Constructible Functions on 2-dimensional Analytic Manifolds
Résumé
We present a characterization of sums of signs of global analytic functions on a real analytic manifold M of dimension two. Unlike the algebraic case, obstructions at infinity are not relevant: a function is a sum of signs on M if and only if this is true on each compact subset of M. This characterization gives a necessary and sufficient condition for an analytically constructible function, i.e. a linear combination with integer coefficients of Euler characteristic of fibres of proper analytic morphisms, to be such a sum of signs.Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
##submission.format##
Publié-e
2004-01-01
Comment citer
Bonnard I. y Pieroni F. (2004). Constructible Functions on 2-dimensional Analytic Manifolds. Revista Matemática Complutense, 17(2), 381-394. https://doi.org/10.5209/rev_REMA.2004.v17.n2.16733
Numéro
Rubrique
Artículos