The effects of climate change on the flowering phenology of alder trees in southwestern Europe
- Jesús Rojo University of Castilla-La Mancha http://orcid.org/0000-0002-3627-130X
- Federico Fernández-González University of Castilla-La Mancha http://orcid.org/0000-0003-1234-4065
- Beatriz Lara University of Castilla-La Mancha https://orcid.org/0000-0002-3692-8201
- Verónica Bouso University of Castilla-La Mancha
- Guillermo Crespo University of Castilla-La Mancha
- Gonzalo Hernández-Palacios University of Castilla-La Mancha
- María Pilar Rodríguez-Rojo University of Castilla-La Mancha https://orcid.org/0000-0001-5449-9386
- Alfonso Rodríguez-Torres University of Castilla-La Mancha
- Matt Smith University of Worcester https://orcid.org/0000-0002-4170-2960
- Rosa Pérez-Badia University of Castilla-La Mancha http://orcid.org/0000-0002-2471-4388
Abstract
Global warming impacts plant phenology and the effect of climate change will be more intensely experienced at the edges of a plant's distribution. This work focuses on Iberian alder's climatic range (Alnus lusitanica Vít, Douda & Mandák). The Iberian Peninsula constitutes the Southwestern edge of the global chorological distribution of European black alder (Alnus glutinosa (L.) Gaertn. s.l.), and some of the warmest and driest conditions for the alder population are located in the center of Spain. The critical temperature-relevant periods that regulate the reproductive phenology of alder were analyzed using a statistical-based method for modeling chilling and forcing accumulation periods in temperate trees. Our results reveal that autumn chilling was the most important thermal accumulation period for alder in a Mediterranean climate while forcing requirements are satisfied in a short period of time. Autumn temperatures were significantly correlated with the timing of flowering, and chill units during this season directly influence start-dates of alder flowering. A positive trend was observed in pollen seasons' timing, meaning a slight delay of alder flowering in central Spain. It coincided with autumn warming during the period 2004-2018. If this warming trend continues, our results predict a delay in the start-date of flowering by around 3-days for every degree increase in maximum autumn temperatures according to the most optimistic emission scenarios.
Downloads
References
Aguayo, J., Elegbede, F., Husson, C., Saintonge, F.-X. & Marçais, B. 2014. Modeling climate impact on an emerging disease, the Phytophthora alni -induced alder decline. Glob. Change Biol. 20: 3209–3221. doi: https://doi.org/10.1111/gcb.12601
Attorre, F., Alfò, M., De Sanctis, M., Francesconi, F., Valenti, R., Vitale, M. & Bruno, F. 2011. Evaluating the effects of climate change on tree species abundance and distribution in the Italian peninsula. Appl. Veg. Sci. 14: 242–255. doi: https://doi.org/10.1111/j.1654-109X.2010.01114.x
Benmoussa, H., Ghrab, M., Ben Mimoun, M. & Luedeling, E. 2017. Chilling and heat requirements for local and foreign almond (Prunus dulcis Mill.) cultivars in a warm Mediterranean location based on 30 years of phenology records. Agric. For. Meteorol. 239: 34–46. doi: https://doi.org/10.1016/j.agrformet.2017.02.030
Biedermann, T., Winther, L., Till, S.J., Panzner, P., Knulst, A. & Valovirta, E. 2019. Birch pollen allergy in Europe. Allergy all.13758. doi: https://doi.org/10.1111/all.13758
Biurrun, I., Campos, J.A., García-Mijangos, I., Herrera, M. & Loidi, J. 2016. Floodplain forests of the Iberian Peninsula: Vegetation classification and climatic features. Appl. Veg. Sci. 19: 336–354. doi: https://doi.org/10.1111/avsc.12219
Campoy, J.A., Ruiz, D. & Egea, J. 2011. Dormancy in temperate fruit trees in a global warming context: A review. Sci. Hortic. 130: 357–372. doi: https://doi.org/10.1016/j.scienta.2011.07.011
Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. 2017. Chorological maps for the main European woody species. Data Brief 12, 662–666. doi: https://doi.org/10.1016/j.dib.2017.05.007
Chuine, I. 2010. Why does phenology drive species distribution? Philos. Trans. R. Soc. B Biol. Sci. 365: 3149–3160. doi: https://doi.org/10.1098/rstb.2010.0142
Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J.P., Iglesias, A., Lange, M.A., Lionello, P., Llasat, M.C., Paz, S., Peñuelas, J., Snoussi, M., Toreti, A., Tsimplis, M.N. & Xoplaki, E. 2018. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 8: 972–980. doi: https://doi.org/10.1038/s41558-018-0299-2
Dąbrowska, A., Kaszewski, B.M. 2012. The relationship between flowering phenology and pollen seasons of Alnus Miller. Acta Agrobot. 65: 57–66. doi: https://doi.org/10.5586/aa.2012.058
Darbyshire, R., Webb, L., Goodwin, I., Barlow, S. 2011. Winter chilling trends for deciduous fruit trees in Australia. Agric. For. Meteorol. 151: 1074–1085. doi: https://doi.org/10.1016/j.agrformet.2011.03.010
De Kort, H., Vander Mijnsbrugge, K., Vandepitte, K., Mergeay, J., Ovaskainen, O. & Honnay, O. 2016. Evolution, plasticity and evolving plasticity of phenology in the tree species Alnus glutinosa. J. Evol. Biol. 29: 253–264. doi: https://doi.org/10.1111/jeb.12777
Dewald, L. & Steiner, K. 1986. Phenology, height increment, and cold tolerance of Alnus glutinosa populations in a common environment. Silvae Genet. 35: 205–211.
Donmez, C., Berberoglu, S., Cilek, A. & Evrendilek, F. 2016. Spatiotemporal Modeling of Net Primary Productivity of Eastern Mediterranean Biomes under Different Regional Climate Change Scenarios. Int. J. Environ. Res. 10(2): 341–356. doi: https://doi.org/10.22059/ijer.2016.57814
Douda, J., Boublík, K., Slezák, M., Biurrun, I., Nociar, J., Havrdová, A., Doudová, J., Aćić, S., Brisse, H., Brunet, J., Chytrý, M., Claessens, H., Csiky, J., Didukh, Y., Dimopoulos, P., Dullinger, S., FitzPatrick, Ú., Guisan, A., Horchler, P.J., Hrivnák, R., Jandt, U., Kącki, Z., Kevey, B., Landucci, F., Lecomte, H., Lenoir, J., Paal, J., Paternoster, D., Pauli, H., Pielech, R., Rodwell, J.S., Roelandt, B., Svenning, J.C., Šibík, J., Šilc, U., Škvorc, Ž., Tsiripidis, I., Tzonev, R.T., Wohlgemuth, T. & Zimmermann, N.E. 2016. Vegetation classification and biogeography of European floodplain forests and alder carrs. Appl. Veg. Sci. 19, 147–163. doi: https://doi.org/10.1111/avsc.12201
Douda, J., Doudová, J., Drašnarová, A., Kuneš, P., Hadincová, V., Krak, K., Zákravský, P. & Mandák, B. 2014. Migration Patterns of Subgenus Alnus in Europe since the Last Glacial Maximum: A Systematic Review. PLoS ONE 9: e88709. doi: https://doi.org/10.1371/journal.pone.0088709
Emberlin, J., Smith, M., Close, R. & Adams-Groom, B. 2006. Changes in the pollen seasons of the early flowering trees Alnus spp. and Corylus spp. in Worcester, United Kingdom, 1996–2005. Int. J. Biometeorol. 51: 181–191. doi: https://doi.org/10.1007/s00484-006-0059-2
Fernández-González, F., Loidi, J., Moreno Saiz, J.C., Del Arco, M. & Fernández-Cancio, A. 2005. Impactos sobre la biodiversidad vegetal. In: Moreno Rodríguez, J.M. (Coord.). Evaluación Preliminar de Los Impactos En España Por Efecto Del Cambio Climático. Pp. 183–247. Min. Med. Amb., Madrid.
Fernández-González, F., Pérez-Badia, R., Bouso, V., Crespo, G., Rodríguez Rojo, M.P., Rodríguez-Torres, A., Rojo, J. & Sardinero, S. 2012. Síntesis de la vegetación de la provincia de Toledo. In: Fernández-González, F. & Pérez-Badia, R. (Eds.). Avances En El Conocimiento de La Vegetación. XXIII Jorn. Int. Fitosociología. Libro de Actas. Pp. 97–160. Ed. Univ. Castilla-La Mancha.
Fick, S.E. & Hijmans, R.J. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37: 4302–4315. doi: https://doi.org/10.1002/joc.5086
Fishman, S., Erez, A., Couvillon, G.A. 1987. The temperature dependence of dormancy breaking in plants: Mathematical analysis of a two-step model involving a cooperative transition. J. Theor. Biol. 124: 473–483. doi: https://doi.org/10.1016/S0022-5193(87)80221-7
Fu, Y.H., Geng, X., Hao, F., Vitasse, Y., Zohner, C.M., Zhang, X., Zhou, X., Yin, G., Peñuelas, J., Piao, S., Janssens, I.A. 2019. Shortened temperature‐relevant period of spring leaf‐out in temperate‐zone trees. Glob. Change Biol. 25: 4282–4290. doi: https://doi.org/10.1111/gcb.14782
Fu, Y.H., Zhao, H., Piao, S., Peaucelle, M., Peng, S., Zhou, G., Ciais, P., Huang, M., Menzel, A., Peñuelas, J., Song, Y., Vitasse, Y., Zeng, Z., Janssens, I.A., 2015. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526: 104–107. doi: https://doi.org/10.1038/nature15402
Garcia, R.A., Cabeza, M., Rahbek, C., Araujo, M.B. 2014. Multiple Dimensions of Climate Change and Their Implications for Biodiversity. Science 344: 1247579–1247579. doi: https://doi.org/10.1126/science.1247579
García-Madrid, A.S., Rodríguez-Rojo, M.P., Cantó, P., Molina, J.A. 2016. Diversity and classification of tall humid herb grasslands (Molinio-Holoschoenion) in Western Mediterranean Europe. Appl. Veg. Sci. 19: 736–749. doi: https://doi.org/10.1111/avsc.12249
García-Mozo, H., Mestre, A., Galán, C. 2010. Phenological trends in southern Spain: a response to climate change. Agric. For. Meteorol. 150: 575–580.
Gómez-Cantero, J., Rodríguez-Torres, A., Bustillo, E., Rodríguez-Bustamante, P. (Coords.). 2018. Estudio sobre efectos constatados y percepción del cambio climático en el medio rural de Castilla-La Mancha. Propuestas de medidas de adaptación. Segundo informe. Cons. Agric., Med. Amb. Des. Rur. Castilla-La Mancha. Junta Com. Castilla-La Mancha.
González, E., Felipe-Lucia, M.R., Bourgeois, B., Boz, B., Nilsson, C., Palmer, G. & Sher, A.A. 2017. Integrative conservation of riparian zones. Biol. Conserv. 211: 20–29. doi: https://doi.org/10.1016/j.biocon.2016.10.035
González-Parrado, Z., Fuertes-Rodríguez, C.R., Vega-Maray, A.M., Valencia-Barrera, R.M., Rodríguez-Rajo, F.J. & Fernández-González, D. 2006. Chilling and heat requirements for the prediction of the beginning of the pollen season of Alnus glutinosa (L.) Gaertner in Ponferrada (León, Spain). Aerobiologia 22: 47–53. doi: https://doi.org/10.1007/s10453-005-9008-5
Gordo, O. & Sanz, J.J. 2010. Impact of climate change on plant phenology in Mediterranean ecosystems. Glob. Change Biol. 16: 1082–1106. doi: https://doi.org/10.1111/j.1365-2486.2009.02084.x
Guiot, J. & Cramer, W. 2016. Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems. Science 354: 465–468. doi: https://doi.org/10.1126/science.aah5015
Hampe, A. & Petit, R.J. 2005. Conserving biodiversity under climate change: the rear edge matters: Rear edges and climate change. Ecol. Lett. 8: 461–467. doi: https://doi.org/10.1111/j.1461-0248.2005.00739.x
Haque, M.M.U., Casero, J.J.D. 2012. Susceptibility of common alder (Alnus glutinosa) seeds and seedlings to Phytophthora alni and other Phytophthora species. For. Syst. 21: 313–322. doi: https://doi.org/10.5424/fs/2012212-02267
Hemery, G.E. & Clark, J.R., Aldinger, E., Claessens, H., Malvolti, M.E., O'Connor, E., Raftoyannis, Y., Savill, P.S. & Brus, R. 2010. Growing scattered broadleaved tree species in Europe in a changing climate: a review of risks and opportunities. Forestry 83: 65–81. doi: https://doi.org/10.1093/forestry/cpp034
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965–1978. doi: https://doi.org/10.1002/joc.1276
Houston-Durrant, T., de Rigo, D. & Caudullo, G. 2016. Alnus glutinosa in Europe: distribution, habitat, usage and threats, in: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T. &, Mauri, A. (Eds.). European Atlas of Forest Tree Species. Pp. 64–65. Eur. Comm., Luxenbourg.
Jäger, S., Nilsson, S., Berggren, B., Pessi, A.M., Helander, M. & Ramfjord, H. 1996. Trends of some airborne tree pollen in the Nordic countries and Austria, 1980–1993: A comparison between Stockholm, Trondheim, Turku and Vienna. Grana 35: 171–178. doi: https://doi.org/10.1080/00173139609429078
Jato, M.V., Rodríguez-Rajo, F.J., Aira, M.J., Tedeschini, E. & Frenguelli, G. 2013. Differences in atmospheric trees pollen seasons in winter, spring and summer in two European geographic areas, Spain and Italy. Aerobiologia 29: 263–278. doi: https://doi.org/10.1007/s10453-012-9278-7
Jochner, S., Sparks, T.H., Laube, J. & Menzel, A. 2016. Can we detect a nonlinear response to temperature in European plant phenology? Int. J. Biometeorol. 60: 1551–1561. doi: https://doi.org/10.1007/s00484-016-1146-7
Kamocki, A.K., Banaszuk, P. & Kołos, A. 2018. Removal of European alder Alnus glutinosa -An active method of mire conservation. Ecol. Eng. 111: 44–50. doi: https://doi.org/10.1016/j.ecoleng.2017.11.014
Kasprzyk, I. 2003. Flowering phenology and airborne pollen grains of chosen tree taxa in Rzeszów (SE Poland). Aerobiologia 19: 113–120. doi: https://doi.org/10.1023/A:1024406819444
Lang, G.A. 1987. Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22: 371–377.
Lepais, O., Muller, S.D., Ben Saad-Limam, S., Benslama, M., Rhazi, L., Belouahem-Abed, D., Daoud-Bouattour, A., Gammar, A.M., Ghrabi-Gammar, Z. & Bacles, C.F.E. 2013. High Genetic Diversity and Distinctiveness of Rear-Edge Climate Relicts Maintained by Ancient Tetraploidisation for Alnus glutinosa. PLoS ONE 8: e75029. doi: https://doi.org/10.1371/journal.pone.0075029
Levin, D.A. 2006. Flowering Phenology in Relation to Adaptive Radiation. Syst. Bot. 31: 239–246.
Lind, T., Ekebom, A., Alm Kübler, K., Östensson, P., Bellander, T. & Lõhmus, M. 2016. Pollen Season Trends (1973-2013) in Stockholm Area, Sweden. PLoS ONE 11: e0166887. doi: https://doi.org/10.1371/journal.pone.0166887
Linkosalo, T., Le Tortorec, E., Prank, M., Pessi, A.M. & Saarto, A. 2017. Alder pollen in Finland ripens after a short exposure to warm days in early spring, showing biennial variation in the onset of pollen ripening. Agric. For. Meteorol. 247: 408–413. doi: https://doi.org/10.1016/j.agrformet.2017.08.030
Luedeling, E. & Gassner, A. 2012. Partial Least Squares Regression for analyzing walnut phenology in California. Agric. For. Meteorol. 158–159: 43–52. doi: https://doi.org/10.1016/j.agrformet.2011.10.020
Luedeling, E., Girvetz, E.H., Semenov, M.A. & Brown, P.H. 2011. Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees. PLoS ONE 6: e20155. doi: https://doi.org/10.1371/journal.pone.0020155
Luedeling, E., Kunz, A. & Blanke, M.M. 2013. Identification of chilling and heat requirements of cherry trees - a statistical approach. Int. J. Biometeorol. 57: 679–689. doi: https://doi.org/10.1007/s00484-012-0594-y
Lytle, D.A., Merritt, D.M., Tonkin, J.D., Olden, J.D. & Reynolds, L.V. 2017. Linking river flow regimes to riparian plant guilds: a community-wide modeling approach. Ecol. Appl. 27: 1338–1350. doi: https://doi.org/10.1002/eap.1528
Ma, Q., Huang, J.G., Hänninen, H. & Berninger, F. 2018. Reduced geographical variability in spring phenology of temperate trees with recent warming. Agric. For. Meteorol. 256–257: 526–533. doi: https://doi.org/10.1016/j.agrformet.2018.04.012
Malkiewicz, M., Drzeniecka-Osiadacz, A. & Krynicka, J. 2016. The dynamics of the Corylus, Alnus, and Betula pollen seasons in the context of climate change (SW Poland). Sci. Total Environ. 573: 740–750. doi: https://doi.org/10.1016/j.scitotenv.2016.08.103
Martínez-Lüscher, J., Kizildeniz, T., Vučetić, V., Dai, Z., Luedeling, E., van Leeuwen, C., Gomès, E., Pascual, I., Irigoyen, J.J., Morales, F. & Delrot, S. 2016. Sensitivity of Grapevine Phenology to Water Availability, Temperature and CO2 Concentration. Front. Environ. Sci. 4: 48. doi: https://doi.org/10.3389/fenvs.2016.00048
Martín-Herrero, J., Cirujano, S., Moreno-Pérez, M., Peris, J.B. & Stübing, G. 2003. La Vegetación Protegida en Castilla-La Mancha. Descripción, ecología y conservación de los Hábitat de Protección Especial. Junta de Comunidades de Castilla-La Mancha, Madrid.
McVean, D.N. 1953. Alnus glutinosa (L.) Gaertn. J. Ecol. 41: 447. doi: https://doi.org/10.2307/2257070
Morin, X., Lechowicz, M.J., Augspurger, C., O'Keefe, J., Viner, D. & Chuine, I. 2009. Leaf phenology in 22 North American tree species during the 21st century. Glob. Change Biol. 15: 961–975. doi: https://doi.org/10.1111/j.1365-2486.2008.01735.x
Morin, X., Roy, J., Sonié, L. & Chuine, I. 2010. Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytol. 186: 900–910. doi: https://doi.org/10.1111/j.1469-8137.2010.03252.x
Ninyerola, M., Pons, X. & Roure, J.M. 2005. Atlas climático digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Univ. Aut. Barcelona, Bellaterra.
Novara, C., Falzoi, S., La Morgia, V., Spanna, F. & Siniscalco, C. 2016. Modelling the pollen season start in Corylus avellana and Alnus glutinosa. Aerobiologia 32: 555–569. doi: https://doi.org/10.1007/s10453-016-9432-8
Osborne, C.P., Mitchell, P.L., Sheehy, J.E. & Woodward, F.I. 2000. Modelling the recent historical impacts of atmospheric CO2 and climate change on Mediterranean vegetation. Glob. Change Biol. 6: 445–458. doi: https://doi.org/10.1046/j.1365-2486.2000.00336.x
Pachauri, R.K. & Meyer, L.A. (Eds.). 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva.
Palmer, M.A., Reidy Liermann, C.A., Nilsson, C., Flörke, M., Alcamo, J., Lake, P.S. & Bond, N. 2008. Climate change and the world's river basins: anticipating management options. Front. Ecol. Environ. 6: 81–89. doi: https://doi.org/10.1890/060148
Peaucelle, M., Janssens, I.A., Stocker, B.D., Ferrando, A.D., Fu, Y.H., Molowny-Horas, R., Ciais, P. & Peñuelas, J. 2019. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10: 1–10.
Peñuelas, J., Lloret, F. & Montoya, R. 2001. Severe Drought Effects on Mediterranean Woody Flora in Spain. For. Sci. 47: 214–218. doi: https://doi.org/10.1093/forestscience/47.2.214
Pérez Latorre, A.V., Pavón Núñez, M. & Hidalgo Triana, N. 2011. Sobre las alisedas nevadenses (Sierra Nevada, Granada-Almería, España). Lagascalia 31 161-174.
Picornell, A., Buters, J., Rojo, J., Traidl-Hoffmann, C., Damialis, A., Menzel, A., Bergmann, K.C., Werchan, M., Schmidt-Weber, C. & Oteros, J. 2019. Predicting the start, peak and end of the Betula pollen season in Bavaria, Germany. Sci. Total Environ. 690: 1299–1309. doi: https://doi.org/10.1016/j.scitotenv.2019.06.485
Pironon, S., Papuga, G., Villellas, J., Angert, A.L., García, M.B. & Thompson, J.D. 2017. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol. Rev. 92, 1877–1909. doi: https://doi.org/10.1111/brv.12313
Rivas-Martínez, S., Rivas-Sáenz, S. & Penas, A. 2011. Worldwide bioclimatic classfication system. Glob. Geobot. 1, 1–634.
Rodríguez-Rajo, F.J., Aira, M.J., Fernández-González, M., Seijo, C. & Jato, V. 2011. Recent trends in airborne pollen for tree species in Galicia, NW Spain. Clim. Res. 48: 281–291.
Rodríguez-Rajo, F.J., Fernández-González, M.D., Vega-Maray, A.M., Suárez, F.J., Valencia-Barrera, R.M. & Jato, V. 2006. Biometeorological characterization of the winter in north-west Spain based on Alnus pollen flowering. Grana 45: 288–296.
Rodríguez-Rojo, M.P. & Fernández-González, F. 2014. Diversity Patterns and Typology of Cynosurus cristatus Grasslands (Cynosurion cristati Tüxen 1947) in the Iberian Peninsula. Folia Geobot. 49: 461–485. doi: https://doi.org/10.1007/s12224-014-9191-7
Rojo, J. & Pérez-Badia, R. 2014. Effects of topography and crown-exposure on olive tree phenology. Trees 28: 449–459. doi: https://doi.org/10.1007/s00468-013-0962-1
Rojo, J., Picornell, A. & Oteros, J. 2019. AeRobiology: The computational tool for biological data in the air. Methods Ecol. Evol. 10: 1371–1376. doi: https://doi.org/10.1111/2041-210X.13203
Rojo, J., Serrano-Bravo, M.D., Lara, B., Fernández-González, F. & Pérez-Badia, R. 2019. Halo-nitrophilous scrub species and their relationship to the atmospheric concentration of allergenic pollen: case study of the Mediterranean saltbush (Atriplex halimus L., Amaranthaceae). Plant Biosyst. 153: 98–107. doi: https://doi.org/10.1080/11263504.2018.1461699
Salazar, C., Lorite, J., Fuentes, A.G., Torres, J.A., Cano, E. & Valle, F. 2001. A phytosociological study of the hygrophilous vegetation of Sierra Nevada (Southern Spain). Stud. Geobot. 20: 17–32.
Salinas, M.J., Blanca, G. & Romero, A.T. 2000. Evaluating riparian vegetation in semi-arid Mediterranean watercourses in the south-eastern Iberian Peninsula. Environ. Conserv. 27: 24–35. doi: https://doi.org/10.1017/S0376892900000047
Skjøth, C.A., Ørby, P.V., Becker, T., Geels, C., Schlünssen, V., Sigsgaard, T., Bønløkke, J.H., Sommer, J., Søgaard, P. & Hertel, O. 2013. Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing. Biogeosciences 10: 541–554.
Smith, M., Jäger, S., Berger, U., Šikoparija, B., Hallsdottir, M., Sauliene, I., Bergmann, K.C., Pashley, C.H., de Weger, L., Majkowska-Wojciechowska, B., Rybníček, O., Thibaudon, M., Gehrig, R., Bonini, M., Yankova, R., Damialis, A., Vokou, D., Gutiérrez Bustillo, A.M., Hoffmann-Sommergruber, K. & van Ree, R. 2014. Geographic and temporal variations in pollen exposure across Europe. Allergy 69: 913–923. doi: https://doi.org/10.1111/all.12419
Spanish Meteorological Agency, 2020. Climate projections for the 21st century. http://www.aemet.es/en/serviciosclimaticos/cambio_climat [accessed: 25.05.20].
Thuiller, W., Lavorel, S., Midgley, G., Lavergne, S. & Rebelo, T. 2004. Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa. Ecology 85: 1688–1699. doi: https://doi.org/10.1890/03-0148
Turchina, T.A. 2019. Phenospectrum of Black Alder (Alnus glutinosa Gaertn.) Plants in Ecotopes of the Central Part of Steppe Zone of European Russia. Arid Ecosyst. 9: 15–25. doi: https://doi.org/10.1134/S2079096119010104
van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J. & Rose, S.K. 2011. The representative concentration pathways: an overview. Clim. Change 109: 5–31. doi: https://doi.org/10.1007/s10584-011-0148-z
Vilà-Cabrera, A., Premoli, A.C. & Jump, A.S. 2019. Refining predictions of population decline at species' rear edges. Glob. Change Biol. 25, 1549–1560. doi: https://doi.org/10.1111/gcb.14597
Vít, P., Douda, J., Krak, K., Havrdová, A., Mandák, B. 2017. Two new polyploid species closely related to Alnus glutinosa in Europe and North Africa – An analysis based on morphometry, karyology, flow cytometry and microsatellites. Taxon 66: 567–583. doi: https://doi.org/10.12705/663.4
Article download
License
Mediterranean Botany is an open access journal to promote global exchange knowledge. It facilitates unrestricted access to its contents from the moment of publication in its electronic edition. The originals published are property of the Universidad Complutense and it is mandatory to cite such source in case of total or partial reproduction. All contents are distributed under a Creative Commons License 4.0 (CC BY 4.0). This circumstance must be expressly stated in this way when necessary. You can check the informative version and legal text of the license.