
It is known that visual noise added to sinusoidal gratings changes the typical U-shaped threshold curve which becomes
flat in log-log scale for frequencies below 10c/deg when gratings are masked with white noise of high power spectral
density level. These results have been explained using the critical-band-masking (CBM) model by supposing a visual
filter-bank of constant relative bandwidth. However, some psychophysical and biological data support the idea of
variable octave bandwidth. The CBM model has been used here to explain the progressive change of threshold curves
with the noise mask level and to estimate the bandwidth of visual filters. Bayesian staircases were used in a 2IFC
paradigm to measure contrast thresholds of horizontal sinusoidal gratings (0.25-8 c/deg) within a fixed Gaussian
window and masked with one-dimensional, static, broadband white noise with each of five power density levels. Raw
data showed that the contrast threshold curve progressively shifts upward and flattens out as the mask noise level
increases. Theoretical thresholds from the CBM model were fitted simultaneously to the data at all five noise levels
using visual filters with log-Gaussian gain functions. If we assume a fixed-channel detection model, the best fit was
obtained when the octave bandwidth of visual filters decreases as a function of peak spatial frequency.
Keywords: contrast detection threshold, spatial white noise, critical-band-masking paradigm

El ruido visual añadido a enrejados sinusoidales cambia la típica forma en U de la curva de umbral, que se transforma
en una función casi uniforme (en escala log-log) cuando los enrejados son enmascarados por ruido blanco cuya densidad
espectral de potencia (o nivel) es alta. Ese hecho se ha explicado mediante el modelo de enmascaramiento basado en
bandas críticas (modelo CBM) suponiendo que la anchura de banda relativa (en octavas) de los filtros visuales es
constante. Sin embargo, estudios biológicos y psicofísicos apoyan la idea de la variación de la anchura de banda con
la frecuencia de sintonía de los filtros. En este trabajo se ha utilizado el modelo CBM para explicar el cambio progresivo
de la curva de umbral con el nivel del ruido y, a la vez, para estimar la anchura de banda de los filtros visuales. Para
ello, se midieron (utilizando escaleras bayesianas en un paradigma 2IFC) los umbrales de contraste de enrejados
sinusoidales (de 0.25 a 8 c/gav), presentados dentro de una ventana Gaussiana fija y enmascarados por ruido blanco
1D estático con cada uno de cinco niveles. Los resultados indican que, en efecto, al aumentar el nivel del ruido, los
umbrales de contraste se hacen cada vez mayores y, a la vez, la curva de umbral se va aplanando progresivamente.
Utilizando el modelo CBM, los umbrales teóricos se ajustaron a los datos simultáneamente en todos los niveles de ruido
suponiendo que la función de ganancia de los filtros visuales es log-Gaussiana y que la detección se lleva a cabo por
el filtro sintonizado a la frecuencia del enrejado. Con esos supuestos razonables, el ajuste fue adecuado sólo cuando
la anchura de banda relativa de los filtros visuales decrece con su frecuencia espacial de sintonía.
Palabras clave: umbral de contraste, ruido blanco, modelo de enmascaramiento
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The ability to detect a stimulus embedded in noise tells
us much about the properties of the human visual system.
In fact, most of our knowledge about visual processing of
spatial patterns has come from studies of detection of a
target masked with visual noise, especially when targets are
sinusoidal gratings. In many studies, the masked data have
been explained using the so-called critical-band-masking
(CBM) paradigm. According to this model, transferred from
auditory psychophysics1 (Fletcher, 1940; Patterson, 1974,
1976) to visual psychophysics, the contrast detection
threshold (CDT) of a sinusoidal waveform masked with
noise is proportional to the amount of mask power leaking
through the single filter involved in detection (Henning,
Hertz, & Hinton, 1981; Losada & Mullen, 1995; Pelli, 1981;
Solomon, 2000). Thus, masked CDT is a measure of the
area of overlap between filter gain and noise spectrum, and,
as a consequence, some channel modulation transfer function
(MTF) characteristics (e.g., spectral shape and spatial-
frequency bandwidth) could be inferred from the data
relating CDT to noise parameters. Because we use this model
to analyze our data, it will be described in detail in the
following section.

A variety of noise masks have been used to study the
spatial-frequency filters that detect gratings. The present
paper examines the masking of sine waves by one-
dimensional (1D) static white noise. It is known that,
without external noise, the sinusoidal grating threshold
curve at photopic illuminance levels has a typical U shape
when plotted on a log-log scale (DePalma & Lowry, 1962;
Van Nes & Bouman, 1967). When white noise is added,
CDT increases with the noise power spectral density or
level (N0) (Pelli, 1981; Stromeyer & Julesz, 1972;
Thomas, 1985), except for an initial decrease due to
stochastic resonance (Blackwell, 1998), at the same time
as the U-shaped contrast threshold curve progressively
shifts upward and flattens out (Blackwell, 1998). When
gratings are masked with high-level 2D white noise, the
threshold curve becomes completely flat (i.e., CDT is
independent of spatial frequency), at least for spatial
frequencies below 10 c/deg (Rovamo, Franssila, &
Näsänen, 1992; Schofield & Georgeson, 1999). In
summary, white noise added to sinusoidal gratings
increases their CDTs and changes the shape of contrast
detection curves. 

These results have been explained by means of the
CBM model assuming filters with a constant relative
bandwidth (in octaves) (Blackwell, 1998; Rovamo et al.,
1992). However, biological (De Valois, Albrecht, &
Thorell, 1982; De Valois & De Valois, 1988) and
psychophysical (Schofield & Georgeson, 2003; Solomon,

2000; Wilson, McFarlane, & Phillips, 1983) data suggest
that visual filter bandwidth decreases as a function of
spatial frequency tuning of the filter. These disagreements
in the spatial vision literature about the variation of octave
bandwidth with filter peak frequency make it necessary
to disentangle the relationship between these two filter
characteristics. 

The effect of white noise level on CDTs has been
studied by varying the noise level for a limited number of
spatial frequencies (Losada & Mullen, 1995; Pelli, 1981;
Stromeyer & Julesz, 1972; Thomas, 1985) or by varying
the spatial frequencies for a limited number of white noise
levels (Blackwell, 1998; Rovamo et al., 1992). Obviously,
in these cases, data showed only partially the change of
threshold detection curve with noise level. In an intensive
study, Solomon (2000) obtained masking patterns with 1D
static white noise, and low-pass and high-pass filtered noise
for a sufficient number of spatial frequencies and noise
levels. As a result, he found that filter octave bandwidth
decreases with filter peak frequency when detection is
mediated either by the channel tuned to the frequency of
the stimulus (the fixed-channel model) or by the channel
that maximizes the signal-to-noise ratio (the best-channel
model). Solomon’s stimuli were sinusoidal gratings
windowed by a two-dimensional (2D) circular Gaussian
weighting function whose size was proportional to the
period of the test grating, but he deliberately ignored this
fact in computations. Regrettably, in this case, the grating
contrast power of the Gabor patch is dependent on window
size, as we show in the Appendix, and, consequently,
ignoring the Gaussian window in computations may affect
inferences. On the contrary, it can be shown that the contrast
power of  a Gabor patch with a fixed Gaussian window is
independent of window size for the spatial frequencies used,
thus allowing us to ignore it in computations without
practical consequences.

The aims of this work are to apply the CBM model to
explain the change of shape of threshold curves with noise
level and to examine whether the filter bandwidth variation
with peak spatial frequency can be confirmed when using
Gabor patches with a fixed, 2D Gaussian window as signals.
In order to show the progressive change of the threshold
curves as noise level increases, we measured CDTs for
sinusoidal grating of six spatial frequencies in the presence
of 1D static white noise at five levels. Then, we applied the
CBM model to fit the variation patterns of the threshold
detection curves with noise level and estimate the
relationship between the octave bandwidth and the peak
spatial frequency of the hypothetical visual filters involved
in detection.

1 The critical-band-masking model is referred to in the literature on hearing as the “power spectrum model” of masking (Moore, 1997).



The Critical-Band-Masking Paradigm

The Critical Band Masking Model

The CBM model makes three main assumptions (Moore,
1997): (a) Stimuli are processed by a bank of linear band-
pass filters; (b) the observer uses the stimulus energy passing
through the single filter involved in detection; and (c) the
CDT of the stimulus corresponds to a constant signal-to-noise
ratio at the output of the filter. In its visual version, the CBM
model predicts that the squared CDT of a sinusoidal grating
(with spatial frequency u0) used as signal test and masked
with visual 1D noise of power spectrum ρ, m2(u0), is

4   m0
2 (ξk)+–– ∫+∞ρ(u)|H(u;ξk)|

2
du

s 0
m2(u0) = ––––––––––––––—————–———————, (1)

|H(u0);ξk)|2

where ξk is the peak spatial frequency of the channel that detects
the signal, m0(ξk) is the CDT of a grating of spatial frequency
ξk without external noise, s is the sensitivity parameter, and

|H(u;ξk)| is the MTF of the channel centered at spatial frequency
ξk responsible for detection. (Note: |H(u;ξk)|2 is the filter gain
function). Equation 1, which is quoted in many studies, is
derived in Serrano-Pedraza (2005). (For a derivation of a similar
equation, with minor differences, see Solomon, 2000, his
Equations 4 and 5). Note that, for simplicity, Equation 1 is for
sinusoidal gratings without spatial windowing. 

Below, for quantitative predictions, we choose as contrast
sensitivity function (CSF; i.e., the reciprocal of m0) the
following expression:

CS(u) = Au exp[–au] (2)

(Kelly, 1975), and we adopt the popular log-Gaussian
function2 as the MTF of visual filter (Morrone & Burr, 1988): 

In2(|u|/ξ i)
exp [ – –––––––––––––    ] ⇔ u ≠ 0

|H(u;ξ i)| = { 2α2 (ξ i)                       (3)

0                         ⇔ u = 0,

where ξ i is the peak spatial frequency of filter and  is the
spatial spread of filter i. The relative bandwidth (full-width
at half height), in octaves, is obtained from. We adopt two

2   2forms for the relationship between Boct (ξi) =  –––––––– × α(ξi)  ln2
and peak spatial frequency: an exponential decreasing

function of peak spatial frequency and a constant function.
The first form is

Boct (ξ i) = b + B exp(–ξ i),       b ≥ 0,  B ≥ 0  (4)

While Equation 4 maintains a decreasing relationship, its
advantage over a logarithmic decrease (Schofield & Georgeson,
2003; Solomon, 2000) is that it prevents either zero or negative
values for relative bandwidth from being obtained. However,
if B = 0 in Equation 4, Boct will be constant, therefore, in our
fits, we forced Boct to be constant, that is,

Boct (ξ i) = b (5)

The Fixed-Channel Detection Model 

When an interpretative model of data is chosen, estimates
of filter bandwidth depend on the detection model proposed
(Henning et al., 1981). It has been shown that white noise
prevents (theoretically) the off-frequency looking
phenomenon, that is, the fact that the stimulus may not be
detected by the channel tuned to its nominal frequency
(Serrano-Pedraza, 2005; Serrano-Pedraza & Sierra-Vázquez,
2006). Thus, we use as detection model the above mentioned
fixed-channel model (Solomon, 2000), or a detection model
in which sinusoidal signals of spatial frequency u0 are always
detected by the channel centered at the spatial frequency of
the signal (i.e., ξk = u0). White noise has the same power
spectral density at all spatial frequencies (i.e.p(u) = N0), so
that Equation 1 becomes 

4
m2(u0;N0) = m0

2 (u0) + N0 –– ∫ +∞

|H(u;u0)|
2
du, (6)

s   0

(see Patterson, 1974, 1976, with minor differences), where
m(u0;N0) is the CDT of masked Gabor patch of u0 c/deg at
noise level N0. Provided that the absolute threshold is low
compared with that of the noise level, Equation 6 indicates
that masked (squared) CDT is proportional to the power of
effective noise transmitted by the filter involved in detection
(as required by the third assumption above). More specifically,
if the sensitivity is constant, it follows that, at every spatial
frequency, the threshold elevation must be proportional to
the noise level, where the theoretical estimated value of
proportionality constant for u0 is the product of 4/s and the
area under the gain curve of channel u0, Q(u0),

1
Q(u0) =   πα0 exp [ ––––  α2(u0)] u0,        (7)

4
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2 Some authors (Majaj, Pelli, Kurshan, & Palomares, 2002; Solomon & Pelli, 1994; Talgar, Pelli, & Carrasco, 2004) adopt a quadratic
function of log spatial frequency as log gain function of filters. The difference with Equation 3 is immaterial because it is a trivial issue
to show that a log-Gaussian function plotted on a log-log scale is a quadratic function.
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where α(u0) is the spatial spread of filter centered at
ln2α(u0) = –––––– × Boct (u0), with  (Because the visual filter

2   2
bandwidth is lower than the band of noise, to calculate
the integral, we ignored the limits of the pseudo-white
noise band, with no loss of generality. Nevertheless, in
data fits, the real noise band limits are maintained). Thus,
the CBM model with white noise maskers, for a fixed
spatial frequency, predicts a linear relationship between
squared CTD and noise level whose proportionality
constant equals to (4/s) Q0(u0), that is,

4m2(u0;N0) = m0
2 (u0) + N0 ––– Q(u0)N0, (8)

s      

Method

Observers

The first author (IS) and one paid, experienced
psychophysical observer (GB), who was unaware of the
purpose of the experiment, took part in the study. Both
observers had normal visual acuity and viewed the screen
binocularly with natural pupils.

Stimulus Construction

The stimuli were either 1D gratings embedded in 1D
white noise (test signal plus mask) or 1D white noise alone
(mask). Both the test signal and the mask were static. They
can be described by Equation 9.

L(x, y) = L0 (1+mTEST f(x, y) + mMASK n(x, y))  (9)

where L(x, y) is luminance at location (x, y), L0 is mean
luminance in cd/m2, f is the sinusoidal test signal, mTEST is
the Michelson contrast of the test, n is the white noise, and
mMASK  is the noise masker contrast parameter that controls
the noise power spectral density. When only noise mask
was presented, mTEST was set to zero; otherwise it was
changed according to Bayesian staircases (see later in
Procedure). All stimuli were horizontally oriented to prevent
monitor artifacts when spatial frequency was relatively high
(García-Pérez & Peli, 2001). We used as test signals
sinusoidal gratings of six spatial frequencies (u0 = 0.25, 0.5,
1, 2, 4, and 8 c/deg) spatially windowed by a fixed 2D
Gaussian function or Gabor patch, that is, 

x2        y2

f(x, y) = exp [ –  –––– –  –––– ] cos(2πu0y),   (10)  
2s2

x 2s2
y

where sx, sy, in deg, are the standard deviations of the
Gaussian window (sx = sy = 2.5 deg). As a masker we used
noise samples of 1D static white noise (see a sample in
Figure 1a), that is, noise nominally composed by all spatial
frequencies and all of them with the same amplitude. In
practice, masks were band-pass noise with a lower frequency
limit at 0.125 c/deg and no component above 16c/deg.
However, these pseudo-white noises can be considered white
noise for the relevant visual filter under certain conditions
(Losada & Mullen, 1995) that were met for all of them.
Pseudo-white noise samples were generated first in the
spatial-frequency domain from a two-sided flat power
spectral density function, ρ(u) = N0 (Figure 1c), and a phase
spectrum in which phase is a random variable uniformly
distributed on (– π, π] (Figure 1d). The results were then
Fourier-transformed into the spatial domain. It is known
that luminance levels of white noise have a Gaussian
distribution (Green & Swets, 1966; Legge, Kersten, &
Burgess, 1987) with standard deviation3 σ =  2WN0Lave,
where W is the one-sided spectral bandwidth of noise (in
this paper, W=15.875 c/deg), N0 is the noise power level,
Lave = ∑∑ LMASK (i, j) / (NR × NC) is the average of the noise
luminances, and NR and NC are the dimensions, in pixels,
of the image. Formula for σ follows easily from Legge et
al. (1987, note 29), with N0 = c2

RMS / 2W Figure 1b shows
the Gaussian luminance distribution of the white noise
sample of Figure 1a. Six separate test signals (one per spatial
frequency) and 140 white noise images (two per trial) were
previously constructed using Matlab as digital images of
512 × 512 pixels and 256 gray levels and stored on a hard
disk drive; thus, f and n of Equation 9 are really contrast
functions relative to the digital images.

Equipment and Display

Digital images were presented on a high-resolution 19”
monitor (Eizo Flexcan T765, Eizo Corp., Japan) in
monochrome mode using a VSG2/3F Issue 4a graphics card
(Cambridge Research Systems Ltd., UK) under the control
of a computer (Pentium II-MMX, 400Mhz) that also stored
the images. The monitor frame rate was 120 Hz (60 Hz per
complete image when frame interleaving was used). The
relationship between pixel value and screen luminance was
measured by an OptiCal photometer (Cambridge Research

3 σ is the standard deviation of the luminances, not the root-mean-square contrast, cRMS, or standard deviation of the contrast function
as in Losada and Mullen (1995). In fact, cRMS = σ/Lave (Stromeyer & Julesz, 1971).



Systems Ltd.) interfaced to the computer, and the monitor’s
gamma non-linearity was corrected using software look-up
tables (LUT) in the VSG. This calibration also provided 15-
bit grayscale resolution. The calibration was verified every
few weeks.

Each digital image was linearly converted into a displayed
image via the LUT of the graphics card during each frame.
This allowed both test and mask contrasts to be changed on-
line without losing intensity levels and without changing the
stored digital image (Schofield, 1998). The images were
presented at the center of the screen in a square of 14.68 cm
per side and the remainder of the screen was at mean
luminance. They were viewed at a distance of 105 cm and

subtended an area of 8 × 8 deg. The mean luminance of the
image area, L0, was 15 cd/m2, corresponding to value 128 of
the image gray level.

Masking Procedure 

We used the frame interleaving method to mask the test
signal (Schofield & Georgeson, 1999; Solomon, 2000). The
advantage of this method is that the test contrast can be
varied independently of the contrast of the noise mask in
which the test is embedded (Schofield, 1998). Stimuli were
displayed by presenting tests and masks separately in alternate
frames of video sequences (images of Figure 2a and 2b).
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Figure 1. Sample of noise mask. (a) Image of 1D white noise. (b) Histogram of luminances and parameter values. (d) Plot of power
spectral density. (e) Plot of phase spectrum.
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The visual stimulus after interleaving is the desired stimulus
(i.e., the combination of both) but with its frame rate and
contrasts effectively halved (image of Figure 2c). (The
effective frame rate of 60 Hz is above flicker fusion
frequency). Thus, the effective contrast of test and mask is
half of their contrast set in the LUT (Schofield & Georgeson).
In this paper, the effects of interleaving were corrected by
software in such a way that mMASK and mTEST were as expected.

White noise masks were displayed with one of five power
spectral density levels, N0 = 0.002 × 10–3 × 4k (c/deg)–1, k =
0, ..., 4 ). Usually, the noise level has been manipulated by
varying the standard deviation (σ) of the noise luminance
distribution (Thomas, 1985), at the expense of reducing the
range of gray levels of digital images. Our intention was not
to modify the digital image in framestore. Therefore, the
noise power level was controlled with the LUT of VSG by
setting mMASK in such a way as to obtain the root-mean-squared
contrast, cRMS, which corresponds to the desired level, that is,

I0cRMSmMASK = ––––––––––––––––––––––––– ,  0 < mMASK < 1, (11)
a – b2 + cRMS (I0 – b)

(Sierra-Vázquez & Serrano-Pedraza, 2006), where I0 = 128,
cRMS =   2WN0 , a = ∑∑ I2

MASK (i, j) / (NR × NC) and b = ∑∑
IMASK (i, j) / (NR × NC), where IMASK is the digital image of
masker noise. Interleaving procedure limits the noise samples
that may be used in the experiment: If a noise mask sample
needed a mMASK greater than 0.5 to obtain the desired level,
this sample was rejected and another sample with an mMASK

lower than 0.5 was used.

Procedure

The experiment was carried out in a quiet, dark room.
The only light source was the monitor screen. Subjects
sat 105 cm away from the screen. A chin-rest was used
to stabilize the subject’s head and to control observation
distance. CDTs of the test masked by noise were measured

Figure 2. Masking procedure using the frame interleaving method. (a) Odd frame. (b) Even frame. (c) Result of frame interleaving
procedure. Upper row: odd frame (test) plus even frame (mask) results in the interleaved stimulus. Lower row: gray level profiles along
the vertical axis. Note that the stimulus contrast was halved.
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using an adaptive Bayesian staircase in a two-interval,
two-alternative forced-choice (2I, 2AFC) task. Each trial
started with a fixation cross presented at the center of the
screen for 500 ms and was divided into two presentation
intervals of 500 ms with a 500-ms interval between the
two presentations. During each observation interval, a tone
sounded to indicate that the stimulus was being presented.
During each presentation interval, stimuli were displayed
using a temporal Gaussian envelope with a standard
deviation of 100 ms, and truncated to obtain the overall
duration of 500 ms. One interval contained the mask plus
the test; the other contained the mask stimulus alone. The
observer’s task was to indicate which interval contained
the test signal. In practice, mask and test were presented
in both intervals using the interleave procedure, according
to Equation 1: in one interval, test contrast was set to
zero, that is, mean luminance, and noise mask was
presented with its corresponding contrast; in the other
interval, both test and mask with their corresponding
contrasts were presented. In order to prevent learning, a
different stochastic noise sample was used in the two
presentation intervals in each trial. The noise samples used
in each trial were chosen at random from the previously
generated set of 140 images. At the end of each trial, the
observer indicated which presentation interval contained
the test by pressing a key on the computer keyboard. A
new trial was initiated only after the observer’s response,
thus the experiment proceeded at a pace determined by
the observer. 

In the experiment, 30 conditions (combination of 6
spatial frequencies and 5 power spectral densities) were
tested and the corresponding CDTs were obtained. In each
experimental session, a spatial frequency was fixed; five
Bayesian staircases were run separately in parallel and
randomly interwoven, each with one of the five noise levels.
In each staircase, the mMASK of noise samples was held at the
required noise level. For the fixed spatial frequency and
noise level, the contrast of test grating (i.e., mTEST) was varied
from trial to trial according to the Bayesian staircase. The
configuration of the Bayesian staircases was as follows:
prior probability density function was uniform; model
likelihood function, M, was symmetric (logistic function)
about the threshold (Emerson, 1986; Madigan & Williams,
1987) and defined as

1 – λ – γ
M(x;U) = γ + ––––––––––––––––––––––––––––––––––––––––,             (12)

1 + exp [β (a + x – U)] 

where U is the log contrast of stimulus and the parameters are:

2  1 – λ – δ 2  1 – λ – π β = –––– ln  [ –––––––––––––– ], α = –––– ln  [ –––––––––––––– ]σ       δ           β           π –  γ

(both defined by García-Pérez, 1998, Appendix A with
different notation), λ = 0.01, γ = 0.5, π = 0.75, δ = 0.01,

σ = 0.8 (this value is a compromise between an empirical
result of Watson and Pelli, 1983, and the theoretical
recommendations of Alcalá-Quintana and García-Pérez,
2004); the value of the contrast in each trial was obtained
from the mean of the posterior probability density function
(Emerson, 1986; King-Smith, Grigsby, Vingrys, Benes &
Supowit, 1994); the threshold was estimated from the mean
of the final probability density function (Emerson; Madigan
& Williams). The stopping rule for the staircases was the
number of trials (70 trials) (Emerson; Madigan & Williams).
The configuration used here for the Bayesian staircases
followed Alcalá-Quintana and García-Pérez (2004). The
value of the contrast threshold corresponds to the value
0.75 of the subject psychometric function. This value was
taken as the CDT, m(u0;N0), for the tested noise masker
level (N0) and the spatial frequency (u0). Each staircase
lasted 5 minutes approximately and each experimental
session, 25 minutes.

Previously, CDTs of Gabor patches with no noise or
absolute thresholds, m0, were obtained with the above-
mentioned procedure but with mMASK set to zero.

Fitting the Model to Data

Contrast sensitivity (CS) was fitted with Equation 2.
It must be clear that the CBM model only has three free
parameters: s, b and B. Once the masked CDTs are known,
it is possible to estimate parameters b and B. Regrettably,
it is not possible to obtain s from data of white noise
masking because there are infinite pairs (b, B) that fit the
data, one for each value of s. Although the value of s
affects the value of Boct, fortunately, it does not affect the
shape of its variation with peak frequency. Because s is
anchored to a value with other types of noise, the value
of parameter s for each observer (see Table 1) was
obtained from previous experiments of masking in which
we used low-pass, high-pass, band-pass, double band-pass,
and notched mask noises, and with the same two observers
and experimental conditions (Serrano-Pedraza, 2005).
Taking this clarification into account, theoretical thresholds
from the CBM model for white noise were fitted
simultaneously using Equation 6 to experimental data at
all noise levels for the supposed two bandwidth regimens
(constant and variable bandwidth). To apply Equation 6,
we can ignore the Gaussian window of grating stimuli
because, as shown in Appendix A, the power contrast of
the Gabor patches is constant when the window has a
fixed size and for spatial frequencies above 0.1 c/deg
(Figure A, thick line). Best-fitting values of parameters A
and a of Equation 2, b and B of Equation 4, and b of
Equation 5 were obtained using a least-squares fitting
procedure. The sum of squared errors between squared
values of empirical and theoretical CDTs was minimized
using the Nelder-Mead simplex search method (Nelder &
Mead, 1965).
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Results

Figure 3 shows the contrast sensitivity (open circles) to
Gabor patches without external noise for the six spatial
frequencies for the two observers (Figure 3a and 3b). The
solid line in each panel shows the CSF result of fitting data
to Equation 2 (parameter estimates are in the Figure caption).
The CSF plotted on a log-log scale has the typical inverted-
U shape with a fall-out of sensitivity both at low and at high
spatial frequencies (compare with Robson, 1966, at a mean
luminance of 20 cd/m2, temporal frequency of 1 Hz, and
fixed field size). Both observers have normal (extrapolated)
visual acuity given the mean luminance level used (Hess &
Nordby, 1986, their Figure 6, subject with normal vision).

The results of the masking experiment for the two
observers are plotted on a log-log scale in Figure 4a and
replotted in Figure 4c. In Figure 4a, the squared CDTs of
masked grating (filled symbols) are plotted as a function of
the spatial frequency of the grating signal for each of the five
noise levels. The thick solid line is the squared absolute

threshold curve (obtained using data from Figure 3). The
effect of increasing noise power spectral density in CDT is
to raise the threshold (i.e., to reduce the sensitivity) not only
for high spatial frequencies but also for low spatial frequencies,
and, at the same time, to equate them in log-log scale at high
levels. The panel of Figure 4a also shows the fitted CDTs
(open symbols), and theoretical (squared) threshold curves
(thin lines) results of fitting the model with variable Boct to
experimental data for both observers. The fitted masking
patterns agree with data when filter bandwidth decreases with
peak spatial frequency (see the log RMSE for both observers
inserted in panels). The most striking feature of theoretical
curves is their progressive leveling-off to become almost flat
at the high noise level used. The best-fitting estimates of
parameter are shown in Table 1 and the relative bandwidth
(in octaves) as a function of peak spatial frequency of filters
is plotted for the two observers on a linear scale in Figure
4b. Figure 4c shows the fitted CDT result of forcing Boct to
be constant and its estimated values are plotted in Figure 4d.
The poor fit to data with constant Boct is easily observed.

Figure 3. Contrast sensitivity (open circles) for Gabor patches without external noise for observers IS (a) and GB (b). The solid curve
in each panel shows the CSF calculated in Equation 2. Best-fitting values for the parameter of the CSFs are: Observer IS: A = 377.323,
a = 0.4455. Observer GB: A = 249.76, a = 0.3424. Extrapolated visual acuities are 20 c/deg (observer IS) and 22 c/deg (observer GB)
at the luminance level of 15 cd/m2.

Table 1
Values of Variable Octave Bandwidth Parameters

Detection model                        Parameter (Equation 4)
Observ

Type of channel s* B   b
RMS error of fits (log units)

IS Fixed 0.35 4.4985 0.6822 –3.1264

GB Fixed 0.20 3.9644 0.3947 –2.9715

Note. *Values from previous masking experiments (Serrano-Pedraza, 2005)
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Figure 4. Thresholds for detection of Gabor patches in the presence of white noise of different levels and fits of the critical-band-masking
model for observers IS and GB. (a) Data and fit assuming variable octave bandwidth. In each panel, experimental squared CDTs for
test (filled symbols) and fitted squared CDTs from the critical-band-masking model (open symbols) are plotted on a log-log scale as a
function of the spatial frequency of Gabor patch for each noise level. Symbols for CDTs at each noise level, increasing from bottom to
top, are: circles, squares, triangles pointing up, diamonds, and triangles pointing left. The specific values can be obtained from N0 =
0.002 × 10–3 × 4k (c/deg)–1, k =0, ..., 4. Solid lines connecting open symbols are the model threshold curves; the heavy line is the absolute
threshold curve. (b) Filter bandwidth (full bandwidth at half height, in octaves) results of the best fit as a function of peak spatial
frequency (parameter estimates for each observer are in Table 1). (c) Fits assuming constant octave bandwidth. In each panel, replotted
experimental data (filled symbols) and fitted squared CDTs from the critical-band-masking model (open symbols) are shown. Symbols
of noise levels are as in (a). (d) Filter bandwidth (full bandwidth at half height, in octaves) results of the best fit.
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Figure 5. Test of linear relationship between masked (squared) CDTs and noise levels. Each panel shows experimental squared CDT
(filled symbols) as a function of noise level for each spatial frequency of Gabor patches and fitted curve (solid line) from Equation 8,
taking into account the best-fitting parameter values in the variable octave bandwidth condition (Table 1). Dashed horizontal lines
represent the squared CDT without external noise (m2

0) for the corresponding spatial frequency. (a) Observer IS. (b) Observer GB.
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To test the linear relationship between masked (squared)
CDT and noise level predicted by the CBM model, the
squared CDT of masked gratings (filled symbols) are
replotted in Figure 5a and 5b on a log-log scale as a
function of the noise power spectral density for each of
the six spatial frequencies. For the sake of clarity, we have
plotted the data in different panels. In each panel, the
dashed line represents the absolute threshold for the
corresponding spatial frequency. As can be seen from raw
data, squared CDTs rise monotonically with noise level
for each spatial frequency, except for an initial decrease
at low noise levels for gratings of 0.25 c/deg and 0.5 c/deg
(subject GB) (possibly due to threshold bias). The solid
line through the symbols in each panel is the prediction
from Equation 8 for each noise level, taking into account
the supposed values of s and the best-fitting values of b
and B for variable filter bandwidth (Table 1). As can be
seen, predictions from CBM model fit well the
experimental data for both observers. 

Discussion

This paper presents data on the changes in threshold
curves for sinusoidal grating masked by white noise of
different spectral power densities. We applied the CBM
model to explain the change in CDTs with noise level and
tested two particular shapes of the relationship between
relative bandwidth (in octave) and peak frequency of filters.
Squared CDTs at different noise levels were fitted to the
CBM model and, as a result, the fit was adequate only
when visual filters involved in the detection of masked
gratings had decreasing octave bandwidth with peak
frequency.

Quantitative predictions about masked CDTs need the
(squared) absolute threshold as an index of power of internal
noise (i.e., as a limit of the observer performance in the
absence of external noise). It is known that the CSF shape
lacks low spatial frequency attenuation when Gabor patch
window scales with spatial frequency (Peli, Arend, Young,
& Goldstein, 1993). This is the shape of the CSF obtained
and used by Solomon (2000). Nevertheless, here, the CSFs
of the two observers (Figure 3) have the typical shape for
CSF when Gabor patches with a fixed size window are used
(Barten, 1999), thus it is coherent with the stimulus
configuration used in our experiment.

The comparison of empirical and theoretical CDTs
shows that the CBM model with variable filter bandwidth
fits masking data well (Figures 4a, 4c, and 5), and the
fitted threshold detection curves show a progressive
flattening with the increase in noise level. Patterns of
masking are qualitatively similar to those reported in the
literature at the level used in each study. The change in
curvature of threshold curves at medium noise levels is
qualitatively similar to the effects that Blackwell (1998,

his Figure 2) found with 2D static log-Gaussian noise and
fixed circular aperture. The flat CDT curve at its highest
level is similar to that of Rovamo et al. (1992, his Figure
2) with 2D white noise and variable aperture. Comparisons
must be qualitative because Rovamo et al. and Blackwell
use 2D noise and represent CDT or CS (and not squared
CDTs) versus spatial frequency. Masked CDTs lower than
absolute detection threshold, such as those we found for
0.25 and 0.5c/deg, were also found by other authors
(Losada & Mullen, 1995; Serrano-Pedraza & Sierra-
Vázquez, 2004). These results have been interpreted as
small facilitatory effects of white noise at low levels which
are not predicted by the (linear) CBM model and reported
for the first time in Blackwell (1998) as due to visual
stochastic resonance. Indeed, considering the large size
of the standard errors of threshold estimates from Bayesian
staircases (Alcalá-Quintana & García-Pérez, 2004), those
data points are so minimally below the respective absolute
threshold that they could be considered within the
threshold bias.

There is much disagreement in the spatial vision
literature over specific bandwidth values.  In fact, there
are significant variations in the bandwidth estimates of
visual filters because direct estimates depend on
experimental paradigms (Kelly & Burbeck, 1984), and
derived estimates depend on the assumptions of
interpretative theoretical models (Olzak & Thomas, 1986).
This problem is further complicated here by the fact that
specific estimates depend on the assumed value of the
sensitivity parameter s. Therefore, we do not deal with
bandwidth filter values, although our estimates are within
the usual range (Olzak & Thomas, Table 7.1). Fortunately,
the value of parameter s does not affect the form of the
relationship. This fact allows us to discuss our results on
filter bandwidth variation with the peak frequency. A
number of direct (Henning et al., 1981; Losada & Mullen,
1995; Stromeyer & Julesz, 1972) and theoretically derived
(Pelli, 1981; Solomon & Pelli, 1994; Talgar, Pelli, &
Carrasco, 2004) measures indicate that linear bandwidth
is roughly proportional to the filter peak frequency, which
proves constant octave bandwidth. In addition, constant
octave bandwidth has been used to explain the results of
white noise masking (Blackwell, 1998; Rovamo et al.,
1992). On the contrary, quantitative analysis of our
experimental data by means of the CBM model supports
the view that the visual filter octave bandwidth decreases
with its peak frequency. This statement agrees with direct
and derived measures obtained with different types of
masker (Schofield & Georgeson, 2003; Serrano-Pedraza,
2005; Wilson et al., 1983, their Figure 11) as shown in
Figure 6. To reconcile these conclusions, it has to be noted
that octave bandwidth is almost constant for spatial
frequencies above 2.5 c/deg for both observers (Figure
4b). Therefore, if only higher spatial frequencies were used,
bandwidth would appear constant. 
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We have obtained slightly different results from those
of Solomon (2000) (see Figure 6), even though his curve
is shifted down to overlap with ours. In the Appendix, we
show that the contrast power of a Gabor patch depends both
on its Michelson contrast and its window size. In the case
of a Gabor patch whose Gaussian window scales with its
spatial frequency (Solomon), contrast power decreases
dramatically with window size (i.e., with the spatial
frequency of grating) (Figure A, thin line). Thus, the contrast
power of scaled Gabor patches is originally affected by a
quantity that should be taken into account in calculations.
It is important to note that Equation 6 is for the CDTs of
gratings without a spatial window. Therefore, it is not
possible to apply Equation 6 to fit the CDTs obtained using
Gabor patches with scaled windows without further
consequences for the estimated bandwidth. On the contrary,
if the window size is fixed, as is the case in this paper, the
contrast power of the stimuli for spatial frequencies greater
than 0.1 c/deg is affected by a constant factor (Figure A of
Appendix, thick line) and it only depends on its Michelson
contrast, as required by Equation 6. This fact enables us to
use this equation directly, with no further consequences for
bandwidth estimates. Thus, the proper application of CBM
model supports the non-constant bandwidth version of the
visual filterbank.
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The contrast power, PC, of a 2D contrast function f is (Pelli, 1990)

1                       
PC = ––––––––––––  ∫ ∫ f 2(x, y) dxdy

gx × gy

where gx, gy, in deg, are the spatial dimensions of  the contrast function. Let f be the Gabor patch defined by Equation 10
with Michelson contrast m. Its contrast power is

m2                      2                       PC = –––– × [ ––––––––––– ∫ ∫ [w2(x, y) cos2 (2πu0y)]dxdy],                                                                      (A1)
2 gx × gy

where m2/2 is the contrast power of a sinusoidal grating without windowing (Hartmann, 1998, p. 26) and w is the 2D circular
Gaussian window of the Gabor patch. Figure A shows the numerical evaluation of the quantity between square brackets,
K, as a function of the spatial frequency of Gabor patch in two cases: with fixed window size (gx = gy = 8 deg and sx = sy

= 2.5 deg) (thick line), and with scaled window size (sx = 1/(  2u0)) (thin line). Note that, in the first case, coefficient K
is almost constant for spatial frequencies greater than 0.1 c/deg; thus, contrast power of Gabor patch depends only on its
contrast m. On the contrary, with scaled window size, the coefficient decreases with the spatial frequency to a negligible
value; thus, in this case, contrast power depends jointly on the contrast and the spatial frequency of the patch.

Appendix

Figure A. Numerical evaluation of factor K in Equation A1 as a function of the spatial frequency of a Gabor patch with a Gaussian
window of fixed size (thick line) and when the size of the window scales with the spatial frequency of grating (thin line).
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