Geographic Information Systems and spatial distribution of COVID 19 cases in Mexico
- Fernando Flores Vilchez Universidad Autónoma de Nayarit (México).
- Armando Ávalos Jiménez Universidad Autónoma de Nayarit (México).
- Oyolsi Nájera González Universidad Autónoma de Nayarit (México).
- Mario Guadalupe González Pérez Centro Universitario de Tonalá, Universidad de Guadalajara (México).
Abstract
This study analyzes the evolution of the spatial distribution in areas with a high density of infections. The information is organized and linked to a geographic database considering the political and administrative divisions by state and municipalities. Afterward, delivery metrics and spatial statistics were applied to detect distribution patterns. Since November 2020, a trend has been identified in the concentration of cases towards the central zone of Mexico. The study recognizes the decision-making of the government through the application and strict monitoring of restrictive measures like social distancing and the use of masks; a priority in regions with the most significant risk of spread. The enforcement of Geographic Information Systems for the monitoring, follow-up, prevention, and control of the pandemic makes it possible to identify and report the areas with the severest risk of contagion of the virus.
Downloads
References
Abd M. N., Muhamad N. N., & Mohamed, A. F. (2019). Distribution and spatial pattern analysis on dengue cases in Seremban District, Negeri Sembilan, Malaysia. Sustainability, 11(13), 3572. https://doi.org/10.3390/su11133572
Acharya, B. K., Cao, C., Xu, M., Chen, W., & Pandit, S. (2018). Spatiotemporal distribution and geospatial diffusion patterns of 2013 dengue outbreak in Jhapa District, Nepal. Asia Pacific Journal of Public Health, 30(4), 396-405. https://doi.org/10.1177/1010539518769809
Acuto, M. (2020). COVID-19: Lessons for an urban (izing) world. One Earth. https://doi.org/10.1016/j.oneear.2020.04.004
Ahasan, R., Alam, S., Chakraborty, T., & Hossain, M. M. (2020). Applications of GIS and Geospatial analyses in COVID-19 research: A systematic review. SocArXiv. August, 31. https://doi.org/10.31235/osf.io/zqmwa
AIDousari, E., & AlSahli, M. M. (2017). Studying the Spatial Distribution of Asthma Patients in the State of Kuwait Using GIS. Journal of the Social Sciences, 45(1).
Akter, S. (2020). The impact of COVID-19 related ‘stay-at-home’restrictions on food prices in Europe: findings from a preliminary analysis. Food Security, 12(4), 719-725. https://doi.org/10.1007/s12571-020-01082-3
Baojun, W., Bin, S., & Inyang, H. I. (2008). GIS-based quantitative analysis of orientation anisotropy of contaminant barrier particles using standard deviational ellipse. Soil & sediment contamination, 17(4), 437-447. https://doi.org/10.1080/15320380802146784
Barrett, F. A. (2000). Finke's 1792 map of human diseases: the first world disease map?. Social Science & Medicine, 50(7-8), 915-921. https://doi.org/10.1016/s0277- 9536(99)00344-5
Bhatia, A., Kumar, M., & Magotra, R. (2020). Role of GIS in Managing COVID-19. http://nopr.niscair.res.in/handle/123456789/55154
Bithell, J. F. (1990). An application of density estimation to geographical epidemiology. Statistics in medicine, 9(6), 691-701. https://doi.org/10.1002/sim.4780090616
Bonaccorsi, G., Pierri, F., Cinelli, M., Flori, A., Galeazzi, A., Porcelli, F., & Pammolli, F. (2020). Economic and social consequences of human mobility restrictions under COVID- 19. Proceedings of the National Academy of Sciences, 117(27), 15530-15535. https://doi.org/10.1073/pnas.2007658117
Brewer, C. A. (2006). Basic mapping principles for visualizing cancer data using geographic information systems (GIS). American journal of preventive medicine, 30(2), S25-S36. https://doi.org/10.1016/j.amepre.2005.09.007
Cai, X., Wu, Z., & Cheng, J. (2013). Using kernel density estimation to assess the spatial pattern of road density and its impact on landscape fragmentation. International Journal of Geographical Information Science, 27(2), 222-230. https://doi.org/10.1080/13658816.2012.663918
Cascón K. J. D. (2020). Tecnologías para luchar contra la pandemia Covid-19: geolocalización, rastreo, big data, SIG, inteligencia artificial y privacidad//Technologies to
fight the Covid-19 pandemic: geolocation, tracking, big data, GIS, artificial intelligence, and privacy. Profesional de la información, 29(4). https://doi.org/10.3145/epi.2020.jul.29
CDC. (2019). NovelCoronavirus (2019-nCoV). https://espanol.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html
Cedeño, P. U. L., López, D. A. M., & Bailón, F. M. C. (2020). Consecuencias para el sector petrolero a causa de la pandemia del Covid-19. E-IDEA Journal of Business Sciences, 2(6), 1-11. https://revista.estudioidea.org/ojs/index.php/eidea/article/view/34/28
CEPAL (2020). COVID-19. https://www.cepal.org/es/comunicados/covid-19-tendra-gravesefectos- la-economia-mundial-impactara-paises-america-latina
Chinazzi, M., Davis, J. T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., & Viboud, C. (2020). The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 368(6489), 395-400. https://doi.org/10.1126/science.aba9757
CONEVAL. (2020). La política social en el contexto de la pandemia por el virus SARS-CoV- 2 (COVID-19) en México. https://www.coneval.org.mx/Evaluacion/IEPSM/Documents/Politica_Social_COVID-19.pdf
COVID, T. C., & Team, R. (2020). Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19)-United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep, 69(12), 343-346. https://stacks.cdc.gov/view/cdc/85951
Da Silva N. K. W. A. (2020). Mapeamento da COVID-19 no Estado da Paraíba: Elementos para a espacialização e análise em ambiente SIG. Metodologias e Aprendizado, 3, 24-39. https://doi.org/10.21166/metapre.v3i0.1301
Dagnino, R., Weber, E. J., & Panitz, L. M. (2020). Monitoramento do Coronavírus (Covid-19) nos municípios do Rio Grande do Sul, Brasil. SocArXiv. March, 28.
https://doi.org/10.1016/j.arcmed.2020.06.010
Dong, W., Yang, K., Xu, Q., Liu, L., & Chen, J. (2017). Spatio-temporal pattern analysis for evaluation of the spread of human infections with avian influenza A (H7N9) virus in China, 2013–2014. BMC Infectious Diseases, 17(1), 704. https://doi.org/10.1186/s12879-017-2781-2
Edelmann, D., Richards, D., & Vogel, D. (2017). The distance standard deviation. arXiv preprint arXiv:1705.05777. https://arxiv.org/abs/1705.05777
Forster, P. M., Forster, H. I., Evans, M. J., Gidden, M. J., Jones, C. D., Keller, C. A., & Schleussner, C. F. (2020). Current and future global climate impacts resulting from COVID-19. Nature Climate Change, 10(10), 913-919. https://doi.org/10.1038/s41558-020-0883-0
Gaona P. E. B., Mundo R. V., Méndez G. I., Gómez A. L. M., Ávila A. M. A., Cuevas N. L., & Shamah L., T. (2020). Vulnerabilidad, conocimiento sobre medidas de mitigación y exposición ante COVID-19 en adultos de México: Resultados de la ENSARS-CoV-2. Salud Pública de México, 1-20. https://doi.org/10.21149/11875
Ghanbarian, M., Mahdavi, S., Enayatrad, M., Zare, F., MajidNia, M., Emamian, M. H., & Sheibani, H. (2020). Spatial Distribution of COVID-19 in Shahroud, Iran Using GIS. https://doi.org/10.20944/preprints202007.0018.v1
Govindan, K., Mina, H., & Alavi, B. (2020). A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19). Transportation Research Part E: Logistics and Transportation Review, 138, 101967. https://doi.org/10.1016/j.tre.2020.101967
Hashimoto, S., Yoshiki, S., Saeki, R., Mimura, Y., Ando, R., & Nanba, S. (2016). Development and application of traffic accident density estimation models using kernel
density estimation. Journal of traffic and transportation engineering (English edition), 3(3), 262-270. https://doi.org/10.1016/j.jtte.2016.01.005
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., & Cheng, Z. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 395(10223), 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
INEGI, (2019). División política estatal 1:250000. Escala: 1:250000. Edición: 1. Instituto Nacional de Estadística y Geografía.
Irwansyah, E., Budiharto, W., Widhyatmoko, D., Istamar, A., & Panghurian, F. P. (2020). Monitoring Coronavirus COVID-19/SARS-CoV-2 Pandemic using GIS Dashboard: International and Indonesia Context. https://doi.org/10.20944/preprints202008.0415.v1
JHU (2020). Johns Hopkins Coronavirus Resource Center. https://coronavirus.jhu.edu/
Jia, P., Xue, H., Yin, L., Stein, A., Wang, M., & Wang, Y. (2019). Spatial technologies in obesity research: current applications and future promise. Trends in Endocrinology &
Metabolism, 30(3), 211-223. https://doi.org/10.1016/j.tem.2018.12.003
Kanga, S., Meraj, G., Farooq, M., Nathawat, M. S., & Singh, S. K. (2020). Risk assessment to curb COVID-19 contagion: A preliminary study using remote sensing and GIS.
https://orcid.org/0000-0003-2913-9199
Kent, J., & Leitner, M. (2007). Efficacy of standard deviational ellipses in the application of criminal geographic profiling. Journal of Investigative Psychology and Offender Profiling, 4(3), 147-165. https://doi.org/10.1002/jip.72
Lyseen, A. K., Nøhr, C., Sørensen, E. M., Gudes, O., Geraghty, E. M., Shaw, N. T., & Bivona-Tellez, C. (2014). A review and framework for categorizing current research and
development in health related geographical information systems (GIS) studies. Yearbook of medical informatics, 9(1), 110. https://doi.org/10.15265/IY-2014-0008
MEA (2005). Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DC. Melin, P., Monica, J. C., Sanchez, D., & Castillo, O. (2020). Analysis of Spatial Spread Relationships of Coronavirus (COVID-19) Pandemic in the World using Self Organizing Maps. Chaos, Solitons & Fractals, 109917. https://doi.org/10.1016/j.chaos.2020.109917
Mitchel, A. (2005). The ESRI Guide to GIS analysis, Volume 2: Spartial measurements and statistics. ESRI Guide to GIS analysis.
Moreno, J. A. (1991). Modelización cartográfica de densidades mediante estimadores Kernel. Treballs de la Societat Catalana de Geografia, 155-170.
https://doi.org/10.2436/TSCG.V0I30.36881
Mousavi, S. H., Zahid, S. U., Wardak, K., Azimi, K. A., Hosseini, S. M. R., Wafaee, M., & Bonilla-Aldana, D. K. (2020). Mapping the Changes on Incidence, Case Fatality Rates and Recovery Proportion of COVID-19 in Afghanistan Using Geographical Information Systems. Archives of Medical Research. https://doi.org/10.1016/j.arcmed.2020.06.010
Mukherjee, F., & Rajendran, V. (2015). Measuring Spatial and Temporal Distribution of Nonviolent Crime Using Multiple Methods. Papers in Applied Geography, 1(3), 279-285. https://doi.org/10.1080/23754931.2015.1014701
Nath, B., Majumder, S., Rahman, M. M., & Sen, J. (2020). Dealing with Covid-19 infections in Kolkata, India: A GIS based risk analysis and implications for future scenarios.
medRxiv. https://doi.org/10.1101/2020.08.31.20185215
Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., ... & Agha, R. (2020). The socio-economic implications of the coronavirus pandemic (COVID-19): A
review. International journal of surgery (London, England), 78, 185. https://doi.org/10.1016/j.ijsu.2020.04.018
OMS, (2020). Organización Mundial de la Salud. https://www.who.int/csr/swine_flu/Preparacion_Pand_ESP.pdf
Orozco, O. S. R., Orozco, S. A., Alvarez, I. A. G., & Radaios, V. (2020). The impact of mobility restriction measures on the reproduction index of Covid-19 in the city of
Queretaro, Mexico. medRxiv. https://doi.org/10.1101/2020.09.06.20189373
Padilla S. F., Maya F. L., & Ferman C. F. (2020). COVID-19 en México: Panorama Epidemiológico. Revista Cadena de Cerebros, 4(1), 31-42. https://doi.org/10.5281/zenodo.3926806
Parrott, R., Volkman, J. E., Lengerich, E., Ghetian, C. B., Chadwick, A. E., & Hopfer, S. (2010). Using geographic information systems to promote community involvement in
comprehensive cancer control. Health communication, 25(3), 276-285. https://doi.org/10.1080/10410231003711755
Pourghasemi, H. R., Pouyan, S., Heidari, B., Farajzadeh, Z., Shamsi, S. R. F., Babaei, S., & Safaeian, R. (2020). Spatial modeling, risk mapping, change detection, and outbreak trend analysis of coronavirus (COVID-19) in Iran (days between February 19 and June 14, 2020). International Journal of Infectious Diseases, 98, 90-108. https://doi.org/10.1016/j.ijid.2020.06.058
Pulido, D., Basurto, D., Cándido, M., & Salas, J. (2020). Geospatial Spread of the COVID-19 Pandemic in Mexico. arXiv preprint arXiv:2006.07784. https://arxiv.org/pdf/2006.07784.pdf
Rizwan, M., Wan, W., & Gwiazdzinski, L. (2020). Visualization, Spatiotemporal Patterns, and Directional Analysis of Urban Activities Using Geolocation Data Extracted from LBSN. ISPRS International Journal of Geo-Information, 9(2), 137. https://doi.org/10.3390/ijgi9020137
Rob, M. A. (2003). Applications of geographical information systems in understanding spatial distribution of asthma. Informing Science, 6, 89-99. https://doi.org/10.28945/516
Rosenkrantz, L., Schuurman, N., Bell, N., & Amram, O. (2020). The need for GIScience in mapping COVID-19. Health & Place, 102389. https://doi.org/10.1016/j.healthplace.2020.102389
Sánchez, V.A. (2020). Impacto de la crisis del COVID-19 en la distribución del ingreso en la Ciudad de México. Contaduría y administración, 65(4), 4.
http://dx.doi.org/10.22201/fca.24488410e.2020.3016
Santana, G. (2020). Vulnerabilidad diferencial de los Estados mexicanos frente al COVID-19. Posición, Revista de la Universidad de Luján, 3. https://716132a6-9cf5-45de-baee-6a15e46210f7.filesusr.com/ugd/df634b_032caac2c6594df893b4808634950563.pdf
Santhosh, D., & Srinivas, V. V. (2013). Bivariate frequency analysis of floods using a diffusion based kernel density estimator. Water Resources Research, 49(12), 8328-8343.
https://doi.org/10.1002/2011WR010777
Sarfo, A. K., & Karuppannan, S. (2020). Application of geospatial technologies in the covid- 19 fight of Ghana. Transactions of the Indian National Academy of Engineering, 5(2), 193- 204. https://doi.org/10.1007/s41403-020-00145-3
Sarkar, S. K. (2020). COVID-19 Susceptibility Mapping Using Multicriteria Evaluation. Disaster Medicine and Public Health Preparedness, 1-17. https://doi.org/10.1017/dmp.2020.175
Sarukhán, J. (2006). Capital natural y bienestar social. México DF: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. https://www.biodiversidad.gob.mx/pais/capitalNatMex.html
Sarukhán, J., et al. 2017. Capital natural de México. Síntesis: evaluación del conocimiento y tendencias de cambio, perspectivas de sustentabilidad, capacidades humanas e institucionales. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México.
Sepehrvand, N., Alemayehu, W., Kaul, P., Pelletier, R., Bello, A. K., Welsh, R. C., & Ezekowitz, J. A. (2020). Ambulance use, distance and outcomes in patients with suspected
cardiovascular disease: a registry-based geographic information system study. European Heart Journal: Acute Cardiovascular Care, 9(1_suppl), 45-58. https://doi.org/10.1177/2048872618769872
Silverman, B. W. (1981). Using kernel density estimates to investigate multimodality. Journal of the Royal Statistical Society: Series B (Methodological), 43(1), 97-99. https://doi.org/10.1111/j.2517-6161.1981.tb01155.x
Snow, J. (1849). On the Mode of Communication of Cholera, London: John Churchill. Snow followed this up with a number of articles that refined his theory.
https://doi.org/10.1038/495169a
SSA. (2020). Secretaria de Salud. /Suárez, V., Quezada, M. S., Ruiz, S. O., & De Jesús, E. R. (2020). Epidemiología de COVID-19 en México: del 27 febrero al 30 de abril de 2020. Revista Clínica Española. https://doi.org/10.1016/j.rce.2020.05.007
Torrealba R. O., Conde G. R. A., & Hernández J. A. L. (2020). Modeling and prediction of COVID-19 in Mexico applying mathematical and computational models. Chaos, Solitons & Fractals, 109946. https://doi.org/10.1016/j.chaos.2020.109946
Umaru, T. E., Martins, G. M. I., & Owoyele, S. G. (2015). Effects of Urban Sprawl on Meningococcal Meningitis Incidence in Kaduna Urban Area, Nigeria. statistics, 5(8).
Recuperado de: https://core.ac.uk/download/pdf/234674509.pdf
Vivanco L. A. (2020). Predicting COVID-19 distribution in Mexico through a discrete and time-dependent Markov chain and an SIR-like model. arXiv preprint arXiv:2003.06758. recuperado de: https://arxiv.org/abs/2003.06758
Wang, B., Shi, W., & Miao, Z. (2015). Confidence analysis of standard deviational ellipse and its extension into higher dimensional Euclidean space. PloS one, 10(3), e0118537. https://doi.org/10.1371/journal.pone.0118537
WHO (2020). Coronavirus disease 2019 (COVID-19) situation report–57. Geneva, Switzerland: World Health Organization; 2020. https://www.who.int/docs/defaultsource/
coronaviruse/situation-reports/20200317-sitrep-57-covid-19.pdf?sfvrsn=a26922f2_2
Yuill, R. S. (1971). The standard deviational ellipse; an updated tool for spatial description. Geografiska Annaler: Series B, Human Geography, 53(1), 28-39. https://doi.org/10.1080/04353684.1971.11879353
Zambrano, L. I., Sierra-Santos, M. A., Mejía-Santos, H. M., Palou, E. Y., Muñoz-Lara, F., Lorenzana, I., & Valladares-Rosa, V. M. (2020). Spatial Distribution of COVID-19 in
Honduras at the Early Phase of the Pandemic Using Geographic Information Systems (GIS). https://doi.org/10.20944/preprints202006.0153.v1
Zepka, B., Anis, M., Keith, J. D., Barksdale, D., & Rivera, C. (2019). Peer Reviewed: Using Geographic Information Systems to Highlight Diabetes Prevention Program Expansion Areas in Pennsylvania. Preventing chronic disease, 16. https://doi.org/10.5888/pcd16.180493
Zhang, S., Diao, M., Yu, W., Pei, L., Lin, Z., & Chen, D. (2020). Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on
the Diamond Princess cruise ship: A data-driven analysis. International journal of infectious diseases, 93, 201-204. https://doi.org/10.1016/j.ijid.2020.02.033
Zhou, C., Su, F., Pei, T., Zhang, A., Du, Y., Luo, B., & Song, C. (2020). COVID-19: Challenges to GIS with big data. Geography and Sustainability. https://doi.org/10.1016/j.geosus.2020.03.005.
Article download
License
In order to support the global exchange of knowledge, the journal Anales de Geografía de la Universidad Complutense is allowing unrestricted access to its content as from its publication in this electronic edition, and as such it is an open-access journal. The originals published in this journal are the property of the Complutense University of Madrid and any reproduction thereof in full or in part must cite the source. All content is distributed under a Creative Commons Attribution 4.0 use and distribution licence (CC BY 4.0). This circumstance must be expressly stated in these terms where necessary. You can view the summary and the complete legal text of the licence.