-1.
Tan, M., y Li, X. (2015). Quantifying the effects of settlement size on urban heat islands in fairly uniform geographic areas. Habitat International, 49, 100–106. https://doi.org/10.1016/j.habitatint.2015.05.013
Teufel, B., Sushama, L., Poitras, V., Dukhan, T., Bélair, S., Miranda-Moreno, L., Sun, L., Sasmito, A. P., y Bitsuamlak, G. (2021). Impact of COVID-19-related traffic slowdown on urban heat characteristics. Atmosphere, 12(2). https://doi.org/10.3390/atmos12020243
Toro, R., Catalán, F., Urdanivia, F. R., Rojas, J. P., Manzano, C. A., Seguel, R., Gallardo, L., Osses, M., Pantoja, N., y Leiva-Guzman, M. A. (2021). Air pollution and COVID-19 lockdown in a large South American city: Santiago Metropolitan Area, Chile. Urban Climate, 36(October 2020). https://doi.org/10.1016/j.uclim.2021.100803
Venter, Z. S., Brousse, O., Esau, I., y Meier, F. (2020). Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced weather data. Remote Sensing of Environment, 242(March), 111791. https://doi.org/10.1016/j.rse.2020.111791
Walawender, J. P., Szymanowski, M., Hajto, M. J., and Bokwa, A. (2014). Land Surface Temperature Patterns in the Urban Agglomeration of Krakow (Poland) Derived from Landsat-7/ETM+ Data. Pure and Applied Geophysics, 171(6), 913–940. https://doi.org/10.1007/s00024-013-0685-7
Wang, J., y Ouyang, W. (2017). Attenuating the surface Urban Heat Island within the Local Thermal Zones through land surface modification. Journal of Environmental Management, 187, 239–252. https://doi.org/10.1016/j.jenvman.2016.11.059
Wang, K., Jiang, S., Wang, J., Zhou, C., Wang, X., y Lee, X. (2017). Journal of geophysical research. Journal Geophysical Research Atmospheric., 122(4449), 2131–2154. https://doi.org/10.1002/ 2016JD025304
Ward, K., Lauf, S., Kleinschmit, B., y Endlicher, W. (2016). Heat waves and urban heat islands in Europe: A review of relevant drivers. Science of the Total Environment, 569– 570, 527–539. https://doi.org/10.1016/j.scitotenv.2016.06.119
Wu, C., Li, J., Wang, C., Song, C., Chen, Y., Finka, M., y La Rosa, D. (2019). Understanding the relationship between urban blue infrastructure and land surface temperature. Science of the Total Environment, 694. https://doi.org/10.1016/j.scitotenv.2019.133742
Xue, J., Anderson, M. C., Gao, F., Hain, C., Sun, L., Yang, Y., Knipper, K. R., Kustas, W. P., Torres-Rua, A., and Schull, M. (2020). Sharpening ECOSTRESS and VIIRS land Surface temperature using harmonized Landsat-Sentinel surface reflectances. Remote Sensing of Environment, 251(August), 112055. https://doi.org/10.1016/j.rse.2020.112055
Yang, C., Wang, R., Zhang, S., Ji, C., y Fu, X. (2019). Characterizing the hourly variation of urban heat islands in a snowy climate city during summer. International Journal of Environmental Research and Public Health, 16(14). https://doi.org/10.3390/ijerph16142467
Yang, C., Yan, F., y Zhang, S. (2020a). Comparison of land surface and air temperatures for quantifying summer and winter urban heat island in a snow climate city. Journal of Environmental Management, 265(March), 110563. https://doi.org/10.1016/j.jenvman.2020.110563
Yang, J., Zhou, J., Göttsche, F.-M., Long, Z., Ma, J., y Luo, R. (2020b). Investigation and validation of algorithms for estimating land surface temperature from Sentinel-3 SLSTR data. International Journal of Applied Earth Observation and Geoinformation, 91(April), 102136. https://doi.org/10.1016/j.jag.2020.102136
Yao, R., Wang, L., Huang, X., Zhang, W., Li, J., y Niu, Z. (2018). Interannual variations in surface urban heat island intensity and associated drivers in China. Journal of Environmental Management, 222(April), 86–94. https://doi.org/10.1016/j.jenvman.2018.05.024
Ye, G., Lin, H., Chen, L., Wang, S., Zeng, Z., Wang, W., Zhang, S., Rebmann, T., Li, Y., Pan, Z., Yang, Z., Wang, Y. y Wang, F. (2020). Environmental Contamination of SARS-CoV-2 in Healthcare Premises. The Journal of Infection, xxxx, 2–6. https://doi.org/10.1016/j.jinf.2020.04.034
Zhao, F., Liu, C., Cai, Z., Liu, X., Bak, J., Kim, J., Hu, Q., y Xia, C. (2020). Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information .
January. Zou, Y., Charlesworth, E., Yin, C. Q., Yan, X. L., Deng, X. J., y Li, F. (2019). The weekday/weekend ozone differences induced by the emissions change during summer and autumn in Guangzhou, China. Atmospheric Environment, 199, 114–126.
Article download
License
In order to support the global exchange of knowledge, the journal Anales de Geografía de la Universidad Complutense is allowing unrestricted access to its content as from its publication in this electronic edition, and as such it is an open-access journal. The originals published in this journal are the property of the Complutense University of Madrid and any reproduction thereof in full or in part must cite the source. All content is distributed under a Creative Commons Attribution 4.0 use and distribution licence (CC BY 4.0). This circumstance must be expressly stated in these terms where necessary. You can view the summary and the complete legal text of the licence.