Delta link-homotopy on spatial graphs
Résumé
We study new equivalence relations in spatial graph theory. We consider natural generalizations of delta link-homotopy on links, which is an equivalence relation generated by delta moves on the same component and ambient isotopies. They are stronger than edge-homotopy and vertex-homotopy on spatial graphs which are natural generalizations of link-homotopy on links. Relationship to existing familiar equivalence relations on spatial graphs are stated, and several invariants are de_ned by using the second coeÆcient of the Conway polynomial and the third derivative at 1 of the Jones polynomial of a knot.Téléchargements
Les données relatives au téléchargement ne sont pas encore disponibles.
##submission.format##
Publié-e
2002-01-01
Comment citer
Nikkun R. (2002). Delta link-homotopy on spatial graphs. Revista Matemática Complutense, 15(2), 543-570. https://doi.org/10.5209/rev_REMA.2002.v15.n2.16922
Numéro
Rubrique
Artículos