On Conjugacy of p-gonal Automorphisms of Riemann Surfaces

  • Grzegorz Gromadzki

Resumo

The classical Castelnuovo-Severi theorem implies that for g > (p-1)², a p-gonal automorphism group of a cyclic p-gonal Riemann surface X of genus g is unique. Here we deal with the case g ≤ (p-1)² we give a new and short proof of a result of Gonzalez-Diez that a cyclic p-gonal Riemann surface of such genus has one conjugacy class of p-gonal automorphism groups in the group of automorphisms of X.

Downloads

Não há dados estatísticos.

##submission.format##

##submission.crossmark##

##submission.metrics##

Publicado
2008-04-15
Como Citar
Gromadzki G. . (2008). On Conjugacy of p-gonal Automorphisms of Riemann Surfaces. Revista Matemática Complutense, 21(1), 83-87. https://doi.org/10.5209/rev_REMA.2008.v21.n1.16436
Secção
Artículos