
The main aim of this work was to look for cognitive biases in human inference of causal relationships in order
to emphasize the psychological processes that modulate causal learning. From the effect of the judgment frequency,
this work presents subsequent research on cue competition (overshadowing, blocking, and super-conditioning
effects) showing that the strength of prior beliefs and new evidence based upon covariation computation contributes
additively to predict causal judgments, whereas the balance between the reliability of both, beliefs and covariation
knowledge, modulates their relative weight. New findings also showed “inattentional blindness” for negative or
preventative causal relationships but not for positive or generative ones, due to failure in codifying and retrieving
the necessary information for its computation. Overall results unveil the need of three hierarchical levels of a
whole architecture for human causal learning: the lower one, responsible for codifying the events during the task;
the second one, computing the retrieved information; finally, the higher level, integrating this evidence with previous
causal knowledge. In summary, whereas current theoretical frameworks on causal inference and decision-making
usually focused either on causal beliefs or covariation information, the present work shows how both are required
to be able to explain the complexity and flexibility involved in human causal learning.
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El objetivo de este trabajo fue la búsqueda de sesgos cognitivos en la inferencia de relaciones causales para
descubrir qué procesos psicológicos modulan el aprendizaje causal. A partir del efecto de la frecuencia de juicio,
este trabajo presenta investigación consecuente sobre competición entre claves (ensombrecimiento, bloqueo o
súper-condicionamiento) para demostrar cómo la fuerza de las creencias previas y la evidencia sobre la covariación
de cada causa contribuyen aditivamente en los juicios causales y en la toma de decisiones, siendo su fuerza
relativa modulada por la fiabilidad otorgada a cada tipo de información. Nuevos datos muestran también la
incapacidad para detectar relaciones causales incidentales preventivas, pero no generativas. Esta “ceguera
inatencional” parece deberse a un fallo en la codificación o recuperación de la información. Todos estos datos
revelan que una arquitectura cognitiva del aprendizaje causal debe basarse en tres niveles. El primer nivel sería
responsable de la codificación  de los eventos en cada ensayo. El segundo nivel computaría la nueva evidencia
a partir de la información recibida del primer nivel. En el tercer nivel, el individuo debe interpretar e integrar toda
esta información con su conocimiento causal previo. En suma, los modelos sobre juicios de causalidad y toma
de decisiones normalmente se han centrado en el efecto exclusivo de las “creencias y conocimiento causal” o
de la “experiencia directa y covariación” entre causas y efectos. Este trabajo demuestra que ambos tipos de
información se requieren e interactúan cuando se trata de explicar la complejidad y flexibilidad que implica el
aprendizaje y la inferencia de relaciones causales en humanos.
Palabras clave: aprendizaje causal, inferencia causal, sesgo cognitivo, creencia
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Causal learning has been an emergent topic of research
during the last decades (De Houwer & Becker, 2002; Perales
& Catena, 2006) and is one of the most basic psychological
components of human cognition, motivation, emotion, and
behavior. In many everyday situations, we make causal
attributions either consciously or automatically. When we
have a headache, the flu, or stomach acidity, we usually
take a specific pill under the assumption or causal belief
that this pill will make us well. How have we arrived at this
causal belief? It seems that at least two factors determine
our action. First, we probably have been told by our doctor
or by some friend that these pills are good for these illnesses.
However, we also need to confirm these beliefs by our own
experience, for example, avoiding side-effects and being
sure that this pill also has the desired effect when we take
it. Therefore, causal attributions seem to depend on “previous
beliefs,” but also on the “direct experience” we received
when we tested them. It is important to acknowledge that
scientific reasoning shares some features of causal reasoning.
Scientists always have a previous “theory” (i.e., “beliefs”)
when they undertake new experiments. Whether or not they
change this theory will depend on the data obtained from
the experiments, confirming or disproving the theoretical
predictions. However, the scenario is not that easy and we
are not always “rational.” In this work, we will try to
determine the psychological mechanisms underlying causal
inferences to illustrate how “previous beliefs or theories”
and “direct empirical evidence” interact to generate causal
attributions, but also how they give rise to specific cognitive
biases when we finally make a causal judgment or we
develop a new theory. 

In the search for the psychological processes involved
in human causal judgments, the main question is: What do
people need to make a causal attribution? A growing body
of data have questioned that any independent single
mechanism can explain human causal detection and
attribution (Catena, Maldonado, Megías, & Fresse, 2002;
Fugelsang & Thompson, 2003) and the chief aim of this
work was to demonstrate how a cognitive architecture of
causal learning should have at least three hierarchical levels
(Perales, Catena, & Maldonado, 2002). 

It seems obvious that the lower mechanism should be
able to accurately detect and codify the relevant stimuli
and events to make a causal inference. This mechanism
is assumed to codify frequencies of cause-effect type of
events, probably in an episodic temporal order: (a) cause
+ effect, (b) cause alone, (c) effect alone, and (d) none
(Maldonado, Herrera, Jiménez, Perales, & Catena, 2006).
The second mechanism should compute statistical cause-
effect associations, based upon the information retrieved
from the first one. Most theories and research on causal
learning have focused on describing this mechanism. The
debate about whether it is associative or statistical has
been extensive, and no final resolution has been reached
to date (De Houwer & Becker, 2002; Perales & Catena,

2006), because predictions are often equivalent in the
asymptote. In any case, it is clear that causal links do not
correspond to mere correlations but to mechanisms giving
rise to those correlations (Cheng, 1997; Perales et al.,
2002, among others). Then, once completed the
“computation process,” the third mechanism should be
able to integrate the information retrieved from the
computational mechanism (i.e., the direct empirical
evidence) with previous information or beliefs, based upon
the reasoners’ causal mental model. Such a mental
construct encodes assumptions about the causal status of
the events (causes vs. effects or causal directionality) and
about hypothetical causal relationships in this causal
scenario (independent vs. chained causes, common causes,
or effects, and so on) and it allows reasoners to distinguish
genuine from spurious causes and to look for the boundary
conditions under which they can properly estimate the
power of a given cause to produce an effect (Fugelsang
& Thompson, 2003; Lien & Cheng, 2000; Perales, Catena,
& Maldonado, 2004). 

According to the above proposals, causal judgments
depend on the action of these three mechanisms. The main
objective of this work was firstly, to show the existence of
specific cognitive biases at each processing level
unaccountable by any single mechanism—be it associative
or statistical. The final aim was to propose a cognitive
architecture underlying causal learning, able to explain at
which processing stage these specific biases happen and how
they modulate the causal inference process, in order to
accurately predict human causal judgments (see Figure 3).
The main procedure always implies a “dissociation
technique,” showing how the same contingency gives rise
to different causal judgments as a function of subjective or
psychological factors, such as attention, previous beliefs, or
memory loads, which will further demonstrate the need of
cognitive mechanisms beyond the mere computation of
covariation in order to be able to explain human causal
inference.

Judgment Frequency: Insufficiency of any Single
Mechanism Model in Causal Learning

The frequency of judgment effect (Catena, Maldonado,
& Cándido, 1998; Catena, Perales, & Maldonado, 2004),
an effect that has been replicated in different settings (see
also Collins & Shanks, 2002; Matute, Vegas, & Marez,
2002), showed how a higher judgment frequency induced
not only less accurate contingency judgments—as shown
by previous social research on jurors’ decision accuracy
(Pennington & Hastie, 1992)—but also a differential
influence of the last type of trials upon subsequent causal
judgments, according to its usual weight (trials type “a” >
“b” ≤≥ “c” > “d”, see Kao & Wasserman, 1993; Maldonado,
Catena, Cándido, & Garcia, 1999). 
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Figure 1 shows the usual design and findings when a
positive contingency is at work. Two groups of participants
were exposed to same contingency (∆P = 0.5), everything
being identical except the frequency of judgment (after
block of 8 trials or after every single trial, Figure 1, top
panel). The results show how people are quite accurate
when estimating the causal strength after a sufficient
number of trials (block of 8 trials); but also, how they are
inaccurate and very sensitive to the last information, when
they make the same estimations after every trial (Figure
1, bottom panel). 

The original belief revision model (Catena et al., 1998)
explaining this effect, proposed an anchoring and adjustment
algorithm based upon the action of two serial mechanisms
during the process of learning the causal relationships
between a single causal cue and an effect (see also
Appendix). 

The first mechanism computed the new evidence and is
a key feature of the belief revision model that frequency
information should be computed as a weighted ∆D: 

w   a + w  b + w   c + w   d
1           2      3       4

NewEvidence = ––––––––––––––––––––––––––––––––––––––––  (1)
a + b + c + d

where a, b, c, and d are the number of each type of trial,
and wj is the weight of each trial type, and always a > b ≤≥
c > d, as shown by independent research (Kao & Wasserman,
1993; Maldonado et al., 1999). It is important to point out
that later research has also shown how this statistical rule
better predicts human causal judgments than any other
statistical or associative rule (Perales & Shanks, 2003). At
this level of processing (i.e., when computing the cause-
effect contingency), recent work has also shown the existence
of specific biases, such as how people give more weight to
confirming or positive (i.e., “a” type of trials) than to negative
or disconfirming evidence (i.e., “b” and “c” type), and how
they show frequency biases and asymmetrical detection when
estimating the contingency between a given cause and its
effect (Maldonado et al., 1999; Perales & Shanks, 2003).

The second information-integration mechanism controlled
judgment updating at trial n. This judgment was a function
of the discrepancy between the new evidence and the causal
judgment at trial n - k, according to which:

Jn = Jn–k + β(NewEvidence – Jn–k)             (2)

where J stands for causal judgment at trial n (or n - k), k is
the number of trials since the last judgment, β is the revision
rate parameter, and new evidence refers to the amount of new
information presented since the last judgment was made, that
is, between trial n - k and trial n in a trial-by-trial procedure.
This second mechanism is believed to hold operative control
over the computation mechanism, resetting it after each
judgment (Jn ), which defines the amount of information that
will be summarized. In addition, this mechanism should, in
theory, be able to combine the information from different
sources—such as instructions and previous beliefs—to be
integrated with the information received by the statistical
mechanism, via the ß parameter. The next section will try to
develop its implications for causal learning.

The Role of Causal Beliefs and Reliability on
Causal Cue Competition

The belief revision model was initially developed to
explain causal judgments between one cue and one effect,
in which case, the computation is always unconditional.
Recently however, De Houwer and Becker (2002) pointed
out that this model needed further developments to be able
to deal with cue competition effects and also to show the

Figure 1. The judgment frequency effect: design and results.
Note. A, B, C, and D stand for the type of trial (Unpublished data,
see text for details).



role of causal beliefs upon causal judgments. The tendency
of most of the research on causal learning to date has been
to look for the influence of each one of these two factors,
beliefs or contingency, as competing explanations (Fugelsang
& Thompson, 2003). Recent results have shown not only
the need of both sources of information, but also their
relative weight to derive causal judgments in scenarios with
multiple potential causal candidates. 

In a causal scenario with multiple cues, people should
compute the new evidence about each one of the cues and
the composite of each causal candidate before making a
causal judgment. Recent research has shown that the default
assumption is an independent causal mental model and the
computing rule could be a variation of the noisy-or rule:

J (E / A ∩ B) = J (E / A) + J (E / B) (3)

where the strength of the causal relationships (causal judgment,
J) of the conjunction of both A and B causes to produce the
effect (E) will be an additive function of the causal power of
each one of the two A and B causes alone. In any case, it is
important to remember that computation of contingency is
always based upon a weighted ∆D, as proposed above. 

Different studies have pointed out that the process of
estimating the causal power of any single candidate in such
complex scenarios also depends on at least two sources of
information: the actual covariation, as assumed by any
single-mechanism model, but also the causal mental model,
including previous beliefs about the nature of the causes
(Waldman, 2000). However, it seems important to
acknowledge that different kinds of scenarios are possible
in a situation where two possible causal candidates predict
the same effect, also giving rise to different phenomena.
Imagine, for example, that we have a given disease or
physical reaction such as dermatitis, after eating two different
meals or after taking two different medicines (for example,
an antihistamine or vitamin and an antibiotic).

The first causal scenario, when people have only
information about the composite of the two causal

candidates, is a situation analogous to an “overshadowing”
paradigm in animal conditioning. This occurs if we are
taking two medicines at the same time and we have an
allergic reaction. In this case, without any previous
knowledge about the nature of these medicines, people
seem to first estimate the contingency of the conjunction,
based upon a “weighted ∆D.” Then, given the high
ambiguity of the situation, when asking for the causal power
of each causal candidate alone, the simpler heuristic is to
divide this causal power between the two possible causes,
as proposed in Equation 3 (see Table 1, the NO beliefs—
overshadowing group). These results are identical to those
usually observed in overshadowing paradigms, either in
human causal learning or animal conditioning (Waldman,
2000). It seems obvious that previous beliefs about the
propensity of each cause to produce the effect should have
a strong influence upon the final causal judgments: the
bigger the propensity, the higher the judgment. This is
exactly what happened when inducing the belief that
participants were taking a vitamin and an antibiotic. In this
case, almost all causal power of the conjunction was
attributed to the cause the most likely to produce the effect
(the antibiotic) and very few to the less likely one (the
vitamin, see Table 1, the PB [previous beliefs]—
overshadowing group). According to the belief revision
model, this effect happens via the second mechanism, by
the modification of the anchoring judgment (Jn ), showing
the role and influence of previous beliefs.

The next causal scenarios include information not only
about the conjunction, but also about one of the possible
candidates, which is now an analogue of blocking—when
this single cause is also a generative one—or super-
conditioning—when the opposite occurs, and the single cue
is a preventative cause of the effect. In this case, the strategy
was to estimate both, the contingency of the conjunction
and the contingency of the known cause alone, and then
derive the causal power of the other one. Table 1 displays
the results of the BRM model predictions, which are very
similar to the participants’ judgments (see Catena,
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Table 1
Previous Beliefs and Cue Competition Effects: Results of the Simulation of the Belief Revision Model (BRM)

BRM-Predicted Causal Judgments
Cause Group

A B AB

NO-Overshadowing 37 36 56
PB-Overshadowing 51 21 48
NO-Blocking 31 44 64
PB-Blocking 36 39 56
NO-Super-Conditioning 37 –21 42
PB-Super-Conditioning 31 –35 56

Note. PB = Previous Beliefs. PB and NO stand for induction or non-induction of previous beliefs, respectively. A, B, and AB stand for
the causes; A and B are the cause with the higher or lower propensity, respectively, to produce the effect on the PB groups. See text and
Appendix for more details (based on data from Catena et al., 2007).
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Maldonado, Perales, Candido, & Herrera, 2007, for details).
This shows how participants were quite accurate in their
judgments about the similar generative causal power of the
conjunction, independently of the causal scenario and also
rather independent of previous beliefs. However, when the
single cue was also generative, more casual power was
assigned to this cause than to the other one; but when the
single cue was preventative, as accurately detected by the
negative judgments (predicted only by a weighted ∆D), all
causal power was assigned to the other cue (Table 1) which
shows a blocking-like and a super-conditioning effect,
respectively. It is important to note that covariation
information was now sufficient to know the causal power
of each one of the two causes in both conditions. Therefore,
these effects were rather independent of the previous beliefs
about the nature of the cues.

A recent investigation about the influence of previous
beliefs and previous experience and their interaction both
on decision-making and causal judgments have clarified the
relative value of covariation and belief information on causal
learning (García-Retamero et al., 2007). Participants had to
decide who of two patients had a higher degree of allergic
dermatitis (the outcome) in the light of different causal cues.
The causal scenario now included four possible causal
candidates looking for the differential effect of actual
contingency evidence or previous beliefs about the nature
of the cues. To this end and via instructions, participants
were told that a possible causal mechanism could explain
the influence of two of the possible cues, the causal ones,
whereas the other two cues have no such mechanism
underlying their action, the neutral ones. For example, the
patients could have been bitten by a spider or ingested a
certain prescription drug that produced dermatitis as a side-
effect (when the cues were causal) or they had touched a
white butterfly or taken a vitamin without any known side-
effect (when the cues were neutral). At the same time, one
causal and one neutral cue had a higher contingency (.70)
than the other neutral or causal one (.30). After training,
they were asked to estimate the strength of the causal
relationships between each cause and the effect (dermatitis).

The results of a group without any previous experience
showed that previous beliefs had indeed a stronger influence
than actual contingency upon causal judgments (see Table 2

for the predicted judgments from the simulation of the BRM
model, which are very similar to the causal judgments of the
participants; see García-Retamero et al., 2007, for details) and
also upon decisions, being the results similar in both measures.
This effect was even more evident when participants were
given pre-training in the presence of the causal cues alone
(Table 2, Causal pre-training group). In both groups, causal
cues were estimated higher than neutral cues, independently
of their actual contingency, bearing out models proposing that
causal knowledge would be the main factor guiding whether
covariation is interpreted as causation or as a mere spurious
relationship. According to the belief revision model, these
effects seem to occur via the information-integration
mechanism, and they can be predicted by the modification of
the anchoring judgment (J0), as also occurred in the
overshadowing paradigm explained above (see Table 1). 

The most important and novel results occurred as a
function of previous training with the neutral cues alone.
Participants were now able to estimate the causal power of
each cue, based on actual contingencies rather than on
previous beliefs (see Table 2, Neutral pre-training group).
Given the previous experience with the neutral cues, the
influence of the actual cues’ contingency was enhanced,
whereas previous beliefs had lesser influence both on decisions
and judgments. Thus, participants were able to accurately
detect the actual contingency between cues and outcomes
independently of their previous beliefs about the nature of
the cues, which also modifies the pattern of causal judgments
in this group regarding the other two groups. These results
are less easily accounted for in cognitive models emphasizing
the role of beliefs upon causal judgments (Fugelsang &
Thompson, 2003). However, according to the belief revision
model, this effect also occurs via the second mechanism, but
in this case, by the modification of the reliability (the β
parameter) of the information (see Appendix). 

Overall results and the simulations of the belief revision
model suggest that causal judgments depend on the
integration of causal beliefs and empirical evidence. The
tendency of most of the models on causal inference to date
has been to look for the influence of beliefs or direct
experience based on covariation, as competing explanations
(Fugelsang & Thompson, 2003; Lien & Cheng, 2000;
Sloman & Hagmayer 2006). On the contrary, the belief

Table 2
The Effects of Previous Beliefs, Previous Training, and Actual Evidence as Predicted by the Belief Revision Model (BRM)

BRM-Predicted Causal Judgments

Cause Group Causal High Causal Low Neutral High Neutral Low

Naïve 76 65 20 9
Causal Pre-training 73 55 20 9
Neutral Pre-training 59 23 64 29

Note. See text and Appendix for more details (based on data from García-Retamero et al., 2007).



revision model proposes that previous beliefs knowledge
does not work as an absolute filter of further covariation
knowledge—letting through only information that is
compatible with previous beliefs—but as a framework to
interpret covariation information. Such information will be
considered in the light and strength of previous beliefs—
J n-k—and its capacity to change previous beliefs depends
on its reliability—β (Perales, Catena, Maldonado, &
Cándido, 2007). 

When new evidence is perceived as inconclusive or less
reliable, previous causal beliefs impose a certain model that
makes this evidence interpretable. As a consequence, the
reliability of the new information is considered very low,
as occurs in the naïve and causal-pre-training groups. From
the belief revision model, the higher influence of previous
beliefs over covariation information was predicted by
increasing its initial value (J n-k) and at the same time,
decreasing the ß parameter. Thus it is easy to predict and
understand the “confirmation bias” usually found in scientific
and causal reasoning, as scientists easily accept results
confirming their initials predictions, being reluctant to change
their theories when they find disconfirming results
(Fugelsang, Stein, Green, & Dunbar, 2004). 

However, when causal claims can be derived from the
empirical evidence, which implies an increase in their
reliability (an increment of the ß parameter), the influence
of the evidence increases and it can even modify the
influence of the causal beliefs when they are in conflict.
Thus, it is possible to predict and understand what happened
in the neutral-pretraining group. Only by increasing the
reliability (ß) of the empirical evidence, was it also possible
to predict the influence of such previous training with valid
neutral cues. This is what probably happens when scientists
replicate results contrary to their predictions, which finally
lead them to change their theories (Fugelsang et al., 2004).
These results suggest that causal and covariation knowledge
share some representational basis allowing the modification
of their relative influence on causal judgments, and this is
another key feature of the belief revision model. 

In short, most studies have favored either previous
knowledge or covariation based on direct experience as the
key piece to understand human causal judgment. The present
results however, point out that both types of information
are required and emphasize the need of new models and
new research to entirely explain the complexity and
flexibility involved in causal inference processes.

The Role of Attentional Resources in Causal
Relationship Detection

A new step in our understanding of human causal
learning comes from the knowledge of our processing
system. Our limited capacity to process information from
our environment is well known. Accordingly, since the

pioneering work of Mackintosh (1975), the attentional
mechanism has been incorporated into models of causal
learning (Kruschke, 2001). Recent research has shown how
the attentional mechanism modulates causal learning
(Maldonado et al., 2006). As before, the paradigm involved
the presentation of two cues with the same contingency,
However, participants were induced to attend to one of them
(the attentional cue) by instructions and task demands—
they were asked to estimate its causal relationships with the
effect every eight trials—while another cue appeared in
some of the trials (the incidental cue). 

Figure 2 shows judgments to the attended as well as to
the incidental cues. It is evident that these causal judgments
were quite accurate and sensitive to the objective
contingencies when the cue was attended, although they
seem more accurate for positive than for negatives
contingencies, bearing out previous research on the
asymmetrical detection of positive and negative contingencies
(Maldonado et al., 1999, 2006). The most intriguing results
were that, although participants were able to accurately
detect positive or generative causal relationships between
an incidental cause and its effect, they were “blind” and
unable to detect similar causal relationships when they were
negative or preventative. 

COGNITIVE BIASES IN CAUSAL LEARNING   247

Figure 2. The “inattentional blindness” effect on causal learning.
Note. At = Attended cues; Inc = Incidental cues. In the bottom

panel, +5 and –5 represent a contingency of +50 and –50,
respectively (adapted from Maldonado et al., 2006).
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This lack of detection of incidental negative contingencies
could be due either to a contingency computation failure
(independently of the type of rule used by the computing
mechanism) or to a failure in coding or retrieving the
information necessary for such computation. Subsequent
results when asking participants to remember the number of
each type of trials after a positive and a negative experience
point out to the latter factor as responsible for the effect. The
estimation of frequencies differed from positive and negative
“incidental” cues (see Figure 2, bottom panel), whereas it
was always similarly accurate when the cues were “attended.”
More important, when the cue was “incidental,” participants
accurately remembered that the number of “a” trials was
higher than “b” or “c” type trials when the contingency was
positive, allowing its accurate computation, despite the
incorrect recall of the number of “d” type of trials (Figure
2, bottom panel). However, they were unable to remember
any difference in the number of each type of trials when the
contingency was negative (Figure 2, bottom panel), preventing
the correct computation of the relationships between the
incidental cause and its effect, as shown by their inaccurate
causal judgment (Figure 2, top panel). Our findings reveal
the existence of a particular case of “inattentional blindness”
for the detection of negative relationships in causal learning,
rather than for the cues themselves (Maldonado et al., 2006).
These results suggest that inattentional blindness for
unexpected or incidental events depends on the simultaneous
presence of other —attended—events as well as their
relationships with the same output. 

In summary, the effect described in this section points
to the central role of attention allocation strategies in causal
learning and adds new evidence to the growing body of data
showing that research needs to be expanded beyond
covariation and associative or statistical rules. Our results
reveal the role of attentional resources in coding the
information necessary for causal contingency computation
and, indirectly, the importance of summoning up a whole
cognitive architecture for causal learning.

Conclusions

According to the evidence presented above, such a
cognitive architecture should have at least three hierarchical
levels (see Figure 3). The lowest level—the “detection
mechanism”—is responsible for coding the cues and their
combinations in the trials presented during the task. At this
point, attention allocation does not seem to play an important
role in determining the representation of present cues, but
it clearly affects the efficiency with which absent cues are
represented. The second level is the “computing mechanism,”
which is constrained by the information received from the
lower level. This mechanism could either be rule-based or
associative, and, in fact, it could be argued that humans
possess both types of mechanisms (Sloman & Hagmayer,

2006). If we assume the default mechanism is an associative
one, we would also need to assume that whether or not an
absent cue is coded depends on whether or not attentional
resources are focused on that cue. On the other hand, if the
proposed mechanism is rule-based and, thus, dependent on
trial type frequencies, the ability to retrieve these frequencies
would depend on the ability to code them. Finally, at the
third level, contingency information needs to be interpreted
and integrated with previous knowledge. This previous
knowledge includes previous beliefs updated in accordance
with the new evidence, and knowledge about the causal
structures in which the newly learnt contingency is to be
integrated (Perales et al., 2007, among others). 

Figure  3.  The cognitive architecture underlying the belief revision
model (BRM).

DETECTING MECHANISM

TRIALS FREQUENCY

First Level
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1           2      3       4

NewEvidence = ––––––––––––––––––––––––––––––––––––––––
a + b + c + d

Second Level

INFORMATION INTEGRATING 
MECHANISM

Jn = Jn–k + b(NewEvidence – Jn–k)

Third Level

OUTPUT
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Summing up, the main point of this work is that mechanism-
based beliefs and covariation-based knowledge can portray
similar information about causal efficiency, independently of
their origins. This commonality allows reasoners to combine
them to make integrative causal judgments. Prior evidence has
shown that this integrative process requires a significant amount
of attentional resources. Finally, causal efficiency knowledge
of mechanism-based and in covariation-based information share
a common representation and can be assessed in two
dimensions—reliability and strength (or magnitude). Although
usually, the reliability of the information on which our prior
belief is based indicates the existence of an efficient causal link,
reliability is not necessarily related to the existence of a known
mechanism, but can also be drawn from contingency
information, if such information is based on a large enough
sample of reliable observations. From this perspective, the belief
revision model (see Figure 3) proposes a cognitively coherent
and parsimonious set of mechanisms and algorithms to account
for causal learning and the present work was aimed at opening
new lines of research to better understand the complexity and
flexibility of human causal learning and why people are not
always objective when estimating causal relationships. 
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The belief revision model predictions of the frequency of judgment effect (Table 3) were obtained by running each
simulation sixteen times, and the trials were the same sequences as those used in the experiment (see Catena et al., 1998,
for details). According to model restrictions, trial weights were wa = 1, wb = –.7, wc = –.7, and wd = .6 for this simulation,
as well as for the effect of previous belief and pre-training (Tables 2 and 3), being slightly modified, wa = 1, wb = –.6,
wc = –.6, and wd = .5, for cue-competition effects (Table 1). 

In the frequency of judgment effect (Table 3), the revision parameter was fixed at β = 0.2 and β = 0.9 for HF- (high
frequency) and LF- (low frequency) conditions respectively, according to the assumed differential reliability of the new
evidence in each case. In the cue-competition effects (Table 1), β was fixed at .50, whereas Jn-1 was allowed to vary as a
free parameter to capture the initial value of previous beliefs. It is noteworthy that the anchoring judgment (Jn-k) was close
to zero (+ .03) when no prior information was provided (NO-groups), but when previous beliefs were induced (PB- groups),
it was positive for A (+ .33), the cue favored by the cover story, and negative for B (–.26), the cue less likely to produce
the effect, whereas for the conjunction of AB, it was also positive (+ .28). 

Finally, regarding the effect of previous beliefs and pre-training (Table 2), the β parameter was fixed at .30 for all
conditions at the beginning of training. The influence of causal beliefs was coded as the anchoring judgments (Jn-k), with
an initial value of .80 and .00 for the causal and neutral cues, respectively. After pre-training with a given cue, the strength
of the previous beliefs (Jn-k) at the beginning of the subsequent phase was the predicted strength of the model, taking into
account the actual cue-outcome covariations during pre-training. However, at the beginning of the second phase of the
neutral-pretraining group, β was increased to .80 and the initial Jn-k value of the causal cues was reduced to 0.30, under
the assumption that this pre-training should lead to increased attention and reliability of the empirical evidence, and
attenuated influence of previous causal beliefs. It is important to note that comparing predictions and results (see, Catena
et al., 1998, 2007, and García-Retamero et al., 2007, for details), the overall pattern of causal judgments was fully predicted
by the belief revision model.

Appendix

Table 3
The Belief Revision Model (BRM) Predictions of the Frequency of Judgment Effect

BRM-Predicted Causal Judgments
Trial Type Group

A B C D

Low Frequency: block 46 46 46 46
High Frequency: trial 57 14 14 49

Note. A, B, C and D stand for the type of trial (See text and Figure 1 for details; based on data from Catena et al., 1998).


