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Fitting Logistic IRT Models: Small Wonder

Miguel A. Garcia-Pérez
Complutense University of Madrid

State-of-the-art item response theory (IRT} models use logistic functions exclusively as their item
response functions (IRFs). Logistic functions meet the requirements that their range is the unit
interval and that they arc menotonically increasing, but they impose a parameter space whose
dimensions can only be assigned a metaphorical interpretatton in the context of testing. Applications
of IRT models require obtaining the set of values for logistic funciion pararneters that best {it an
empirical data set. However, suceess in obtaining such set of values does not guarantee that the
constructs they represent actually exist, for the adequacy of a model is not sustained by the
possibility of estimating parameters, This article illustrates how mechanical adoption of off-the-
shelf logistic functions as IRFs for IRT models can result in off-the-shelfl parameter estimates
and #its to data. The results of a simulation study are presented, which show that {ogistic IRT
models can it a set of data gencrated by IRFs other than togistic functions just as well as they
fit logistic data. even though the response processes and parameter spaces involved in each case
are substantially different. An expianation of why logistic functions work as they do is offered,
the theoretical and practical comscquences of their behavior are discussed, and a testable alicrnative
to logistic TRFs is commented upon.

Key wonds: goodness of fit, parameter estimation, Item response theory, logistic modely, finite state
polynomic models, BILOG

La funcién de respuesta al item (FRI) asumida en los modelos al uso en tecria de respuesta
al item (TRI) es, en la practica, exciusivamente la funcién logistica. Las funciones logisticas
cumplen (os requisitos de que su rango es ¢l intervalo [0, 1] y son mandtonamente crecientes,
pero impanen un espacio paramétrico cuyas dimensiones solo tienen una interpretacion metafdrica
en el contexto de ia evalyacion mediante pruebas objetivas. La aplicacion de modelos THRi
requiere la estimacion de los parametros iogisticos gue mejor describen unos datos empiricos.
Sin embargo, el éxito en la obtencion de estos parametros no garantiza que los construcios
representados mediante ellos existan en realidad, puesto que fa validez de un modelo no gueda
establecida sdlo por la posibilidad de estimar sus parametros. Este trabaje muestra gue la
adopcion mecdanica de funciones logisticas como FRI en modelos TRI produce estimaciones y
ajustes estereotipados. Como prueba, se presentan resultados de un estudio de simulacion en
el que el modelo legistico produjo un patrén de estimacicnes y ajustes de datos no logisticos
que fue indistinguible de! patron obtenido para datos logisticos, a pesar de que los datos no
logisticos se generaron de acuerdo con un modelo que implica un proceso de respuesta y un
espacio paramélrico marcadamente diferentes del logistico. B trabajo termina con unas reflexiones
acerca de las razones por las que los modelos logisticos se comportan asi y de las
consacuencias tedricas y practicas de ese comportamianto, v tamhbién se describe una alternativa
empiricamente falsable a las FRI logisticas.

Palabras clave: bondad de ajuste, estimacion de parametros, teoria de respuesta al ftem,
modeios logisticos, modelos polindmicos de estados finitas, BILOG
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I somerimes have a nightmare about Kepler Suppose a few of

us were transported back in time to the year 1600, and were invited

by the Emperor Rudolph 11 10 set up an Imperial Department of

Statistics in the court at Prague. Despairing of those circular orbits,
Kepler enralls in our deparsment. We teach him the general Unear
model, least squares, dummy variahbles, evervthing. He goey back
to work, fits the best circular orbit for Mars by least squares, puts
in a dummy variable for the exceptional observation—and publishes.
And that’s the end, right there in Prague ar the beginning of the
17th century.

{Freedman. 1985, p. 359)

A major concern in the application of item response theory
(IRT) is the estimation of item and examinee parameters. The
interest arises because only when this is done can the
theoretical advantages of IRT be obtained. The availability
of computer programs such as LOGIST (Wingersky, Barton,
& lLord, 1982) or BILOG (Mislevy & Bock, 1984, 1986),
which estimate IRT parameters under the one-, two-, or three-
parameter logistic models (1PL, 2PL, or 3PL models) has
provided test practitioners with a powerful tool to harvest
these benefits.

Numerous simulation studies have assessed the efficiency
and accuracy with which these and other programs attain their
goal in a vanety of circumstances, including tests of different
lengths, examinee samples of different sizes and/or different
distributions of true parameters (e.g., Hambleton & Cook,
1983; Harwell & Janosky, 1991; Hulin, Lissak, & Drasgow,
1982; Ree, 1979; Seong, 1990: Skaggs & Stevenson, 1989,
Swaminathan & Gifford, 1983; Vale & Gialluca, 1988). Also,
some papers have compared LOGIST and BILOG as to the
algorithms they implcment, their computational cost, and the
characteristics of the estimates they provide (Mislevy &
Stocking, 1989; Yen, [987). The results of all these studies
provide a positive outlook of the performance of the programs,
as the gencrating parameters could successfully be rccovered
in the vast majority of cases.

The capability of logistic models to fit artificial data that
violate the assumptions of local independence and
unidimensionality has also been explored (Ansley & Forsyth,
1985; Drasgow & Parsons, 1983; Forsyth, Satsangjan, &
Gilmer, 1981; Harrison, 1986; McKinley & Mills, 1985;
Reckase, 1979; Yen, 1984). Although these studies showed
that logistic functions can fit this type of data and provide
parameter estimates, attention to the issue of the extent to
which the model fitted the data was only paid by McKinley
and Mills.

The extent to which logistic models can fit data sets
generated by a different model has also cccasionally been
asscssed. Some studies showed that data generated by logistic
models of various numbers of parameters can bhe fitted to
logistie models of fewer parameters (e.g., Dinero & Haertel,
1977; Yen, 1981), and Wood (1978) showed that the 1PL
model can fit data gencraled by a coin-toss process, thus

“recovering” fictitious parameters. Mislevy and Verhelst
(1987) also showed that the IPL modei can fit a mixture of
data generated by a random-guessing process and by the
[PL model itself. All these studies authenticate Bejar’s (1983,
p- 3} concern that “unfortunately, the programs that [estimate
logistic parameters] are capable of returning reasonable-
looking estimates even when the data are totally
inappropriate for the model assumed by the program. That
is, succeeding to estimate the parumeters of the model does
not insure that we have successfully fitted the model.”
The research mentioned in the foregoing paragraphs has
systematically failed to acknowledge properly that the choice
of the logistic function as the item response function (IRF)
for IRT models is an assumption of the theory (Hambleton
& Swaminathan, 1985, pp. 9-10; Lord, 1980, p. 30; Weiss
& Yoes, 1991, p. 74}, one whose adequacy must be checked.
Yet, on describing how to address the determination of
model/data fit, Hambleton and Swaminathan (1985, chap.
8; see also Hambleton & Murray, 1983) did not list the IRF
as an assumption to be checked. It seems that the adequacy
of logistic IRFs has been taken for granted, and it is
noteworthy that, paying little heed to Bejar's (1983)
cautionary comment, practitioners are content with cstimmating
logistic parameters without considering the issue of
model/data fit any further than whether the 1PL, 2PL, or
3PL model should be chosen. Indeed, Mislevy and Stocking
(1989, p. 57) state that obtaining the advantages of IRT
“requires access o flexible and economical computer
programs 10 estimate IRT parameters for items, examinees,
and populations of examinecs,” neglecting to mention that,
to begin with, the model should fit the data. The belief seems
to have been cstablished that logistic IRFs exist in the real
world for computer programs 10 hunt for the parameters that
characterize each conceilvable item, and that only some
know-how is needed to adjust the options of these programs
in order to arrive at the solution that was there to be found
(see Mislevy & Stocking, 1989, p. 68). Thus, work on IRT
has almost exclusively focused on the development and
comparison of parameter estimation techniques and the study
of the effects of characteristics of the data sets (sample size,
test length, and distribution of the true parameters) and
violations of model assumptions {excluding the mathematical
form of the IRF) on the capability of available algorithms
to recover the generating parameters (Baker, 1987a, 1987b,
1991, 199%; De Ayala, 1992, Gifford & Swaminathan, 1990,
Jannarone, Yu, & Laughlin, 1990; Kim & Nicewander, 1993;
Kim, Cohen, Bakcr, Subkoviak, & Leonard, 1994; Lord,
1986; Mislevy, 1987, Swaminathan & Gifford, 1986;
Tsutakawa, 1992; Tsutakawa & Johnson, 1990; Tsutakawa
& Lin, 1986; Tsutakawa & Soltys, 1988; Wainer & Thissen,
1987; Wang & Vispoel, 1998; Warm, 1989, Weitzman, 1996,
Zeng, 1997). No one seems to have questioned whether, in
the real world, logistic item and examinee paramelers are
actually there Lo be recovered or, in other words, whether
the mathematical form of the IRF can be derived from a
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psychological theory of performance in objective tests as
opposed o adopting a convenient function that the data are
forced to fit by fiat.

It is understandable that there has been little discussion
in the literature as to what mathematical form and what
parameter space the IRF should hold, as there are no
competing 1RFs that are substantively different from logistic
functions. By “substantively different,” we mean functions
that have theoretical underpinnings and whose paramelers
have theoretically sound interpretations. This characteristic
prevents splines (Ramsay & Abrahamowicz, 1989), chosen
with the only criterion of being more flexible than logistic
functions, from being eligible as plausible replacements for
them. As Goldstein and Wood (1989; see also Blinkhorn,
1997) pointed out, IRT has developed with a stunning
disregard for psychological theory which might provide
theoretically sound IRFs as replacements for logistic
functions. In the past few years we have proposed,
developed, and tested a model of performance in objective
tests {Garcia-Pérez, 1985, 1987, 1989b, 1990, 1993; sce also
Garcia-Pérez & Frary, 1989, 1991a) that is central to the
work described here.

This paper aims at investigating the capability of logistic
functions to fit artificial data generated from IRFs that differ
in their resemblance to logistic functions in several aspects.
Thus, the paper is similar to Wood's (1978) in its goal, but
it differs in three major respects. First, more realistic
generating models, involving different and interpretable
parameter spaces, are used. Second, the 1PL., 2P1., and 3PL
maodels are all fitted 1o the generated data. Third, some
practical recommendations are given, and an alternative way
to define and test {as opposed to merely fit} IRFs for use
with IRT models is described. PC-BILOG (Mislevy & Bock,
1986) was used to obtain the logistic parameterizations.
There is reason to believe that other programs would have
performed just as PC-BILOG did in the situations that wiil
be described below (see Mislevy & Stocking, 1989; Yen,
1987).

The paper is divided into two studies. In the fivst, a data
set was generated by the 3PL model and another set was
generaled by a slight modification of the 3PL model. The
analysis of the 3PL parameterization of 3PL data serves as
a baselime with which the rest of the results are compared.
The analysis of the data gencrated by modifying the 3PL
medel indicates how minor differences between generating
and fitted models affect the fit and the recovery of the (still
logistic) true parameters. For the second study, data were
generated by two different {inite state polynomic models
(Garciu-Pérez & Frary, 1991a). These models represent major

departures from the assumption of underlying logistic IRFs
and their associated parameter spaces and, therefore. provide
for a more stringent test of the capability of logistic functions
ta “recover” fictilous parameters.

General Procedure

Responses of 500 examinees to a four-option 30-item
test were simulated using four different generating models
which will be described in detail below.! Random numbers
required at several points in the programs were obtained as
described by Wichmann and Hill {1982). The programs
created data files which were subsequently input 1o PC-
BILOG to obtain examinee and item parameter estimates as
well as measures of it for the test and (he individual items.

Each of the four data sets was subject to three PC-
BILOG runs in order to obtain their 1PL, 2PL, and 3PL
parameterizations. Default options for PC-BILOG were used
throughout, and the metric of the logistic function was
chosen. Default options do not always guarantee best fit,
but using the same options in all cases serves the more
relevant goal of making results comparable across data sets.
By default, PC-BILOG considers omissions as wrong
responses when the 3PL. model is fitted. Since two of the
data sets included omissions, a fourth PC-BILOG run on
cach of them sought to obtain their 3PL parameterizations
when omissions are treated as fractionally correct responses.
The 3PL model fitted with this choice for the treatment of
omissions will be called 3PL-C.

From each PC-BILOG run, a number of statistics and
estimates were obtained for further analysis. These included
the measure of overall fit given by the marginal log-
likelihood statistic (— 2 log L), the approximate chi-square
index of fit for every item, the estimated item parameters,
and the estimated examinee abilities. On analyzing these
measures, the fotlowing issues were specifically addressed
in each of the four simulations:

i. Variations in overall {it, as given by the marginal log-
fikelihood statistic, as a function of the correspondence (or
lack thereof) between the generating and the fitted model.

2. Variations in the distribution of the fit of individual
items, as given by the approximate chi-square indexes within
each fitted model.

3. The relationships between the various estimated item
parameters within cach fitted model and across the various
fitted models.

4. The relationship between true and estimated item
parameters within each fitted model.

! Sample size and test length were chosen to be large enough (yvet reasomahly smiall} to minintize estimation errors caused simply by
scarcity of data. 1t should be noted that Baker (199%) concluded from simulation studies that data sets of 500 cxaminees and 50 items

vicld excellent item parameter recovery by BILOG.
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5. The relationships between estimated examinee abilities
across different fitted models.

6. The refationship between true and estimated examinec
abilities within each fitted model.

It should be kept in mind that our goal is to determine
the extent to which logistic medels can fit data generated
using models which differ from the fitted models in several
aspects. Therefore, the study does not address the possible
effects of varying the true parameter distributions, the
number of options per item, the length of the test, or the
number of examinecs. The choices that are made below
about these characteristics are hence of no concern with
respect to the outcomes of this study.

Study 1: Fitting Logistic Models to Logistic Data

Generating Models

The first data set for this study was generated from the
conventional 3PL model equation

1 ¢
PB)y=1c, + d . 1
o= L+exp [-a, (0, - b)] (D

where bl., a; and ¢; are, respectively, the difficulty,
discrimination, and pseudo-chance level parameters of item
i, and P,,(ej.) is the probability that examinee J, with ability
8, answers item 7 correctly. This generating model will be
referred to as 3PL.

The second data set was generated by adding to the 3PL
generating model the disturbance described by Mislevy and
Bock (986, p. 5-17) to allow a small number of omissions.
Examinees responded according to Equation [ whenever PE(GJ,.)
> .3, and otherwise they had a .5 probability of omitting.
Examinees who did not omit when P,,(ej) < .3 also responded
according to Equation 1. The gencrating model resulting from
this modification will be referred to as 3PL-O.

Triee Paramieters

For the two simulations, 500 values to represent examineg
true abililies were rundomly generated to be distributed N(0,

1). Similarly, item difficulties were generated to be uniformly
distributed in [-2.0, 2.0] and item discriminations to be
uniformiy distributed in {0.6, 2.0], whereas pseudo-chance
level parameters were kept constant at .25 for all items.” The
observed 8 distribution had a mean of 005 and a standard
deviation of 938, with a minimum of -2,79 and a maximum
of 2.80. Observed item difficalties ranged from —1.98 to 1.99,
with a mean of 0.159 and a standard deviation of [.143, and
observed item discriminations ranged from 0.603 to 1.984
with a mean of 1.338 and a standard deviation of 0.430. The
product-moment correlation  between  difficulty and
discrimination was r = (7.

Results and Discussion

Table 1 gives the values of — 2 log L obtained for every
model fitted to each data set.’ For 3PL data, fitting the 3PL
maodef resulted in the best — 2 log L. For thesc data, the
difference between the 3PL and 1PL parameterizations in
terms of ~ 2 log L was 371.42, and the difference between
the 3PL and 2PL parameterizations was 113.66. Of course,
the cost of these improvements was, respectively, to estimate
100 or 50 more parameters. The situation for 3PL-O data
is about the same, but it is noteworthy that fitting the 3PL-
C model resulted in a value of — 2 log L, which was much
worse than that obtained when fitting the [PL model. This
is probably a consequence of the inappropriateness of default
PC-BILOG options {or data including omissions. No attempt
was made (o run PC-BILOG with different options (o
improve the [fit, because obtaining the best possible fit was
not a goal of this study.

11 is interesting 1o note that the disturbance in the 3PL-
O model did not have a strong effect in model/data fit,
provided that omissions are (reated as wrong responses when
fitting the 3PL model. In fact, the pattern of - 2 log L values
across the fitted 1PL, 2PL, and 3PL models is similar for
the data with and without omissions. On the other hand,
large degrees of mismatch between the generating and the
fitted model, as represented by the 2PL and [PL
paratneterizations, resulted in a deterioration of the fit. In
short, when the same PC-BILOG options are used, the fit
scems 1o be best when the fitted model matches the
generating model and, when the 3PL model is fitted to data

2 These choices might be disdained as non-realistic. However, similar choices were made by Swaminathan and Gifford (1983). Hambleton
(1983) or Baker (1998), and it should be kept in mind that “notions of what ‘realistic” means are determined by what available programs
provide, and programs do not necessarily provide the true parameters for any dataset of reasonable size”™ (Mislevy & Stocking, 1989, p.
73). In any case, this type of realism is not relevant to the goal of this paper and, in addition, the results 10 be presented below indicate
that the possibility of a logistic parameterization of a test is not hamperced by this choice for the distributions of the generating parameters.

* 1t should be remembered that likelihood is a function of the data and. then, only comparisons across models fitted 1o the same data
are legitinate. Also, direct comparison of values of — 2 log L gives only a crude indication of fit, but their chi-squarc approximation is
suspect. Also note that, for any given data set, each fitted model Jies in a boundary of the next higher-dimensional model, which further
fessens the validity of - 2 log I as true chi-squares {for a similar treatment of — 2 log £, see Mislevy & Verhelst. 1987).
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with omissions, the best choice seems to be to (reat
omissions as wrong responses. Whether or not this is true
in general will be left unexplored here because it is beyond
the goal of this paper.

Table 1
Vadues of — 2 log L in Study 1

Generating Model

GARCIA-PEREZ

Table 2 summarizes the information provided by the
approximaie chi-square index of fit for cach item.* Because
degrees of freedom vared across items and across {itted
nmodels, the p-values of the approximate chi-square statistics
are reported instead of their values. As can be seen, the 1PL
parameterization results in poorer fits {or the items, with an
important number of them having p-values below 05, In
contrast, the 2PL and 3PL parameterizations result in
approximately equally good fits, with only a few misfitting
items. It is noteworthy that when the 3PL-C model was fitted

Fitted Mode! A SPL-O to 3PL-0 data, the deterioration of fit indicated by the -2
1PL 1847R.62 217835.87 log £ statistic in Table 1 docs not show at the item level.
IpL 2829086 2750389 Using a modificd version of Yen’s (1981) criteria for
3PL 28107.20 2748293 choosing the most appropriate fitted model (amended to

3PL-C — 28317.71 replace a comparison of the mean values of the item fit
statistics with u comparison of their mean p-values), the
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Figure !. Relations between estimated logistic parameters within each fitted logistic model. (a) 3PL data. (b) 3PL-O data.

4 These indexes of fit should be interpreted with caution, since they are not true chi-square statistics.
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Table 2
Means and Standard Deviations of p-values, and Number
of Misfitting Items (p < .05) in Study {

Generating Model

3PL 3PL-O
Fitted
Model e 5D N M SD N
1PL. (.36 0.29 13 042 033 8
2PL 0.35 0.28 l 0.60 0.30 3
3PL 0.55 0.27 l 0.60 0.28 2
3PL-C — — — 0.58 0.33 1

1PL model should be rejected for these data, but a decision
about the appropriateness of the 2P vs 3PL models cannot
be made from the values of the statistics reported so far.
The differences between these two latter parameterizations
are {urther examined next.

(a) 3PL data; 2PL vs 3PL fit

(b} 3PL-O data; 2PL vs 3PL fit
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Figure 1 shows the relationships between the various
item parameters estimated within cach fitted model. For
3PL data {Figure 1a), fitting the 2PL model results in a
ncgative relationship between estimated difficulty and
discrimination (r = —45), whereas this relationship almost
vanishes when the appropriate 3PL model is fitted {r = .[9).
It should be remembered that true difficulty and
discrimination did not bear any relation (r = .07). In addition,
there is no evidence of any relationship between pseudo-
chance level estimutes and the two other 3PL parameter
estimates (| < .14).

For 3PL-O data (Figurc lb), the situation is not very
different for the 2PL and 3PL models when omissions are
treated as (ractionally correct responses (2PL and 3PL-C
fit, respectively). Yet, when omissions are treated as wrong
responscs (3PL fit), pseudo-chance level estimates arc
ncgatively related to estimated discrimination {r = —.65),
and their spread around the true value of .25 increases with
increasing estimated ditficulty.

(c) 3PL-O data; 2PL vs 3PL-C fit
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Frgure 2. Relations between estimated logistic parameters across ditferent fitted logistic models. {a) 2PL vs 3PL estimates for 3PL data.
(b} 2PL vs 3PL estimates for 3PL-O data. {¢) 2PL vs 3PL-C estimates for 3PL-O data. (d) 3PL vs 3P1.-C estimates for 3PL-O data.
Dashed diagonal lines indicate an expected identity relationship between the variables in the abscissa and the ordinate,
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Figure 2 shows how the estimates vary across fitted
models. For 3PL data (Figure 2a), 2PL and 3PL difficulty
estimates are similar and highly lincarly related (r = .97),
but 2PL and 3PL discrimination estimates are not so closely
related (r = .53), with values for the 3PL parameterization
being generally larger than those resulting from the 2PL fit.
The presence of this type of relationship between 2PL. and
3PL discrimination estimates was regarded by Yen (1981)
as evidence that the 2PL model is inappropriate for the data.
Finalty, items for which 3PL pseudo-chance fevel estimates
deviate the most from the true value of .25 tend to obtain
average 2PL difficulty estimates.

In contrast, for 3PL-O data (Figure 2b) the presence of
omissions breaks up slightly the relationship between 2PL
and 3PL difficulty estimates (r = .93), and brings the 2PL
and 3PL discrimination estimates closer than they were in
the absence of omitted responses (r = .84). On the other
hand, 3PL pseudo-chance levels noticeably tend to be
estimated well below their true value for items that
simultaneously obtain high 2PL difficulty and average 2PL
discrimination estimates. The relationships between 2PL and
3PL-C estimates (Figure 2¢) are similar to those shown in
Figure 2b, except that 3PL-C pseudo-chance level estimates
bear with 2PL difficulty and discrimination estimates a
similar relation as they did for data without omissions
{compare with Figure 2a). Therefore, it would seem that,
as far as a comparison between 2PL and 3PL or 3PL.-C item
estimates is concerned, the only meaningful difference
between the two options {for the treatment of omissions
shows in the estimation of pseudo-chance levels. This is
best seen in Figure 2d: the different treatments of omissions
do not affcct item difficulty estimates, slightly affect
discrimination estimates for items of high estimated
discrimination, and substantialty affect pseudo-chance tevel
estimates.

To determine whether these characteristics affect items
within specific ranges of true parameters, the relationships
between true and estimated item parameters were explored
within each fitted model. Figure 3a shows the relationships
between true difficuity and discrimination and their 2PL
estimates for 3PL data. Figure 3b does the same for 3PL-
O data. In both cases, difficulty seems to be slightly
underestimated by the 2PL model, but the estimates are
highly correlated with true difficulty (r = .97 and r = .96
in Figures 3a and 3b. respectively) and virtually
uncorrelated with truc discrimination (r = .23 and r = .27).
Conversely, 2PL discrimination estimates are less strongly
rclated to true discrimination {(r = .61 and r = .83) and
they are negatively related to true difficulty (r = —.56 and
r = —=28). Consistent with Yen’s (1981) interpretation of
the way in which the absence ol a third parameter is made
up for when the 2PL model is fitted to 3PL data, Figurcs
Ja and 3b show that the underestimation of 2PL
discrimination affects items of high true difficulty and
discrimination.

(a) 3PL data; 2PL fit
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Figure 3. Relations between true ¢ and b and 2PL estimates. (a)
IPL data. (b) 3PL-O data. Dashed diagonal lines indicate an
expected identity relationship between the variables in the abscissa
and the ordinate.

The relationships between true parameters and their 3PL
estimates (tor 3PL and 3PL-O data) or their 3PL-C estimates
(for 3PL-O data) are shown in Figures 4a, 4b, and 4c,
respectively. In all three cases, difficulty estimates are very
closc and linearly related to true difficulty (r > .97), and
they bear no relation 1o true discrimination (|} < .06).
Estimated discriminations are only slightly less related o
the true values (.86 < r < .90), but they do not bear any
relation to true difficulty (/] < .19). On the other hand,
pseudo-chance level estimates are unrelated teo true difficulty
and discrimination, except when omissions are treated as
wrong responses (Figure 4b), where they show signs of a
negative relation to true difficufty {r = -49) and
discrimination (r = —.62).

As for examinec ability, the relations among the estimates
obtained from the various models fitled to each data set are
shown in Figure 5, revealing that ability estimates are almost
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{a) 3PL data; 3PL fit

(b) 3PL-O data; 3PL fit
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(c) 3PL-O data; 3PL-C fit
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Figure 4. Relations between true ¢ and b and 3PL estimates. (a) 3PL fit to 3PL data. (b) 3PL fit to 3PL-O data. (¢) 3PL-C fit to 3PL-
O data. Dashed diagonal lines indicate an expected identity relationship between the variables in the abscissa and the ordinate.
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3PL data

the same throughout {r > .99}. Figure 6 shows that all ability
gstimates are also aboul equally related to true ability (.92
< r < 94} no matter which model was used to generate the
data or how omissions were treated. It is also clear from a
comparison of Figures 5 and 6 that the different ability
estimates are much closer to each other than any of them
is to true ability.

Conclusion

The main goal of this first study was to obtain a 3PL
parameterization of 3PL data that could set a standard of
comparison for the parameterizations obtained for data
differing from 3PL data in several aspects. In the first
simulation, where data were generated to match both the
parameter space and the response process that the fitted
mode] assumes, the 3PL parameterization recovered the true

3PL-0O data

2Pl estimate of 8
3PL estimate of 8
2PL estimate of 8

3PL estimate of 8

3PL-C estimate of 0

0 2 4
True 6

Figure 6. Relations between true und estimated logistic abilities across models fitted to each data set. Dashed diagonal lines indicate an
expected identity relationship between the variables in the abscissa and the ordinate.
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parameters reasonably well. In the second simulation, where
generating and fitted models shared the parameter space but
implied slightly different response processes, the 3PL
parumeterization could also recover the true parameters. In
both simulations, the recovery was far from perfect, with
noticeable errors in the itern discrimination parameters and,
to a lesser extent, in the item difficulty and examinee ability
parameters. In agreement with results of Yen (1981) and
McKinley and Miils (1985), differences between 2PL and
3PL parameterizations were minimal, as were those between
3PL parameterizations obtained with different options for
the treatment ol omissions.

These analyses have focused on the recovery of
parameters as well as on the relationships among estimated
parameters across and within fitted models. The issue of the
recovery of IRFs (i.e., whether the shape of the estimated
IRF approximates that of the true IRF regardless of
differences between estimated and true parameters) has not
been addressed because the recovery of parameters was
indeed sufficiently accurate. These results characterize the
performance of logistic model parameter estimation
techniques when generating and fitted models match or
almost match. The next study explores how these techniques
behave when the differences between generating and fitted
models are more dramatic.

Stady 2: Fitting Logistic Models to Finite State
Polynomic Data

Generating Models

Each of the two data sets on which this study is based
was gencrated using a different finite state polynomic (FSP)
model. A thorough description of these models can be found
in Garcia-Pérez and Frary (1991a), but a brief introduction
follows. FSP models were developed in the context of
measurement of educational achievement, and they include
two examinee parameters and an item parameter. The main
examinee parameter, A (0 < A < 1), represents ability or level
of knowledge and bears no relation to its logistic counterpart
0. In finite state theory, A stands for the proportion of
statements about a subject matter whose truth value the
examinee knows. Thus, unlike @ in logistic models, A is
directly interpretable as the proportion of knowledge that
the examinee has. (Out of the context of domain-referenced
testing, or simply Lo avoid sampling considerations, a less
stringent definition of X is that it is the proportion of
statements on a test that the examinee knows.) On a lcst, a
staterment is represented by the completion of an item stem
with any one of its response options. Thus, the probability
of an examinee’s identifying a randomly drawn option in a

The FSP item difliculty parameter & (0 < & < 1)
maodifies this probability. Like A, & bears no relation to its
logistic counterpart b, It characterizes items rom the
difficult (6 — ) to the easy (5 — 1), and interacts with
A to determine the probability of an examinee’s identifying
an option in a certain ilem as its correct answer or a
distractor. Garcia-Pérez and Frary (1991a) proposed a
mathematical form for the interaction between examinec
ability and item difficulty. but that equation was later
amended by Garcia-Pérez (1994). Here we will adopt the
latter form so that the probability that an examinee of
ability A, knows the truth value of an option in an item of
difficulty o, is

p,,« - }\I —|l)g‘6‘_ (2)

This equation has a more natural interpretation than the
original proposal because the effects of A and & are
symmetric. Specifically, for a statement of average difficulty
(& = .5), the probability that an examinee of ability A knows
its truth vatue becomes just A; similarly, for an examinee of
average ability (A = .5) the probability that he/she knows
the truth value of a statement of difficulty & becomes just
&. In other words, an examinee’s A is interpretable as the
probability of his/her knowing the truth value of staternents
of average difficulty, whereas a statement’s & is interpretable
as the probability that its truth value be known by cxaminees
of average ability.

On a multiple-choice test, the probability that an
examince responds correctly to an item is definitely a
function of this basic probability as applied to each of the
options in the ttem, but it also depends on a number of other
factors, among which guessing is included. This calls for
the second examinec parameter, v (0 <y < 1), which
represents the examinee’s willingness (o guess when unsure
of the answer, regardless of how many distractors they had
the knowledge to identify. This parameter has no parallcl
in logistic models and represents the probability that an
examinee will guess at random among the unclassified
options (as opposed to omitting} when unsure of the coitect
answer to an item.

Gurcia-Pérez and Frary (1991a} discussed some other
assumptions about examinee behavior and test and item
characteristics reflecting features of the testing situation that
can be taken into account to derive a matching FSP model.
These assumptions cover the guessing strategy of the
cxaminees, the number of options per item, the relative
identifiability of correct answers vs distractors, the format
of administration of the test, and other item characteristics
such as use of “none of the above” (see also Garcia-Pérez,
1993; Garcia-Pérez & Frary, 1991b). They also exemplified
the procedure for developing FSP models and provided a
number of meodels that incorporate different sets of
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Data for the second simulation were generated using
Equations 3a-3c ol Garcia-Pérez and Frary (1991a). Those
equations embody the model for a four-option test
administered with the conventional format (i.e., asking
examinees (o mark the correct option), in which distractors
arc as easily classifiable as correct answers, and where
examinees guess without following any consistent strategy.
This type of examinee behavior was referred to as random
omission (RO) by Garciu-Pérez and Frary (1989). The
corrgsponding gencrating model, which we will refer 1o as
FSP-RO, is given by

3
.=yt 3 2 2 M 2 2
cp =t 41;{;. {1- pi}.) + 31”(;‘ (i pfj) + 3 pi; (1 pU) vt

1
_ 3 _ 3 _ 4
py([ P,;,-) +P!-,-(1 P,‘j) 'Yj‘+ 4(1 P,'J.‘) FYJ,w
(3a)

w—iz(l- Py, +2p(L-p) +i(1— )*
§T T Pe TR Y e Ry Y Py Yo

(3b)

wp=3pp(L=p P (L=y)+3p, (L —p P (l-v)+

(1 *.U,;,-)4 (I-v)
(3c)

with p; as in Equation 2. Equations 3a-3c. respectively,
represent the probabilities that an examinee of ability A
and willingness to guess 7 responds correctly, wrongly, or
leaves unanswered an item of difficulty &, Figure 7 plots
the IRF of Equation 3a for various v and 8. Note that, in
addition to providing an equation for the probability of a
correct response to an item under the conditions assumed
for the test, FSP modeis also supply equations for the

probabilities of a wrong response and an omission and, in
general, for every outcome that may occur under any format
of administration.

Data for the first simulation were generated by a variant
of this model which differed only in that examinces were
assumed to attempt all the items by guessing whenever
necessary, a behavior that was referred to as mumber correct
(NC) by Garcia-Pérez and Frary (1989). This behavior is
often encouraged on evidence of the major effects of
differential guessing strategics on test scores (Albanese,
198K: Bliss, 1980; Cross & Frary, 1977; Rowley & Traub,
1977; Slakter, 1968). The equations for this generating
madel, which will be referred to as FSP-NC, are
straightforwardly obtained from Equations 3a-3c by noting
that NC behavior makes Y= 1 for all examinees. When this
substitution is made, the right-hand side of Equation 3c
reduces to 0 and, not unexpectedly, the model reflects that
omissions do not occur under this guessing strategy.

Note that, as a consequence of this choice of models,
this study also used a data set in which there were no
omitted responses and a data set in which there were
omissions.

True Parameters

For both simulations, 500 values to represent exarminee
abilities were randomly drawn to be uniformly distributed
in {.i,.9). Another set of 500 values to represent examinee
willingness to guess was generated to be uniformly
distributed in {0, 1]. Item difficulties were generated to be
uniformiy distributed in (.1, .9). The observed A distribution
had a mean of .520 and a standard deviation of .227, with
a minimum of .103 and a maximum of .899; the observed
¥ distribution ranged {rom 001 10 .999, with a mean of .501
and a standard deviation of .288; A and v correlated r = .04,
Finally, observed s ranged from .104 to .886 with a mean
of .529 and a standard deviation of .234,
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Figure 7. Finite state polynomic [RFs given by Equation 3a for various ys. In each panel. curves represent, from top to bottom, TRFs

for items with s of 9, .7, .5, .3, and .1,
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Table 3
Values of — 2 log L in Sudy 2

Generating Model

Fitted Model FSP-NC FSP-RO
1P 22484.12 23231.31
2PL 22406.22 23172.29
3PL 22334.31 23182.51

3PL-C — 23263.97

Results and Discussion

Values of — 2 log L for ail the models fitted in cach
simulation are shown in Table 3. Within each data set, the
values of — 2 log L resulting from the different fitted models
are much closer together than they were in the previous study.
For FSP-NC data, the value of — 2 log L improves by 77.90
when the ZPL model is fitted instcad of the 1PL model, and
by 71.91 when the 3PL model is flitted instead of the 2PL

(a) FSP-NC data

GARCIA-PEREZ

Table 4
Means and Standard Deviations of p-valies, and Number
of Misfitting Items (p < .05) in Study 2

Generating Model

FSP-NC FSP-RO
Fitted
Model M 5D N M SO N
IPL (+44 0.32 3 0.56 .28 0
2PL {1.55 0.28 1 0.65 0.20 0
apPL 0.64 0.27 0 0.59 .24 0
3PL-C — — —- 0.71 0.25 4

modei. For FSP-RO data, the situation is much the same,
including the worsening of the fit when the 3PL model is fitted
by considering omissions as fractionally correct responses.

Approximate item chi-square statistics are provided in
Table 4. As in the previous study, for both data sets the 1PL
model tended to it worse than the 2PL. or 3PL modcls, both
of which did about equally well.

3PL fit
Iy 1
5 gh i
- D "
2PL fit w gk L
@ 2.5 E -
5 | 3 4 i 0
g o & .2—‘“% - Cw
g 15- & )
= ol L1 1 1 N
% é% 05 15 25
) m 2.5 .
d 0.5F 5 o 3P, estimate of g
™ L a1 8 ).t E i oo O
4 2 0 2 4 g 151 gﬁ
2PL estimate of & 2 %
T 05F
® [ I T I W )
4 2 0 2 4
3PL estimate of b
(b} FSP-RO data
3PL fit 3PL-C fit
o 1 Rl
u— Q
g .8 - o .8f -
- o ©
2PL fit m B¢ B £ 8} L
A 2.5 E .5
5 ® Ar - S A 3
o]
2 o g ,2°% - o S oo B L o
E 1.5F « 1 1 1 1 % J. 11 1 ] 1 1 i
E P I A s 0 -
@ om 05 05 15 25 Ly 05 15 25
. — - .
=g 5k - 3PL estimate of a o |_ 3PL-C estimate of &
o Y =] ©
o e, o v = o
4 2 © 2 4 £ 1sp ﬁ % 1.5¢ gﬁ
2PL estimate of b = 1o e d
& osf 3 0.5k
« 1 1. 1 1 3 % L 1 TN T 1
4 2 0 2 4 4 2 0 2 4

3PL estimate of b

Figure 8. Relations between estimated logistic parameters within e

3PL-C estimate of b

ach fitted logistic madel, (a) FSP-NC data. {b) FSP-RO data.
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Comparing the patterns in Tables 3 and 4 with those in
Tables 1 and 2, one would be tempted to say that logistic
models fit FSP data better than they fit logistic data!
However, the different data and the diffcrent parameter
spaces involved in each generating model make any such
comparison unfair. Other FSP models or other distributions
for the truc parameters could possibly be found that would
reverse these results. I any case, the conclusion that can
reasonably be drawn from these results is that the form of
the generating IRF and its associated parameter space goes
unnoticed to the logistic function fitling procedure: logistic
models can fit FSP data at least no worse than they fit
logistic data.

Applying again the above-mentioned version of Yen’s
(1981) first step to determining which logistic model is more
appropriate, {rom Table 4, one would discard the 1PL model
on the basis of its comparatively lower mean item p-value
and the similarity of the mcans for the 2PL and 3PL. models.
Again, an analysis of the relationships between estimated
2PL and 3PL parameters will be necessary to decide between
the 2PL and 3PL. models, an analysis that, in this case, will
also reveal how logistic function fitting procedures dress
the FSP parameter space in logistic costume.

The rclationships between estimated item parameters
within each fitted model are shown in Figure 8a for FSP-
NC data and in Figure 8b for FSP-RO data. In comparison
with analogous plots for logistic data in Figures la and 1b,
the only difference seems to be that the range of the
cstimated 2PL and 3PL discriminations is somewhat
narrower, and the estimated 3PL discriminations are slightly
shifted towards lower values than was found for 3PL data.
Taking this into consideration, all plots in Figure 8 look
very much like those in Figure | after a shrinkage of the
item discrimination range.

The relationships between estimated item parameters
across fitted models are shown in Figure 9, Results for FSP-
NC data (Figure 9a) are very much like results for 3PL data
in Figure 2a if the shrunken item discrimination range is
taken into account, Estimated 2PL and 3PL difficulties are
more similar to one another than estimated 2PL and 3PL
discriminations are. Also, items for which the estimated 3PL
pseudo-chance parameters deviate the most from the
maximal chance level® of .25 tend to be assigned high 2PL
difficulty estimates and fow 2PL discrimination estimates,

For FSP-RO data, Figure 9b shows estimated 2PL
parameters against estimated 3PL parameters obtained when
omissions are regarded as wrong responses. Presence of
omissions broadens the range of estimated difficulties for

both fitted models and further shrinks the range of estimated
2PL and 3PL discriminations. In comparison with Figure
9a, estimated 3PL and 2PL difficuities remain close to one
another, and estimated 3PL and 2PL discriminations are
more tightly packed than they were in the absence of
omissions. On the other hand, and paralleling what was
discussed about Figure 2b in the previous study, 3PL pseudo-
chance level estimates are below the theoretical chance level
of .25 for items with high estimated 2PL difficulty.

If omissions are treated as fractionally correct responses
{Figure 9¢}, the range of estimated 3PL-C discriminations
shrinks, and estimated 3PL-C pseudo-chance levels shift
back to the same relationship with 2PL difficulty estimates
as they bore in the absence of omissions.

Figure 9d shows the relationships between estimated
3PL. and 3PL-C item parameters when there are omissions.
Just as was pointed out for 3PL-O data in Figure 2d,
difficulty estimates are very similar across both fitted models
(r = .99), discrimination estimates are only slightly less
similar across models (r = .94), and pseudo-chance level
estimates is where both options for the treatment of
omissions differ the most (r = .75).

For these generating FSP models, it is more interesting
to see how the various item parameter estimates resulting
from fitting logistic models relate to the single truc item
parameter 6. Figure 10a shows these relationships for FSP-
NC data. Estimated 2PL difficulty is highly negatively®
related to true & (r = —96), and estimated 2PL discrimination
is positively related to true & {r = .50). When the 3PL. model
is fitted to FSP-NC data, the relationship between true 5
and estimated difficulty remains the same (r = -.96),
estimated discrimination becomes slightly negatively related
to true & (r = —44), and estimated pseudo-chance level fails
to hold any meaningful relation to true & (despite r = .27,
possibly because the spread of the estimates around .25 is
broader when 8 is below .3).

The relations between & and estimated logistic parameters
from FSP-RO data are shown in Figure 10b. The relation
between true 5 and estimated 2PL difficulty is similar to
what it was in the absence of omissions (r = —.98) but the
relation with estimated 2PL discrimination vanishes (r =
.02). When the 3PL model is fitted treating ormissions as
wrong responses (3PL fir), estimated discrimination is
negatively related to true & (r = —56), and estimated pseudo-
chance level 1s highly positively related to true & (r = .87).
When the 3PL-C model is fitted, the relationships between
true & and estimated logistic parameters are about the same
as those found in the absence of omitted responses.

% Bear in mind that. in FSP models, & is the only item parameter. In addition, as Figure 7 shows, the theoretical chance level will in
general be different for different examinees because it equals Y; /n, 1t being the number of options in the item.

6
difficulty.

Bear in mind that & in FSP models decreases with increasing difficulty, whereas » in logistic models increases with increasing
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(a) FSP-NC data; 2PL vs 3PL fit
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Figure 11 shows that the various Bs estimated by fitting
logistic models to FSP-NC and FSP-RO data are as lincarly
related as they were for actual 3PL data in Figure 5 (r >
J98). Figure 12 shows, howcver, that none of them is as
tightly related to actual A (.93 < r < .96). It is interesting to
note that cstimated 9s were unrelated to true v (an rrelevant
factor for the purpose of ability estimation) for FSP-NC
data {}] < .03), but for FSP-RO data they were positively
refated to true v (r = .23). In other words, when omissions
are allowed, examinees with higher propensities to guess
will spuriously obtain higher logistic ability estimates.

Conclusion

In all relevant respects, the results of Study 2 are
equivalent to those of Study 1. Tables 3 and 4, and Figures
8,9, and 11 for FSP data show statistics and relationships
that do not differ from what PC-BILOG produces for actual

3PL data (compare with Tables 1 and 2, and Figures 1, 2,
and 5). If Yen’s (1981} criteria were used, one would
conclude that the 3PL model fits all data from Study 2, and
the 3PL. parameterization would then be used, The trouble,
however, is that its referent constructs do not exist in the
reality that generated the data.

Of course, Figures [0 and 12 show that estimated logislic
difficulty is highly related to true &, and that estimated
logistic ability is aiso highly related to true X. Then, one
might think that there must be transformations—which there
are not-that will transiate logistic s into FSP &s and logistic
s into FSP As, and viceversa. Indeed, there is no way to go
from one parameter space to the other because the logistic
parameterization returns (wo extra “estimates™ of fictitious
parameters (item discrimination and pseudo-chance level)
and fails to estimate one of the actual parameters’ (y). Note
also that the recovery of IRFs cannot even be studied when
logistic madels are fitted to FSP data, because the domains
of true and estimated IRFs are incommensurable.

General Discussion

It is perhaps surprising that the attempt to fit logistic
functions where they do not belong can succeed with such
flying colors. It seems that in the absence of an external
clue as to what type of IRF and parameter space generated
the data, rying to fit logistic functions 1o them is not going
to provide one: BILOG produces estimates that bear the
same relationships among ecach other when the inpul are
either logistic or FSP data. In other words, application of
an off-the-shelf computer program for logistic model
parameter estimation produces off-the-shelf results regardless
of how similar or different the generating model was from
the would-be logistic model.

Routine and pragmatism guide the adoption of logistic
IRFs, and most users are content fitting these functions to
their data. Actually, Lord (1980, p. 31) explicitly expressed
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Figure 12. Relations hetween true A and estimated logistic ability across models fitted to each data set.

7 If there are no emissions. this parameter does not need o be estimated.
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this pragmatic orientation lowards a preference for logistic
IRFs when he claimed that “justification of their use is to be
sought in the results achieved, not in further rationalizations.”
Also, Hambleton and Swaminathan (1985, p. 162} pointed
out that “item response models are often chosen as the mode
of analysis in order to obtain the advantages [of IRT].” Some
authors even regard the capability of fitting data as a
manifestation of the maturity of IRT (Thissen & Steinberg,
1984, p. 518). Under this “‘good-fit-ubove-all-else” philosophy,
Justification for the use of logistic functions could be sought
in their “success” at parameterizing the FSP data in Study 2.
Yet, it is not clear what kind of success this is. An
investigation into the behavior of algorithims for fitting logistic
functions is undertaken next. Also, some theoretical and
practical consequences ol blind adherence to logistic 1RFs
are commented upon, and the characteristics of FSP IRFs, as
alternatives to logistic IRFs, are briefly discussed.

Will Logistic Functions Always Fit Test Data?

This question needs some qualification, since it is clear
that logistic models will not fit data that are not approximatcly
Guttman scalable, and also that the 1PL and 2PL. models are
sometimes rejected in favor of the 3PL model. However, this
is not the issue. For one thing, given the nested hierarchy of
logistic models, no one should be surprised that the 3PL
model fits better than the 2PL model which, in turn, fits

better than the 1PL model. The issue is whether all three of

them can be found to be “not-the-models-that-generated-the-
data.” in view of the results of Study 2 above, it is hard to
imagine how this could happen.
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Also, it is fallacious that logistic functions will fit
everything. It is well known that better tits are sometimes
obtatned when a few items that seem to depart from the
fitted mode! are dropped, a practice that has been criticized,
apparently with little impact, by Goldstein (1979) and Traub
(1983). The results of the first simulation in Study 1 show
that one should cxpect to find a few apparcntly misfitting
items even when the data are generated by the model to be
fitted, Therefore, their eventual occurrence in the fitting of
logistic models to real test data reveals standard performance
of the aigorithm and gives added emphasis (o the point that
estimation algorithms merely try to maximize overall fit,
even al the expense of having to tag some items as
misfitting.

Moreover, the estimation algorithm scems indeed to
focus on obtaining ability estimates with a certain
distribution, obtaining along the way whalever item
parameters are necessary 1o achieve this goal. This preference
shows in that, for any given data set, estimated item
parameters vary much more than examinee parameters across
fitted models (see relations between 2PL and 3PL estimates
of & and « in Figure 2, and compare with the much tighter
relations between 2PL and 3PL estimates of 8 in Figure 5;
the sume holds for analogous relations arising from FSP
data in Figures 9 and 11). Figure 13 shows histograms of
the logistic ability estimates obtained from cach fitted model
for each data set, clearly revealing that estimated logistic
abilities wind up having roughly the same distribution. For
logistic data {Figure 13a), the bell-shaped form of these
distributions might be taken as a natural consequence ol the
fact that the data were generated from true Os that were

3PL-O data

2P estimate of
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Figure 13, Histograms of the ability estimates obtained by the various models fited to each data set. (a)y Logistic data. (b) FSP data,
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normally distributed. The inappropriateness of this conclusion
shows in Figure 13b, which also reveals bell-shaped
distributions of estimated logistic abilities despite the actual
uniform distributions of the generating FSP As!

Provided that some basic assumpiions hold (see
Rosenbaum, 1984), it is easy to understand how logistic
models fit data so efficienty. IRT uscs very powerful
function-fitling procedures to find IRFs by searching for the
best solution in the available parameter space. Logistic IRFs
define a huge parameter space and do not incorporate any
constraint (in the form of variables whose values are
empirically measured independently). With so many degrees
of freedom, no empirically-constrained independent variable,
and a very powerful function-fitting atgorithm, 1t is no wonder
thut solutions are found, Under these circumstances, failure
to fit the data is what would be surprising.

This potential for fitting data derives from an observation
by Lord and Novick (1968, p. 369), according to which
“whenever any single [IRF] is & monotonic increasing function
of 0, it is always possible and permissible to transform 6
monotonically so that the characteristic curve becomes a
normal ogive.” Hence the power of normal ogive models (or
logistic models, for that matter): the function-fitting algorithms
implicitly apply the necessary transformation of the authentic
ability scale in order to produce the 9s that logistic models
require. This process undcrlies the transformation of As into
0s when the Iogistic model is fitted to FSP data. The forfeit
is that 8 becomes only an ordinal measure bearing an unknown
relation (o the authentic ability.

Are Logistic Models Testable?

By fitting logistic models to test data, one merely
determines whether parameters can be found that will make
this general framework account for the data. The search for
parameter estimates is made, using the procedures referred
to in the previous section, in a way that maximizes a goal
function which provides one of the possible scts of besl-
fitting parameter estimates.® Afterwards, the goodness of
the fit is measured by making use of those estimates. This
procedure involves a circularity (Garcia-Pérez, 1994; Garcia-
Pérez & Frary, 1991a; Goldstein & Wood, 1989) which
makes it unlikely that the goodness-of-fit test may result in
a recommendation to reject the model.

Testing a model is different from fitting it (Marascuillo,
1988). It implies seeking independent empirical evidence
supporting some maodel prediction. Fitting a model merely
implics forcing the data into a theoretical scheme with the
help of suitably chosen parameters. Fitting a model that has

been successfully tested is legitimate, but fitting a model
by fiat is not. In their present form, logistic models are not
testable: they cannot mike any testable prediction before
parameter estimation. The models do nol incorporate any
observable independent variable, and only one cbservable
dependent variable {a binary response to an Hem) is involved.
Again, it is not surprising that presumed “tests” of the model
using parameters that were estimated to fit the data confirm
that the it was actually obtained.

What Are the Consequences of Inappropriate Use of
the 3PL Model?

Some misinterpretations that result from the failure to
acknowledge the metaphoric nature of logistic models and
their paramelcr space can easily be traced. For instance,
when 3PL. models are fitted to real test data, pseudo-chance
level estinates are often found to have values far from the
theoretical chance levels. This has been taken as evidence
that examinees of Jow ability are attracted towards distractors
in somce items, thus periorming below the guessing level,
whereas, on other items, even examinees of low ability can
eliminate some distractors, thus bringing the lower
asymptotes above the guessing level (Lord, 1974). However,
this interpretation sounds as appealing as it is unrealistic: a
look at Figure | shows that this effect alsa occurs in a
simulation in which there were no real items, distractors,
or examinees to climinate or be attracted to them, and where
the true pseudo-chance levels were set at 0.25. Figure 8
shows the same pattern in a simulation involving a response
process and a parameter space other than logistic. In view
of this, the only sensible way io imerpret these fluctuations
is that they are an artifact of the fitting algorithm that does
not reveal any underlying reality.”

Stmilarly unfounded conclusions were raised by Thissen
and Steinberg (1984). Their model for multiple-choice items
results in non-menotonic trace lines (IRFs) for the correct
option in some items. This made them introduce the concept
of “positive misinformation,” which would permit low-ability
examinecs to give the right answer for the wrong reason.
Again, the interpretation sounds reasonable and may imply
# phenomenon that exists in reality but, instead of looking
for direct empirical evidence of the actual phenomenon, the
explanation was accepted at once without further ado in
order to accommaodate the outcomes of a model that the
data was forced to fit by fiat,

Finally, Yen, Burket, and Sykes (1991) have shown that
the likelihood equation for a non-trivial amount of real
response vectors to multiple-choice items under the three-

8 Aliernative sets of estimates are obtained by changing the goal function in the parameter estimation method.

Y The foregoing discussion does not deny the existence of partial information and misinformation. It simply claims that fluctuations
going Y ! ply
of the estimates of ¢ around the theorelical chance level have nothing 1o do with them.
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parameter logistic model may have several local maxima
of similar magnitude at widely different ability levels, The
obvious caonsequence of this characteristic is a necessary
introduction of uncertainty in ability estimation. Although
only one of these will be a global maximum for any given
response vector, they also showed that LOGIST did not
always find this global maximum, and they were unable to
determine the conditions under which the global maximum
would be found. They acknowledged that this state of affairs
is unsansfactory, but they also explained away the problem
by claiming that the occurrence of mulliple maxima in the
likelthood function for a particular response vector indicates
that, rather than being inconsistent with the model, the
response vector is consis{ent with the model in more than
one way: that response vector might arise either from high
ability or from low abilily combined with successful guesses.
Yet, no direct empirical evidence was provided to
substantiate this interpretation.

The three examples just mentioned derive from an
endemic feature of logistic models: the disregard for a
representation of the response process. Partial information,
misinformation, guessing, omitting, etc, are not properly
represented in a model which simply states that the probability
of a correct response to an item is given by a reasonable-
looking function of ill-defined parameters. The situation is
specially troublesome when the model is asked o fit data
sets where guessing has been part of the response process,
and where omissions may also have occurred. This situation
led Baker (1987a, p. 133) to demand that “some effort should
be devoted to developing a new model 1o cope with the issue
of guessing.” Tt is noteworthy how difficult it has proved to
investigate and determine the effect of omissions or guessing
on logistic fit. This is simply because there is no prescription
as to how this should be done: there is no model-consistent
way of introducing omissions or guessing in a data set. If this
is done, it can be done in various ways (e.g., Lord, 1983;
Mislevy & Bock, 1982; Wainer & Wright. 198(); Waller, 1959)
each of which affects fit differently.

The simulations in Study 2 provide the basis tor an
assessment of the consequences of using the 3PL model
when it does not hold (however well it fits). The losses
associated with not using the adequate model are especially
dramatic on theoretical grounds. According to Guilliksen
(1961, p. 101}, psychometric models should establish “the
relation between the ability of the individual and his
observed score on the test.” But establishing that relationship
implies an exercise in substantive theory and model building
before any function is fitted to the data.

The first advantage of using a theoretically sound and
empirically appropriate model is that claims to the effect
that an examinee has an ability of, say, 0.7 would be
meaningful. In logistic models, & does not have units of
measurcment, nor is it related to any quantitative measure
of knowledge or ability. Indeed, Lord (1975, p. 205) defined
the ability scale as “the scale on which all item characteristic

curves have some specified mathematical form, lor example,
logistic or normal ogive,” thus expressing a clear disregard
for the interpretability of 8. As a consequence, under the
metric of logistic JRFs, ability estimates only reveal relative
performance and, thus, that an examinee has an ability of
0.7 means, al the most, that his or her ability is greater than
those of examinees obtaining lower abilily estimates. But
how much ability he or she has remains unknown.

Also, if the IRF embodied assumptions about the tormat
of the test and the way it is administered, about examinee
behavior, and ubout other charucteristics of Lhe testing
situation, then these assumptions could be replaced to obtain
IRFs applying to a variety ol circumstances. As a result,
Gulliksen's (1964, pp. 101-102) wish of being “able (o say
that, for certain specificd tests constructed in this way, here
is the relationship between the score and the ability
measured, and this is the appropriate trace line to use” will
be closer to becoming fulfilled. 1n addition, IRT methods
could easily be uscd with items that are not binary scored.
It would also be possible to determine theoretically what
combination of these characteristics gives rise to more
accurate ability estimates, thus providing a basis for advising
in favor of or against certain testing practices. FSP models
have indeed been successfully used for this purpose. For
instance, Garcia-Pérez (1989a) used FSP models to show
that mastery decisions with any given practical degree of
accuracy require dramatically different numbers of items
depending on the format of administration of the test and
the guessing behavior adopted by the examinces. Also.
Gurcia-Pérez {1993) used FSP models to show that use of
“none of the above™ has the important advantage of reducing
the size of the conlidence intervals for maximum-likelihood
cstimation of A, as compared to those of analogous
conventional items with the same number of options. Of
course, the extent 1o which these theoretical outcomes (urn
into advantages in empirical testing practice depends on the
empirical validity of FSP models, an 1ssue that will be
commented on in the next scction.

Is There an Alternative?

As discussed by Gareia-Pérez and Frary (1991a), (inite
state theory produces IRFs that are free of the problems
inherent 1o logistic functions. Potential benefits of using
FSP IRFs in place of their logistic counterparts are also
discussed there. For purposes of comparison with the picture
of logistic IRFs that emerges from the simulations in Study
2 and the foregoing discussion, a lew of the contrasting
features of FSP IRFs will be mentioned bere.

First, finite state models have mechanistic realism. They
are built on parameters that are empirically meaningful,
consider assumptions about how items ure constructed, how
tests are administered, and how examinees behave and, then,
translate literally a description of test-tuking behavior into
mathematical terms. As a result, as many equations are
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produced as there are response outcomes under the format
of administration considered, cach of which is interpretable
on its own. For instance, in Equation 3a above, the probability
of a correct response i1s expressed as the sum of the
probabilities of all the situations that may lead the examineg
to give the correct answer to the item of concern, from
knowledge of the truth value of all options in the item (first
addend in Equation 3a}, through knowledge of three options
(second addend), knowledge of two options, one of which
is the correct answer (third addend), successful guess in case
of knowledge of two options that are distractors (fourth
addend), knowledge of only one option that turns out (o be
the correct answer (fifth addend), and successful guess in
case of knowledge of only one distractor (sixth addend), to
a successful guess under total ignorance (seventh addend).
Equations 3b and 3¢ similarly embody the circumstances
that may lead an examinee to mark a wrong option or omit
the item. By doing so, FSP models incorporate realistically
all the relevant concepts in test-taking behavior: totai
knowledge, partial knowledge, total ignorance, and guessing.
Garcia-Pérez and Frary (1991a) discuss how misinformation
can be incorporated into finite state models, as weli as how
to use this {ramework for speeded tests.

Second, FSP IRFs are testable. Although, like their
logistic counterparts, FSP IRFs hypothesize the relationship
between correct responses on a test and a number of
unobservable parameters, FSP models include additional
equations for the relationships of these unobservable
parameters with the remaining response outcomes under a
given format of administration of a test. It is all these explicit

(a) FSP-NC data

9]

relationships that allow deriving model predictions that can
be tested without estimating model parameters. This provides
the grounds for testing (and, then, accepting or rejecting)
the models before searching for parameters that will
maximize model fit. Empirical examples of FSP model
testing can be found in Garcia-Pérez (1987, 1990; see also
Garcia-Pérez & Frary, 1991b; Zin, 1992).

Finally, FSP models incorporate an interpretable definition
of ability. This point was sufficiently iilustrated when the
models were introduced at the beginning of Study 2, and wiil
not be further expanded upon here. Tt should be pointed out
that FSP models do not include an item discrimination
parameter, but there 1s no a priori reason why a psychometric
model would be incomplete if it did not have one. That logistic
functions with them fit data better than logistic functions
without them is a result that is local to logistic functions. The
adequacy of an alternative 1IRF is to be measured by its
accomplishments, and not by how it compares conceptually
with the IRFs for which it is an alternative.

A final question about the qualifications of FSP models
as an alternative to logistic models is whether they are ready
for use, especially in what regards parameter estimation
methods. Garcia-Pérez (1985, 1987, 1989h) and Garcia-Pérez
and Frary (1989) described simple analytical methods for the
estimation of A that proceed by consideration that all items
have identical, average difficulty. Garcia-Pérez (1993, 1994)
described and studied alternative methods for the estimation
of A that make use of the same assumption {items of identical,
average difficulty), but relying on the optimization of goal
functions derived from the minimum-distance measures of

{b) FSP-RO data
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Cressie and Read {1984), which include the popular minimum

chi-square and maximum likelihood methods. Apptication of

these methods for the estimation of all relevant parameters
(A and & from FSP-NC data and A, vy, and & {rom FSP-RO
data) is straightforward, and Figures 14a and 14b show the
relationships between true parameters and their maximum-
likelihood estimates (MLEs) for the FSP-NC and FSP-RO
data scts from the simulations in Study 2. Note that MLFEs
of & are much more accurate than MLEs of A (and vy, where
applicable), but this is only a result of the fact that estimates
of b are each based on responses from 500 examinees,
whereas estimates of A are cach based on responses (o 50
items (i.e., a fuctor of (en fewer data). The estimation of v is
further hampered because opporiunities to guess are scarce
for medium- and high-ability examinees and, therefore,
random variations dominate the data on which the estimation
of y is based. This noise does not affect MLEs of X, which
can be seen to be equally linearly related to true A when there
are omissions (Figure 14b; r = 95) and when all items are
answercd (Figure 14a; r = 96). Finally, Figure 14c shows
that MLEs of A from FSP-NC vs FSP-RO data are less related
to one another (r = 90) than either of them is (o true A.
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