
Research on estimation of a psychometric function Ψ has usually focused on comparing alternative algorithms to apply to the
data, rarely addressing how best to gather the data themselves (i.e., what sampling plan best deploys the affordable number of
trials). Simulation methods were used here to assess the performance of several sampling plans in yes–no and forced-choice tasks,
including the QUEST method and several variants of up–down staircases and of the method of constant stimuli (MOCS). We also
assessed the efficacy of four parameter estimation methods. Performance comparisons were based on analyses of usability (i.e.,
the percentage of times that a plan yields usable data for the estimation of all the parameters of Ψ) and of the resultant distributions
of parameter estimates. Maximum likelihood turned out to be the best parameter estimation method. As for sampling plans, QUEST

never exceeded 80% usability even when 1000 trials were administered and rendered accurate estimates of threshold but misestimated
the remaining parameters. MOCS and up–down staircases yielded similar and acceptable usability (above 95% with 400–500 trials)
and, although neither type of plan allowed estimating all parameters with optimal precision, each type appeared well suited to
estimating a distinct subset of parameters. An analysis of the causes of this differential suitability allowed designing alternative
sampling plans (all based on up–down staircases) for yes–no and forced-choice tasks. These alternative plans rendered near optimal
distributions of estimates for all parameters. The results just described apply when the fitted Ψ has the same mathematical form
as the actual Ψ generating the data; in case of form mismatch, all parameters except threshold were generally misestimated but
the relative performance of all the sampling plans remained identical. Detailed practical recommendations are given.
Keywords: psychometric function, psychophysical methods, least squares, maximum likelihood, simulation

Los estudios sobre estimación de la función psicométrica Ψ se han centrado tradicionalmente en comparar los algoritmos que
se pueden aplicar a los datos, dejando al margen el problema de cómo recoger los propios datos (es decir, qué esquema de
muestreo despliega de mejor forma los ensayos disponibles). Aquí se utilizan técnicas de simulación para evaluar el rendimiento
de varios esquemas de muestreo en tareas de sí–no y de elección forzada, incluyendo QUEST y distintas variantes de escaleras
de paso fijo y del método de los estímulos constantes. También se evalúa la eficacia de cuatro métodos de estimación de
parámetros. Las comparaciones se basan en análisis de usabilidad (es decir, del porcentaje de veces que un esquema proporcio-
na datos válidos para estimar todos los parámetros de Ψ) y de las distribuciones de las estimaciones. El mejor método de
estimación resultó ser el de máxima verosimilitud. En cuanto a esquemas de muestreo, QUEST no llegó a rendir una usabilidad
del 80% ni siquiera cuando se administraron 1000 ensayos y, aunque proporcionó buenas estimaciones del umbral, estimó
erróneamente el resto de los parámetros. El método de los estímulos constantes y las escaleras de paso fijo rindieron una
usabilidad similar (superior al 95% con 400–500 ensayos) y, aunque ninguno de estos esquemas permitió estimar con precisión
óptima todos los parámetros, cada tipo de esquema se mostró adecuado para estimar un subconjunto distinto de parámetros.
El análisis de las causas de estas diferencias permitió diseñar esquemas alternativos (todos ellos basados en escaleras de
paso fijo) para tareas de sí–no y de elección forzada. Estos esquemas alternativos proporcionaron estimaciones con distribuciones
casi óptimas. Los resultados descritos son válidos cuando la función cuyos parámetros se estiman tiene la misma forma analítica
que la función psicométrica que ha generado los datos; cuando esas funciones difieren en forma, todos los parámetros excep-
to el umbral resultan estimados erróneamente, aunque la eficacia relativa de los distintos esquemas de muestreo no varía. Se
ofrecen recomendaciones prácticas basadas en estos resultados.
Palabras clave: función psicométrica, métodos psicofísicos, mínimos cuadrados, máxima verosimilitud, simulación
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1. Introduction

When the necessity to estimate the psychometric function
Ψ arises in psychophysics, the method of constant stimuli (MOCS)
appears to be the only available option. The tight association
between estimating Ψ and using MOCS perhaps developed due
to lack of alternative methods, but the link currently continues
to be reinforced by the fact that even the most recent explicit
attempts to determine how best to estimate Ψ either have only
compared variants of MOCS or have only proposed or evaluated
statistical criteria or algorithms to deal with MOCS data (Foster
& Bischof, 1991; Lam, Mills, & Dubno, 1996; Maloney, 1990;
Miller & Ulrich, 2001; O’Regan & Humbert, 1989; Treutwein
& Strasburger, 1999; Wichmann & Hill, 2001a, 2001b).

The above statement notwithstanding, estimation of Ψ
using adaptive methods has been described (Brand & Koll-
meier, 2002; Hall, 1981; Kaernbach, 2001; Leek, Hanna, &
Marshall, 1992; Serrano-Pedraza & Sierra-Vázquez, 2003;
Swanson & Birch, 1992; Treutwein & Strasburger, 1999; Werk-
hoven & Snippe, 1996). Yet, none of those papers undertook
an analysis that could help to determine an optimal sampling
plan. Either the performance of the methods was barely or not
at all compared with that of MOCS for all cases of interest or
only estimation of a subset of the parameters of Ψ was
considered. In practice, adaptive methods designed to place
trials near threshold have been used to estimate all the
parameters of Ψ (e.g., Strasburger, 2001; Treutwein & Stras-
burger, 1999; Watson & Turano, 1995). All things considered,
the question is yet unsolved as to what psychophysical meth-
od places its allowance of trials at the stimulus levels that turn
out to be most useful for an accurate estimation of Ψ. In other
words, if a psychophysicist can only afford, say, 400 trials,
what psychophysical method should he/she use to ensure an
optimal deployment? This study looked directly into this
question for arbitrary numbers of affordable trials.

The main focus of this paper is the estimation of all the
parameters of Ψ, including its asymptotes. Quite often
researchers are only interested in estimating the slope or
threshold parameters, but it should be noted that Wichmann
and Hill (2001a) have shown that estimates of these
parameters can be substantially inaccurate if the asymptotes
of Ψ are not estimated concurrently. Therefore, the issues
addressed in this paper are also relevant when only accurate
estimates of threshold and slope are required.

This work compares the performance of several MOCS

sampling plans with that of plans arising from adaptive meth-
ods whose suitability for the estimation of Ψ has never been
studied in depth. The comparison uses lack of bias and effi-
ciency in parameter estimation as criteria. Our ultimate goal
is to provide practicing psychophysicists with instructions
as to how to configure the psychophysical method that
renders the best sampling plan for the estimation of Ψ.

Issues of goodness of fit will not be addressed here
because our goal is to compare alternative sampling plans
as to the accuracy and precision of the parameter estimates

that they provide. Thus, our focus is in the comparison of
estimated and true parameters, whereas goodness-of-fit tests
compare estimated parameters with the data. Wichmann and
Hill (2001a, 2001b) have shown how to test goodness of fit
and obtain confidence intervals bypassing the non-dependable
features of off-the-shelf statistics, and the bootstrap meth-
od that they analyzed can also be applied to data arising
from the sampling plans that we consider here.

This research addressed two experimental situations each
of which has its own peculiarities, poses its own difficulties,
and, as it turned out, requires a different sampling plan for the
estimation of Ψ. These are known as “yes–no tasks” (where
the lower asymptote of Ψ is a free parameter representing a
false positive rate that is close to zero) and “m-alternative
forced-choice tasks” (or mAFC with m ≥ 2, where the lower
asymptote is constant at 1/m). Note that the link between mAFC
tasks and a fixed lower asymptote is only justifiable in mAFC
detection tasks where one of the intervals presents a stimulus
and the other presents a blank, although it also applies to mAFC
identification tasks (where one of the intervals presents a target
and the others present equally attractive distractors, or when
there is a single presentation of one of m equally confusable
stimuli and the subject’s task is to indicate which one it was).
We will tag our references as mAFC detection tasks (implicitly
referring to identification tasks too) to distinguish them from
the 2AFC discrimination tasks described in Section 6.1, where
the lower asymptote becomes a free parameter with
characteristics that make Ψ very similar to that in yes–no tasks.

The paper is organized as follows. Section 2 describes
the sampling plans under study. Section 3 describes the
remaining factors in the study and other details of our meth-
od. Sections 4–6 present our results and highlight the strong
and weak points of each sampling plan. Section 7 proposes
new plans based on combinations that ensure the concurrence
of strong points across several adaptive strategies, and the
improved performance of these new plans is also docu-
mented there. Finally, Section 8 summarizes our results and
gives practical recommendations.

2. Sampling Plans

Our sampling plans arise from psychophysical methods
that are fairly well known to practicing researchers. Some
of these were designed for yes–no tasks and cannot be used
with forced-choice tasks; others were designed to be used
with the latter and are unlikely to be useful with the former;
and others can be used in either case. Next we will describe
them briefly to stress the characteristics of the ensuing
sampling plans whose comparison is the goal of this study.

2.1. Conventional MOCS

Conventional MOCS with a fixed number of trials can be
set up in innumerable forms by varying the number and
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spacing of stimulus levels. O’Regan and Humbert (1989;
see also Brand & Kollmeier, 2002) carried out a theoretical
analysis elucidating the locations where three levels should
be placed to minimize the asymptotic variance of maximum
likelihood estimates of threshold and slope in the simplest
case. Wichmann and Hill (2001a, 2001b) used simulations
to evaluate seven MOCS plans that differed as to the spacing
of six stimulus levels and their location relative to that of
Ψ, showing that some of these plans are more prone to bias
or imprecise estimation. In laboratory practice, five to ten
stimulus levels are normally used and they are often equal-
ly spaced, but it is much harder to set a precise location for
these levels with respect to Ψ, or their spacing relative to
the support σ of Ψ (a look at Figure 2 below will be useful
at this point to find out what we mean by σ; references to
the support σ of Ψ are frequent in this section).

Figure 1a illustrates conventional MOCS with five levels
and a lattice that spans the region of support of Ψ and is
centered with it, although number of levels and positioning
varied in our study (see Section 3.4). The panel on the right
of Figure 1a shows that MOCS allows the agreement between
binned data (circles) and estimated function (solid curve)
to be judged.

2.2. Single-Presentation MOCS

Single-presentation MOCS is a degenerate variant in which
only one trial is placed at each level. Interest in this plan
originated in bioassay, where high cost makes observations
scarce. An initial evaluation (Ramsey, 1972) revealed the
merits of 6-level single-presentation MOCS compared to
conventional MOCS with the same number of observations,
and subsequent analyses in that context confirmed the
conclusion (Müller & Schmitt, 1990). Treutwein and Stras-
burger (1999) evaluated single-presentation MOCS with 100
equally-spaced levels over the range of interest. Figure 1b
shows an illustration, and note in the right panel that the
unappealing aspect of the data leaves our eyes unable to
judge the fit of the estimated function (solid curve).

2.3. QUEST

QUEST is a parametric, adaptive Bayesian threshold
estimation method that was proposed by Watson and Pelli

(1983) after it had been developed and tested in the fields
of bioassay (Freeman, 1970; Marks, 1962; Ramsey, 1972)
and educational and psychological testing (Owen, 1975).
Some groups (e.g., Santoro, Burr, & Morrone, 2002;
Simmers, Bex, Smith, & Wilkins, 2001; Snowden & Ham-
mett, 1998; Solomon & Morgan, 2000; Watson & Turano,
1995) fit Ψ to QUEST data even though QUEST was never
shown to provide dependable estimates of Ψ.1

Alcalá-Quintana and García-Pérez (2002, 2004a) showed
that the setups of Watson and Pelli (1983) and King-Smith,
Grigsby, Vingrys, Benes, and Supowit (1994) are suboptimal,
and they identified a dependable setup. Here we gave QUEST

a further advantage and set it up in ideal conditions: The
model function built into QUEST matches the actual Ψ
producing the data. Thus, QUEST performs here at its best,
and its expected performance in practice is inferior. QUEST

is illustrated in Figure 1c, showing that it places trials
unevenly across the available range of stimulus levels. The
highest density of trials occurs around the target point and,
as a result of the ever changing step size, most levels are
tested merely once but a few levels get tested 2–4 times.

2.4. Adaptive Staircase With Up–Down Transformed
Rules (UDTRS)

Also with the goal of estimating threshold but using a
non-parametric method, Wetherill and Levitt (1965; see also
Brown, 1996) modified the up–down method of Dixon and
Mood (1948) so that the procedure targets a point other than
that at which the probability of success is 0.5. This is
accomplished by varying what is called the up–down rule,
which refers to the number of consecutive correct
(alternatively, incorrect) responses that are required at the
current stimulus level to bring it down (alternatively, up)
by one step for the next trial. For use with mAFC detection
tasks we will consider 1–2, 1–3, and 1–4 rules, where u–d
stands for “u consecutive wrong responses take the stimulus
level one step up and d consecutive correct responses take
the stimulus level one step down.” Wetherill and Levitt
(1965) referred to these as transformed rules because they
differ from the original 1–1 rule of Dixon and Mood (1948).
Although the conventional estimator based on the average
of the stimulus levels at the reversal points has been shown
to be biased and non-dependable under realistic conditions
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1 Quite on the contrary, a number of authors have claimed that QUEST is not well suited to estimating the slope of Ψ and they have
hence modified its placement rule so as to allow the simultaneous estimation of threshold and slope (see King-Smith & Rose, 1997;
Kontsevich & Tyler, 1999; Snoeren & Puts, 1997). The reason that we are including QUEST in our study and not any of these alternative
methods is that QUEST has been extensively improved through simulation studies and that it has also been extensively used in empirical
research as a method both for estimating threshold and for fitting a psychometric function to the resultant data. On the other hand, the
alternative methods have not been assessed by simulation or developed beyond the small-scale studies in the original papers, and a cited-
reference search carried out on December 13, 2004 in the Science Citation Index only returned five papers in which some of these three
methods had been used in experimental psychophysics, compared to more than 150 papers that have used QUEST or its variants for
analogous purposes, including cases in which it was used to estimate Ψ.



FITTING THE PSYCHOMETRIC FUNCTION 259

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
–3

–2

–1

0
Lo

g 
st

im
ul

us
 le

ve
l

–3
–2

–1
0

0.
0

0.
5

1.
0

Lo
g 

st
im

ul
us

 le
ve

l(a) conventional MOCS; 5 levels
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l(b) single-presentation MOCS
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l(c) QUEST
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l(d) 1-3 UDTR staircase; ∆ = 0.25
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l(e) 3x UDWR staircase; ∆– = 0.25; ∆+ = 3∆– = 0.75
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l(f) 1-3 UDTWR staircase; ∆– = 0.25; ∆+ = 1.3526∆– = 0.338

Trial number Proportion correct

Figure 1. Sample tracks (left column) and results (right column) of the application of six of the sampling plans analyzed in this study.
These incidental results do not necessarily reflect the average performance of each plan, which is shown in Figure 4. All psychophysical
methods ran 100 trials of a putative 2AFC detection task, where the lower asymptote of Ψ is fixed at 0.5. Each circle in the track on
the left column indicates the level (ordinate) at which the trial (abscissa) was given and also indicates its outcome (open: wrong response;
solid: correct response). The actual Ψ of the simulated subject, shown as a dotted curve in the panels on the right column, was identical
in all cases: a logistic function with γ = 0.5, λ = 0.02, θ = –1.5, and σ = 1 (see Equations 1–3 in Section 3.1). The solid curve on the
right panels is the best-fitting logistic function with maximum likelihood estimates of its parameters (except γ, which is fixed here), in
each case using binned data represented on the right panels as solid circles. The three grayed panels on the right column mark alternative
sampling plans that give rise to lattices with identical spacing. (a) Conventional MOCS with 5 equidistant levels that cover the entire
support Ψ and are centered within that region. (b) Single-presentation MOCS covering the central two log units of the stimulus range. (c)
QUEST. (d) 1–3 UDTR staircase with steps up and down whose size is ∆ = 1/4. (e) 3� UDWR staircase with steps down of size ∆– = 1/4
too. (f) 1–3 UDTWR staircase (thus using ∆+ = 1.3526∆–) with ∆– = 1/4 too.
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(García-Pérez, 1998), UDTR staircases place trials over and
over at a small number of stimulus levels in a given lattice
and, then, the resultant data can be used to estimate Ψ.

The spacing between levels (what is called the step size
∆) as well as the relative location of the lattice (determined
by what is called the starting point) must be chosen un-
aidedly by the practitioner. Our study used a number of
variants for these characteristics (see Section 3.4). The
illustration in Figure 1d involves a 1–3 rule with ∆ = 0.25,
showing also other features that will be described in
Sections 3.4 and 3.6. Note that this step size yields the
same spacing between levels as was used with conventional
MOCS in Figure 1a.

With yes–no tasks we also used 1–1, 2–1, 3–1, and 4–1
rules. The reason for not using these with mAFC detection
tasks lies in the workings of UDTRs. In general, 1–d, 1–1, and
u–1 rules (with u, d > 1) respectively place trials around points
where the probability of success is above, at, and below 0.5.
Only 1–d rules are then useful when Ψ has a lower asymptote
at 0.5. Figure 16c will illustrate a 3–1 UDTR staircase.

2.5. Adaptive Staircase With Up–Down Weighted
Rules (UDWRS)

Also to allow up–down methods to estimate arbitrary
points on Ψ, Kaernbach (1991) proposed retaining the 1–1
rule but letting the size ∆+ of a step up be an integer multiple
of the size ∆– of a step down, yielding what he called
weighted rules. We will refer to these as k� UDWR staircases,
where k ≥ 2 is the integer just mentioned. The average of
reversals estimator is also errant under k� UDWR staircases
(García-Pérez, 1998), but UDWR staircases again provide an
alternative sampling plan that may be useful for estimating
Ψ. UDWR staircases with k = 2, 3, and 4 were implemented
for use with mAFC detection tasks. Figure 1e illustrates a
3� UDWR staircase with ∆– = 0.25 and, hence, ∆+ = 0.75.
Note that this step size yields again the same spacing as
was used with conventional MOCS in Figure 1a.

For use with yes–no tasks, we also considered 1–
k

� UDWR

staircases (with k = 2, 3, and 4), implying cases in which
∆– is an integer multiple of ∆+. The reason lies again in the
extended range of Ψ in yes–no tasks. Figure 16b will
illustrate a 1–

3
� UDWR staircase.

2.6. Adaptive Staircase With Up–Down Transformed
and Weighted Rules (UDTWRS)

García-Pérez (1998) showed that the average of reversals
estimator is dependable only when the ratio of ∆+ to ∆– has
a specific value that covaries with up–down rule. This leads

to transformed and weighted rules, but not in just any form.
Specifically, the ratio of ∆+ to ∆– should take the values
3.5149, 1.8222, 1.3526, and 1.1884 respectively for use with
the 1–1, 1–2, 1–3, and 1–4 rules in 2AFC detection tasks.
Because UDTWR staircases yield yet another type of sampling
plan, their capability to provide useful data for the estimation
of Ψ was evaluated here.

Our study with 2AFC detection tasks included 1–1, 1–2,
1–3, and 1–4 UDTWR staircases. Figure 1f illustrates the 1–3
case with ∆– = 0.25 and, hence, ∆+ = 0.338. UDTWR

staircases were not used with general mAFC detection tasks
because the ratios of ∆+ to ∆– mentioned in the previous
paragraph place trials around a stable point in the upper half
of the region of support of Ψ only when m = 2 and
unpublished results show that stability breaks down in 3AFC
or 4AFC. And they were not used with yes–no tasks because
results in García-Pérez (2001) show that no ratios exist that
place trials around a stable point in the lower half of the
region of support of Ψ.

3. Method

Our results are based on Monte Carlo simulations using
custom software. Ten thousand replicates were run per
condition, defined as a unique combination of form and
parameters for Ψ, overall number N of trials, and sampling
plan. The latter comprises a total of six variants of
conventional MOCS, one variant of single-presentation MOCS,
one of QUEST, 27 variants of UDTR staircases arising from
the factorial combination of three rules and nine step sizes
(63 variants in the case of yes–no tasks, because of the use
of four additional rules), 27 variants of UDWR staircases (54
for yes–no tasks), and 36 variants of UDTWR staircases (none
for yes–no tasks). Sections 3.1–3.5 describe all factors
included in the design except sampling plan, which was
described in Section 2. Sections 3.6–3.8 give details on
implementation and data analysis.

3.1. Psychometric Functions and Ranges for Their
Parameters

Using visual contrast detection tasks as a referent, and
without loss of generality, the domain of Ψ was defined to
be the negative real line as if the relevant physical variable
x were log contrast.2 Thus, the upper bound xu = 0 of the
domain of Ψ is unsurpassable. For methods that require a
lower bound (single-presentation MOCS and QUEST), a bound-
ed range was defined as the interval [xl, xu] = [–3, 0], which
is the range spanned by the vertical axis in Figure 1.

2 In general, x can be thought of as the variable representing the stimulus dimension that is relevant to the task, where x is measured
in whichever units are appropriate.
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The psychometric function Ψ is a four-parameter function
whose mathematical form could be logistic or Weibull in
our study. A logistic Ψ is given by

1 – λ – γΨ(x) = γ + ––––––––––––––––– , (1)
1 + exp[–b(x–T)]

whose parameters are described next (see also Figure 2).
Parameter γ sets a lower asymptote reflecting either a false
positive rate (in yes–no tasks) or a guessing rate (in mAFC
detection tasks). In the former case, γ is a free parameter
with values near zero; in the latter, γ is a fixed constant
supposed to be valued at 1/m. Parameter λ is always free
and represents the false negative or lapsing rate, its value
is also near zero, and it sets an upper asymptote at 1 – λ.
Parameter T determines the location of Ψ by labeling the
point satisfying Ψ(T) = (1 – λ + γ)/2, that is, the point at
which the probability of success is halfway between γ and
1 – λ. Finally, b is a slope parameter in that the slope of Ψ
at x = T equals b(1 – λ – γ)/4.

As discussed in García-Pérez (1998, 2001) and Alcalá-
Quintana and García-Pérez (2004a), a convenient repara-
meterization of Ψ replaces the slope parameter b with a
support parameter σ that describes the effective width of

Ψ, and also replaces the location parameter T with a
threshold parameter θ that labels the point satisfying Ψ(θ)
= π for arbitrary π � (γ, 1 – λ) instead of the midpoint of
the range (see Figure 2). This reparameterization uses the
transformations

1       π – γθ = T + – ln[––––––––––––––––], (2)
b 1 – λ – π

2   1 – λ – γ – δσ = – ln[––––––––––––––––––––––], (3)
b δ

where δ is an auxiliary parameter defined here as δ = (1 –
λ – γ)/100. With this δ, Equation 3 becomes σ = 9.19/b so
that σ is inversely related to b and represents the width of
the region over which Ψ spans the central 98% of its range,
whichever this range is as determined by the values of γ
and λ. Formally, given some δ satisfying 0 < δ < (1 – λ –
γ)/2, we define σ = Ψ–1(1 – λ – δ) – Ψ–1(γ + δ), that is, the
distance between the point at which Ψ evaluates to γ + δ
(slightly above the lower asymptote) and that at which Ψ
evaluates to 1 – λ – δ (slightly below the upper asymptote).
With reference to Figure 2, the region of support of Ψ is
the range of stimulus levels within the two vertical lines

–3 –2 –1 0

Log stimulus level

0.0

0.5

1.0

π

P
ro

ba
bi

lit
y 

co
rr

ec
t

 γ + δ

 1 − λ − δ

σ
with δ = 0.03

σ
with δ = (1 − λ − γ)/100

θ

 ±0.2
 ±0.05

Figure 2. Meaning of the parameters of a logistic Ψ. Parameter γ is here assumed to be a guessing rate fixed at 0.5 (as in a 2AFC detection
task). Parameter λ is set here at 0.02 so that the upper horizontal asymptote lies at 1 – λ = 0.98. Parameter T is not marked here. Under
our reparameterization, a probability π is chosen (π = 0.75 here) and parameter θ (θ = –1.5 here) is the point at which Ψ evaluates to π
(see the dashed line reflecting the horizontal location of θ onto the vertical location of π). Parameter b is devoid of meaning, but our
replacement parameter σ indicates the support of Ψ defined as the width of the horizontal region required for Ψ to span some central
percentage of its total range, that is, the width of the central region where Ψ shows non-asymptotic behavior. The particular percentage
chosen determines the value of an auxiliary parameter δ, which is added to the lower asymptote and subtracted from the upper asymptote
to draw the two solid horizontal lines across the graph. Each of these lines crosses Ψ at one point, and the horizontal distance between those
two points represents the support of Ψ (σ = 0.589 here). In this illustration we set δ = 0.03 (yielding the width of the central 87.5% of the
range of Ψ) so that the relevant lines and crossings are visible; our study used δ = (1 – λ – γ)/100, so that σ measures the central 98% of
the range of Ψ. Relative to this latter value for δ the curve plotted here has indeed σ = 1 and is thus the same as was used in Figure 1. For
later reference in Section 4, the two small horizontal segments near the bottom of the plot span ±0.2 and ±0.05 units around θ.



used to determine the support of Ψ and describes the region
where the probability of a correct response varies with
stimulus level. Above (alternatively, below) the region of
support, the probability of a correct response is independent
of stimulus level and is only determined by the false negative
(alternatively, false positive or guessing) rate.

A Weibull Ψ, on the other hand, is given by

Ψ(x) = 1 – λ – (1 – λ – γ)exp[–10β(x–T)], (4)

where all parameters have the same meaning but T now
satisfies Ψ(T) = (1 – λ) – (1 – λ – γ)/e and β (which re-
places b) makes the slope of Ψ at x = T equal to β(1 – λ –
γ)ln(10)/e. The alternative threshold and support parameters
in a Weibull Ψ are given by

1θ = T + – log [ln(1 – λ – γ) – ln(1 – λ – π)],        (5)
b

1          ln[δ/(1 – λ – γ)]σ = – log[–––––––––––––––––––––––], (6)
β ln[1 – δ/(1 – λ – γ)]

with π and δ as above, the latter reducing Equation 6 to σ
= 2.66/β. The factor 2.66 (compare to 9.19 for the logistic
Ψ above) guarantees that when Weibull and logistic functions
have the same support σ, the relevant range of stimulus
levels has identical width in both cases.

Throughout our study, πwas set at 0.5 when γ was a false
positive rate (i.e., in yes–no tasks) and it was set at (m +
1)/2m when γ was a guessing rate fixed at 1/m (i.e., in mAFC
detection tasks; we included 2AFC, 3AFC, and 4AFC). For
the 2AFC discrimination task in Section 6.1, where γ is
replaced with λ, we set π = 0.5. Besides this context-
dependent value for π and an invariant δ = (1 – λ – γ)/100,
the parameters of Ψ varied systematically across conditions.
Lapsing rates λ varied from 0 to 0.06, and γ also took on
values in that range when it was a free parameter. Threshold
θ ranged from –2.5 to –0.5 and σ ranged from 0.5 to 1.5; the
corresponding values for T, b, and β were then obtained from
θ and σ by reversing Equations 2, 3, 5, and 6.

3.2. Mathematical Form of the Fitted Function Ψ̆

In practice, experimenters choose to fit a function Ψ̆
without information as to whether its mathematical form
matches that of the actual Ψ. Two popular forms for Ψ̆ are
Weibull and logistic. The consequences of a mismatch be-
tween the forms of Ψ and Ψ̆ were evaluated by fitting both
logistic and Weibull Ψ̆ to data generated with either logistic
or Weibull Ψs.

3.3. Overall Number of Trials

Each sampling plan was evaluated for numbers N of trials
between 100 and 1000 in steps of 100. An exception had to

be made with conventional MOCS, where the number L of
levels we used (from 5 to 10; see Section 3.4) and the
requirement that all levels are tried the same number of times
cannot accommodate our values for N. We gave MOCS a slight
advantage and each of its variants ran for the number of trials
that fulfills MOCS requirements in the least possible excess of
the number of trials ran by its competitors. Thus, conventional
MOCS with L levels and N nominal trials ran instead for L(1
+ (N – 1) ÷ L) trials, where ÷ indicates integer division.

3.4. Spacing Between Stimulus Levels and
Positioning of the Lattice

In conventional MOCS, the spacing between levels is
determined by the number L of levels that cover the range
of exploration. We used L from 5 to 10 and spacing amounts
to σ/(L – 1) because we gave conventional MOCS the apparent
advantage that the range of exploration spanned the support
of Ψ. Thus, at least one level was included at which the
probability of success exceeds 0.95 (as recommended by
Wichmann & Hill, 2001b). The lattice was not always
centered as in the illustration in Figure 1a. Instead, in each
replicate it was jittered from this central position by an
amount that was determined by drawing a random number
with a uniform distribution on [–σ/2(L – 1), σ/2(L – 1)],
that is, plus and minus half the spacing between levels.

In single-presentation MOCS, spacing is also determined
by L (which equals N) and amounts to (xu – xl)/(L – 1),
where xu and xl are the upper and lower limits of the avail-
able stimulus range (see Section 3.1). Note that the available
stimulus range covers all three log units shown on the
ordinate of the panels in Figure 1 and not only the inner
two log units that Figure 1b suggested. The lattice was
centered within the available stimulus range regardless of
the location of Ψ.

QUEST uses its own rules to determine the placement of
each trial and, hence, there is no room here for choosing
spacing or positioning of the lattice.

Under UDTR staircases, steps up and down have the same
size ∆, which will be referred to as the base spacing. Under
UDTWR staircases and also under k� UDWR staircases, ∆– <
∆+, whereas under 1–

k
� UDWR staircases, ∆– > ∆+. In cases

where ∆– ≠ ∆+, the smaller was regarded as the base spacing
∆. In Figures 1d–1f, ∆ = σ/4 = 0.25, but ∆ in our study
varied between σ/10 and σ/2 for all integer values in the
denominator, thus yielding nine different variants along the
dimension of step size. In all adaptive staircases, positioning
of the lattice was set by choosing a random starting point
for each replicate, determined either by subtracting from
the upper limit xu or by adding to the lower limit xl a random
number drawn from a uniform distribution on [0, ∆]. The
upper starting point was used with 1–d UDTR staircases, k�

UDWR staircases, and all UDTWR staircases; the lower starting
point was used with u–1 UDTR staircases and 1–

k
� UDWR

staircases. Use of this initial jitter with an upper starting
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point can be noted in the left panels of Figures 1d–1f; lower
starting points will be illustrated in Figures 16b and 16c.

3.5. Parameter Estimation

Responses across the N trials in a given replicate were
binned by stimulus level (rounded to the nearest ten
thousandth) for the J distinct levels tried in that replicate
and the numbers cj and wj of correct and wrong (or yes and
no) responses as well as the proportion pj of correct (or yes)
responses at level xj were computed (the latter are plotted
as circles in the right column of Figure 1). These data were
used to obtain ordinary and weighted least squares (OLS and
WLS), maximum likelihood (ML), and Bayes quadratic (BQ)
estimates of the free parameters of Ψ̆. Our interest in study-
ing these alternative estimators lies in that they have all
been used in empirical practice, but also in that neither ML

nor LS methods are guaranteed to always yield an absolute
optimal solution (see Figure 3).

Weighted least squares estimates are obtained by minimizing

J
Σ a j (Ψ̆(x j) – p j)2, (7)

j=1

with respect to γ̂ (when not a fixed guessing rate), λ̂ , T̂, and
either b̂ (for logistic Ψ̆) or β̂ (for Weibull Ψ̆). Because the
errors are not distributed normally and the variances are not
the same at all stimulus levels j, the weights aj in Equation
7 must be set as aj = (cj + wj)/cjwj (Myers, 1990, pp.
317–320). Application of WLS must thus discard data for all
stimulus levels at which either cj or wj are zero, something
that occurs for all j under single-presentation MOCS (see the
right panel in Figure 1b), for most stimulus levels under
QUEST (see Figure 1c) and UDTWR staircases (see Figure 1f),
and for a non-trivial subset of stimulus levels under
conventional MOCS (see Figure 1a) and our remaining
adaptive staircases (see Figures 1d and 1e). As a result, WLS

either is inapplicable or discards a significant amount of
relevant data when used with our sampling plans. An
alternative is to apply OLS, where aj = 1 for all j in Equation
7. Although OLS is theoretically inappropriate for the reasons
stated above, there is still the issue of whether it can
reasonably recover the parameters of Ψ when WLS is either
inapplicable or its application must discard informative
data. We will thus use both WLS and OLS with all sampling
plans except single-presentation MOCS, where WLS is not
applicable.
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Figure 3. Maximum likelihood can provide a sensible solution when ordinary least squares cannot, and vice versa. The top row shows
a sample data set (solid circles) generated by the same Ψ (dotted curve) used in Figure 1: a logistic function with γ = 0.5, λ = 0.02, θ
= –1.5, and σ = 1, equivalent to T = –1.51 and b = 9.19 by Equations 2 and 3. The bottom row shows a second data set generated with
the same Ψ. Both data sets arose with 3� UDWR staircases with ∆– = σ/3. Solid curves in each panel represent best-fitting logistic func-
tions obtained via maximum likelihood (left column) or ordinary least squares (right column). Arrows mark points that will be referred
to in Section 8.2 below. Each method fails with one of the data sets and does well with the other. Note that this appears to be a fundamental
inappropriateness of each parameter estimation method for certain data sets, and does not reveal a failure of the algorithms themselves:
The log likelihood is –40.72 for the ML solution in the top left panel ( λ̂ = 0.000, T̂ = –1.318, b̂ = 45.95), which goes down to –41.16
for the OLS solution rendering the more appealing curve in the top right panel (λ̂ = 0.000, T̂ = –1.388, b̂ = 6.561); similarly, the mean
square error is 0.0333 for the OLS solution in the bottom right panel (λ̂ = 0.029, T̂ = –1.547, b̂ = 45.95), which goes up to 0.0339 with
the ML solution that rendered the better-looking curve in the bottom left panel (λ̂ = 0.028, T̂ = –1.496, b̂ = 7.516). Results for weighted
least squares (not shown) were similar.



Maximum likelihood estimates are obtained by minimizing

J
– Σ [cj log[Ψ̆(xj)] + wj log[1 – Ψ̆(xj)]] , (8)

j=1

and Bayes estimates under a quadratic loss function3 are
obtained by separately evaluating

J
∫ ξ̂ Π (Ψ̆(xj))

cj (1 – Ψ̆(xj))
wj dγ̂dλ̂ dT̂ db̂

Ω j=1––––––––––––––––––––––––––––––––––– (9)
J

∫ Π (Ψ̆(xj))
cj (1 – Ψ̆(xj))

wj dγ̂dλ̂ dT̂ db̂
Ω j=1

for each ξ̂ � {γ̂, λ̂ , T̂, b̂}, and where Ω is the parameter
space of dimensions γ̂ (if not a constant), λ̂ , T̂, and either
b̂ or β̂. In our study, Ω = [0, 0.06] � [0, 0.06] � [–3, 0] �

[sinf, ssup], where [sinf, ssup] = [1.84, 45.95] and [0.53, 13.3]
respectively for logistic and Weibull Ψ̆ so that in both cases
σ̂ � [0.2, 5].

Equations 7 and 8 were minimized with NAG
subroutine E04JYF (Numerical Algorithms Group, 1999),
and each parameter was constrained to remain within the
bounds of the corresponding dimension of Ω. This is
analogous to using uniform priors over the parameter space,
as Wichmann and Hill (2001a) did. Because of the
dependence of the final parameter estimates on their initial
values (Serrano-Pedraza & Sierra-Vázquez, 2003), we ran
the algorithm using a set of vectors of initial values and
accepted the solution that yielded the lowest mean square
error (under the WLS and OLS approaches) or the highest
likelihood (under the ML approach). When γ had to be
estimated, 24 initial vectors were used that resulted from
the Cartesian product {0.015, 0.045} � {0.015, 0.045} �

{–2, –1} � {6.13, 9.19, 18.38} (or {1.77, 2.66, 5.32})
where each set respectively describes alternative initial
values for γ̂, λ̂ , T̂ , and b̂ (or β̂ ). When γ was a fixed
constant, the first set was dropped and only 12 vectors of
initial values resulted.

Finally, for BQ estimates, the integrals in Equation 9
were solved numerically with NAG subroutine D01FCF

(Numerical Algorithms Group, 1999). The integrals were
solved in only three dimensions (i.e., excluding γ̂) when γ
was a fixed guessing rate.

Once these parameters had been estimated, σ̂ and θ̂ were
obtained from them through Equations 2, 3, 5, and 6, using
estimates in place of true parameter values.

3.6. Implementation Details

Conventional and single-presentation MOCS did not require
implementation decisions. QUEST was set up using the optimal
configuration established by Alcalá-Quintana and García-Pérez
(2002, 2004a), which uses a uniform prior on [–4, 1] (because
[xl, xu] = [–3, 0] here) and the prior mean as placement rule.
The extended range was used only in computations, and requests
to place trials at levels outside the available range were replaced
by the corresponding boundary (see trials 6 and 7 in Figure 1c).
QUEST was implemented by tabulating the model function and
the prior distribution with a resolution of 1000 samples per unit,
and it was set up to target the point at which the probability of
success is 0.5 (in yes–no or 2AFC discrimination tasks) or (m
+ 1)/2m (in mAFC detection tasks). A step by step description
of the application of QUEST can be found in Alcalá-Quintana
and García-Pérez (2004a, their Figure 1).

All staircases started off with the 1–1 rule either until
the first wrong (or no) response (for upper starting points;
see Figures 1d–1f) or until the first correct (or yes) response
(for lower starting points; see Figures 16b and 16c). These
preliminary trials under the 1–1 rule helped to approach the
relevant region without wasting many trials. Contrary to
Leek et al. (1992), we admit that these trials are part of the
procedure. The stimulus range was unbounded low and trials
could be placed anywhere on the negative line (as was re-
quired on trial 37 by the staircase in Figure 1e). Requests
to place trials above the hard upper bound resulted in the
stimulus being presented with the boundary level instead.
Yet, trials after off-limits requests are placed relative to the
required level and not to the boundary level, so that the
staircase stays on the same lattice when it bounces off the
upper bound (see trials 72 to 73 and 76 to 77 in Figure 1e).

3.7. Simulation Approach and Random Number
Generation

To simulate a trial, the stimulus level set by the psycho-
physical method under consideration was inserted into Ψ
to obtain the probability of success. The outcome was then
simulated by drawing a Bernoulli variate via NAG
subroutine G05DZF (Numerical Algorithms Group, 1999).

Our simulations make the typical assumption that the
probability of success on a trial in which the stimulus level
is xi is determined only by Ψ(xi). In other words, we assume
that all trials are statistically independent and that there are
no sequential effects along the session.
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3 Use of a quadratic loss function in Bayesian estimation results in estimates valued at the mean of the final posterior distribution
(i.e., the posterior distribution at the end of the procedure; see Alcalá-Quintana & García-Pérez, 2004a). In the one-parameter case, this
yields what King-Smith et al. (1994, p. 890) called “mean-QUEST.” King-Smith et al. (1994) also discussed the two-parameter case in
their Appendix, where the estimates of each of the two parameters are given by their Equations 38 and 39. Our Equation 9 is a straight-
forward generalization to the case of four parameters. To save space, our equation is written in compact form (i.e., not broken up into
four separate expressions).



3.8. Data Analysis

The optimal sampling plan is that which provides the
best parameter estimates, that is, those with the narrowest
symmetrical distribution around the true value. Thus, the
empirical distributions of the 10,000 estimates of each
parameter under each condition were plotted and mean,
standard deviation, and skewness were computed. For
clarifications and comments, Figure 4 shows histograms of
ML estimates from N = 100 and 1000 for each of the six
sampling plans in Figure 1. The actual, logistic Ψ was as
shown in Figure 1; the fitted Ψ̆ was also logistic.

Note in Figure 4a (for N = 100) that the distributions of
estimates of λ have large spikes at either end of the
horizontal axis and that the distributions of estimates of b
also have a spike at the upper end which, by the inverse
relation of b to σ, makes the distributions for σ display the
spike at the lower end. (When N = 1000, these spikes are
small with all methods except QUEST; see Figure 4b.) In the
case of λ, whose true value was 0.02, the spike at λ̂ = 0
merely reflects data failing to show evidence of lapses.
Conversely, the spike at λ̂ = 0.06 (the arbitrary upper bound
for λ̂ in our parameter space) reflects that the optimization
algorithm sought to explore beyond the upper bound. In
these cases, an estimate λ̂ = 0.06 only reflects our own
arbitrary decision as to where to place an upper bound and,
hence, these values should not enter a statistical description
of λ̂ . In line with Leek et al. (1992), we present statistics
only for the subset of replicates for which the parameter
of concern could actually be estimated. This is why the
sample size n given in each panel varies along each row
of Figures 4a or 4b, although histograms were drawn using
all 10,000 estimates. A new criterion for the comparison
of sampling plans should thus be considered, namely, the
percentage of times that they produce usable data for the
estimation of all parameters (the raw number nall is given
in the leftmost panel in each row), which we will refer to
as the usability index. The relevance of this usability index
will be best appreciated when we discuss the case of b
next.

The spike at the upper end of the distributions of b̂
contains a mixture of authentic estimates that lie beyond
the range of the plot (but are represented there for
convenience) and of improper estimates at the upper bound
(b̂ = 45.95; see Section 3.5). Improper estimates would have
taken whichever value we could have set as an upper bound.
The solid curves in the top left and bottom right panels of
Figure 3 have this boundary value for b̂ , and it is easy to
understand this event as a failure to estimate b. These
improper estimates were excluded from computations. The
reason that the spike at the lower end of the distributions
of σ̂ is generally smaller lies in that all authentic estimates
included in the spike in the distribution of b̂ are represented
elsewhere and only improper estimates are treated for display
purposes as if σ̂ = 0.

4. Results: I. 2AFC Detection Tasks

This section reports results when γ is a guessing rate
fixed at 0.5; results for different values (or status) of the
lower asymptote of Ψ will be reported in Sections 5 and 6.
For simplicity, here we will only present results for the case
of logistic Ψ with λ = 0.02, θ = –1.5, and σ = 1 (b = 9.19),
logistic Ψ̆, and ML estimates. This case was chosen because
the results for other cases (to be summarized in Section 6)
are easily described with reference to it.

Before we document the merits of the various sampling
plans, several differential characteristics of the distributions
of estimates across target parameters and sample sizes are
worth commenting on, besides the unsurprising result that
quality improves as N increases. Parameter λ is rarely well
estimated with 100 trials (first column in Figure 4a); with
1000 trials (first column in Figure 4b), it is still slightly
underestimated and its estimates are too broadly distributed.
Nevertheless, except for the ubiquitous spike at λ̂ = 0 and
the case of QUEST (third row in Figure 4b), the distribution
of λ̂ is approximately symmetric with N = 1000 (it was
symmetric for N > 600).

Parameter θ (second column in Figures 4a and 4b) is
estimated comparatively much better, never being improper
and yielding narrow distributions centered on the true θ:
Most methods place the estimate within 0.2 units of its true
location when N = 100 and within 0.05 units when N =
1000. (A look at Figure 2 may be useful again, for it shows
the actual Ψ used here along with small horizontal segments
near the base of the plot that span the ranges just mentioned.)
At the same time, the distributions of θ̂ only show mild
traces of negative skewness when N = 100.

Parameter b (third column in Figures 4a and 4b) often
fails to be estimated when N = 100, and the distribution of
proper estimates is severely positively skewed. The
indeterminacy of b is almost absent when N = 1000, but the
distribution of estimates remains positively skewed and its
mean lies above the true value of b. Interestingly, converting
the estimate of b into an estimate of σ (simply as σ̂ = 9.19/
b̂ ; see Equation 3) renders the distributions shown in the
fourth column of Figures 4a and 4b, which are remarkably
symmetric and centered on the true value of σ when N is
sufficiently large (N ≥ 400 suffices except, again, with
QUEST). In other words, b is overestimated even when N =
1000 and the corrupting effect of improper estimates has
been removed. Conversely, the distribution of σ̂ is symmetric
for all methods except the rowdy QUEST, and shows no
evidence of bias. Although with small N the distributions
of σ̂ are skewed (see Figure 4a), this is more a consequence
of N being too small than an underlying property of σ itself.
Indeed, with small N the distributions of θ̂ are also skewed
(see Figure 4a). Because σ is so much easier to interpret
than b and its estimates also have much better properties,
we will discontinue reporting results for b̂. This is equivalent
to redefining Equation 1 as
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(a) N = 100 trials
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Figure 4. Sample histograms of ML estimates of λ (first column), θ (second column), b (third column), and σ (fourth column) from runs
of 100 trials (a) and 1000 trials (b) in a 2AFC detection task. Each row pertains to one of the six sampling plans for which results from
an individual run were shown in Figure 1 (see the labels inside the top left corner in the leftmost panel in each row). The generating Ψ
is also the same as was used there, and the fitted Ψ̆ was logistic too. To facilitate visual comparisons within each part, the horizontal
and vertical ranges and scales are identical for all panels in each column, although the ranges vary from (a) to (b). The inset list down
the top right corner of each panel gives the mean M, standard deviation SD, skewness SK, and sample size n (excluding improper
estimates) of each distribution. The value of nall in the leftmost panel in each row indicates the overall number of runs (out of 10,000)
that yielded data allowing the estimation of all parameters.
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(b) N = 1000 trials
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Figure 4 (continued). Sample histograms of ML estimates of λ (first column), θ (second column), b (third column), and σ (fourth column)
from runs of 100 trials (a) and 1000 trials (b) in a 2AFC detection task. Each row pertains to one of the six sampling plans for which
results from an individual run were shown in Figure 1 (see the labels inside the top left corner in the leftmost panel in each row). The
generating Ψ is also the same as was used there, and the fitted Ψ̆ was logistic too. To facilitate visual comparisons within each part, the
horizontal and vertical ranges and scales are identical for all panels in each column, although the ranges vary from (a) to (b). The inset
list down the top right corner of each panel gives the mean M, standard deviation SD, skewness SK, and sample size n (excluding
improper estimates) of each distribution. The value of nall in the leftmost panel in each row indicates the overall number of runs (out of
10,000) that yielded data allowing the estimation of all parameters.



1 – λ – γΨ(x) = γ + –––––––––––––––––––––– , (10)
1 + exp[–9.19(x–T)/σ]

An analogous replacement of β with 2.66/σ applies to
the Weibull Ψ in Equation 4. We checked that direct
estimates of σ from Equation 10 are identical to those
obtained indirectly by estimating b in Equation 1 and then
transforming it into an estimate of σ with Equation 3.

4.1. Usability Indices

A sampling plan must offer some guarantee that the data
will yield proper estimates. Figure 5 shows how nall
(expressed as a percent) varies with N for each of our 98
plans. Some plans move towards 100% usability (albeit at
different speeds) as N increases whereas other plans have

a ceiling usability of 90–95%. QUEST has the lowest usability
index (see its trace in the top left panel of Figure 5),
implying that even if 1000 trials are given the probability
is only 0.7881 that the data will yield proper estimates of
all the parameters of Ψ.

Conventional MOCS in any of its variants and single-
presentation MOCS (top left panel in Figure 5) require at least
500 trials to yield 95% usability, and their indices go hand in
hand beyond 700 trials although none of these plans hits 100%
with 1000 trials. At the other extreme, UDTWR staircases (right
column in Figure 5) yield 95% usability with only 300 trials
and reach almost 100% usability with 600 trials provided that
σ/8 ≤ ∆ ≤ σ/3. Between UDTR staircases (left column of Figure
5, excluding the top panel) and UDWR staircases (center column
of Figure 5), the latter appear preferable in the 4� version,
yielding 100% usability with 700 trials when ∆ ≥ σ/5.
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Figure 5. Percentage of runs yielding data that rendered proper ML estimates of all the parameters of Ψ, as a function of the number N
of trials in 2AFC detection tasks. Generating Ψ and fitted Ψ̆ were as in Figure 4. Each panel shows results for a subset of the sampling
plans (see insets).



Since different sampling plans may be better suited to
estimating different parameters, a look at usability indices for
each parameter may be useful for identifying features that allow
a plan to yield (or prevent it from yielding) proper estimates
of a parameter. Figure 6 shows separate usability indices for
the estimation of λ and σ (θ could be estimated 100% of the
times in all conditions) as a function of N for QUEST, single-
presentation MOCS, and all variants of conventional MOCS (first
panel in Figures 6a and 6b) as well as for the best variants of
UDTR, UDWR, and UDTWR staircases in terms of overall usability
(second to fourth panels in Figures 6a and 6b).

It is clear that the low overall usability of QUEST is a
result of its remarkable inability to produce proper estimates
of λ being independent from its mild inability to produce
proper estimates of σ. Because QUEST has low usability and
only produces good estimates of θ, we will discontinue
reporting results for it. In single-presentation MOCS, low over-
all usability is mostly determined by an inability to provide
proper estimates of σ. In conventional MOCS, usability for λ
and σ also seem independent from one another, thus
explaining the lower overall index of usability; and there are
little differences among variants of conventional MOCS in
these respects. The case of staircases is more interesting
because base spacings of different sizes serve competing
goals. Large steps (darker circles) prevent obtaining proper
estimates of σ but they allow obtaining proper estimates of
λ, and the opposite holds for small steps (lighter circles).

The ceiling effect observed in most of the panels of Figure
5 for UDTR staircases with small step sizes (light circles) is
mostly a consequence of the inappropriateness of small steps
for gathering data that will allow proper estimation of λ.
Interestingly, UDTWR staircases (fourth panels in Figures 6a
and 6b) are affected least by this trade-off, and σ and λ can
both be estimated more than 95% of the times with 600 trials
regardless of step size. The relative independence of usability
on step size under UDTWR staircases was apparent also in the
rightmost column of Figure 5.

4.2. Statistical Properties of Estimates From
Conventional and Single-Presentation MOCS

The distributions of estimates from conventional MOCS

did not vary with the number of levels (results not shown).
Thus, when N is fixed (i.e., when more stimulus levels implies
fewer trials per level), the number of levels in MOCS does not
affect the quality of the estimates. Yet, increasing the number
of levels appears to improve usability slightly (see the traces
for MOCS in the top left panel of Figure 5). It thus looks as
if under conventional MOCS it is only the overall number of
trials (regardless of the number of levels) within the region
of support of Ψ that matters. This fact is best noted in Figure
7, which shows means and standard deviations of λ̂ , θ̂, and
σ̂ as a function of N for the six variants of conventional
MOCS and for single-presentation MOCS.
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Figure 6. Percentage of runs yielding data that rendered proper ML estimates of λ (a) and σ (b) as a function of the number N of trials
in 2AFC detection tasks. Generating Ψ and fitted Ψ̆ were as in Figure 4. Each panel shows results for a subset of the sampling plans
(see inset labels). Results for adaptive staircases implementing other rules were analogous.



Considering means and standard deviations simultaneously,
conventional MOCS is poor at estimating λ perhaps because
stimulus levels are confined within the region of support of
Ψ. Failing to test above this region precludes obtaining
evidence of lapses and, thus, many replicates produced λ̂ =
0. Conversely, under single-presentation MOCS, the slightly
lower underestimation of λ and the lower variability of its
estimates arise from the absence of large numbers of zero
estimates. But estimates of θ and σ are poorer under single-
presentation MOCS: Their standard deviation is at least 50%
larger than standard deviations from conventional MOCS

involving the same N. And there are virtually no differences
among variants of conventional MOCS as regards the
properties of λ̂ , θ̂, and σ̂ under the ideal placement of levels
that we have used (for the effect of variations in the
placement of levels, see Wichmann and Hill, 2001a).

4.3. Statistical Properties of Estimates From
Adaptive Staircases

Distributions of estimates for our 27 variants of UDTR, 27
of UDWR, and 36 of UDTWR staircases were similar to those
displayed in the bottom three rows of Figures 4a and 4b. Figure
8 summarizes the results in the same format as Figure 7 but
only for the best rules in terms of properties of the estimates
(1–3 UDTR, 3� UDWR, and 1–3 UDTWR staircases; and note
from Figure 5 that these variants have usability indices that
are respectively similar to those of 1–4 UDTR, 4� UDWR, and
1–4 UDTWR staircases). In general, the properties of all estimates
deteriorated slightly as d (in 1–d UDTR and 1–d UDTWR

staircases) or k (in k� UDWR staircases) moved away from 3.
Paralleling the implications of step size on usability

indices, with all types of adaptive staircase small step sizes
(lighter circles) yield poor estimates of λ with large

variability (left column in Figure 8) and good estimates of
θ and σ with small variability (center and right columns in
Figure 8). Large step sizes (darker circles in Figure 8) yield
the opposite outcomes.

Piecing it all together, small steps yield 100% usability
for θ and σ, their estimates are accurate and have small
variability, but the resultant data do not always allow
estimating λ and, when they do, those estimates are poor
and have large variability. Usability and the quality of
estimates of θ and σ deteriorate with large step sizes, with
which usability and the quality of estimates of λ improve.
UDTWR staircases outperform the other types at balancing
this trade-off.

4.4. Discussion

The optimal sampling plan would yield for all parameters
the best possible picture of lack of bias and small variability
for a given N. From the results presented thus far, none of
the plans we analyzed performs optimally with all parameters.
QUEST and single-presentation MOCS appear to trade off
precision and accuracy too heavily in favor of one of the
parameters. Conventional MOCS fails to estimate λ, and users
will always have to decide where to place the stimuli thus
being exposed to the consequences of an unfortunate decision.
Finally, adaptive staircases always provide good estimates
of θ and it looks like they can provide good estimates of
either λ (when using large steps) or σ (when using small
steps) but not both. An improved design that achieves both
goals will be presented in Section 7.1.

In our study, spacing in conventional MOCS with L levels
was σ/(L – 1) whereas spacing in UDTR and UDWR staircases
varied between σ/10 and σ/2. Then, for each 5 ≤ L ≤ 10 in
MOCS there is one set of UDTR and one of UDWR staircases
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Figure 7. Mean (top) and standard deviation (bottom) of ML estimates of λ (left column), θ (center column), and σ (right column) arising
from single-presentation MOCS (open squares in each panel) and six variants of conventional MOCS (circles in each panel) as a function
of the overall number N of trials in 2AFC detection tasks. Generating Ψ and fitted Ψ̆ were as in Figure 4.
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Figure 8. Similar to Figure 7, but for 1–3 UDTR staircases (upper part), 3� UDWR staircases (center part), and 1–3 UDTWR staircases (lower part).



that used the same spacing. It is worth looking at how adap-
tive placement compares with a fixed placement of levels
within the region of support of Ψ with the same spacing.
On this issue, McKee, Klein, and Teller (1985, p. 296,
original italics) claimed that, with probit analysis, “the
variability of [threshold] estimates derived from staircase
data can never be less than the variability of estimates
derived from the method of constant stimuli selected for the
optimal deployment of trials.”

Figure 9 plots all the relevant data in a format that
facilitates this comparison, and it can easily be noted that
the statement of McKee et al. (1985) does not hold for ML

estimation: The variability of ML estimates of θ from UDTR

staircases is always smaller than that arising from comparable
MOCS (center panel in the top row of Figure 9), as is the
variability from UDWR staircases using fine spacing (lighter

symbols in the center panel in the center row). UDTR

staircases yield estimates of λ and σ that have about the
same variability as those arising from MOCS (left and right
panels in the top row of Figure 9), whereas UDWR staircases
yield estimates of λ with generally smaller variability and
estimates of σ with larger variability than those arising from
MOCS (left and right panels in the center row of Figure 9).
And there is also the issue that setting up MOCS for “the
optimal deployment of trials” is impossible in empirical
practice without incurring extra costs. Note also in the
bottom row of Figure 9 that UDTWR staircases, which used
the same base spacings but rendered a different sampling
lattice (see Figure 1f), yield estimates whose variability is
related to that of MOCS estimates according to a pattern that
is very similar to that shown in the top row of Figure 9 for
UDTR staircases.
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Figure 9. Relationship between the variability of the estimates of λ (left colunn), θ (center column), and σ (right column) obtained with
conventional MOCS (abscissa in each panel) and UDTR staircases (ordinate in the top row), UDWR staircases (ordinate in the center row)
or UDTWR staircases (ordinate in the bottom row) in 2AFC detection tasks. For reference, the dashed diagonal is the identity line. Gray
shading signals spacing between levels and symbol type signals up–down rule (see the inset legend in the leftmost panel in each row);
strings of identical symbols with the same shading are connected by thin lines and represent different numbers N of trials (unmarked).
Results for 1–1 UDTWR staircases are omitted to avoid excessive clutter but the data points were slightly below, above, and above the
diagonal respectively in the left, center, and right panels in the bottom row.
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5. Results: II. Yes–No Tasks

Sections 5.1–5.3 next describe results for all 125 plans
included in our study with yes–no tasks, where γ becomes
a free parameter. The first eight sampling plans (six variants
of conventional MOCS, one of single-presentation MOCS, and
one of QUEST) are analogous to those used with 2AFC
detection tasks. The remaining plans comprise 63 variants
of UDTR staircases (1–1, 1–2, 1–3, 1–4, 2–1, 3–1, and 4–1
rules each with nine base spacings) and 54 variants of UDWR

staircases (2�, 3�, 4�, 1–
2

�, 1–
3

�, and 1–
4

� rules each with
nine base spacings). Again for simplicity, we will only report
results for logistic Ψ with γ = 0.02, λ = 0.02, θ = –1.5, and
σ = 1, logistic Ψ̆, and ML estimates. Other results will be
summarized in Section 6.

5.1. Usability Indices

Usability (Figure 10a) was lower than for 2AFC detection
tasks, undoubtedly because the need to estimate γ provides
another independent chance to fail to estimate one parameter.
This outcome reveals a failure at placing trials where it is
needed to estimate all parameters. The only exception is
single-presentation MOCS, which indeed places trials below,
within, and above the region of support of Ψ,4 yielding 100%
usability in only 600 trials. We will not report any further
results for QUEST because it hardly ever hit 60% usability
and always yielded poor estimates of γ, λ, and σ. Finally,
all staircases fare worse than conventional MOCS (compare
the strings of circles in the top panel of Figure 10a with the
strings in the remaining panels down the column). An
interesting difference with respect to usability indices in
2AFC detection tasks is that increasing the number of levels
in conventional MOCS in yes–no tasks reduces usability.

The problem with adaptive staircases seems to lie in that
proper estimates of λ and γ cannot be obtained
simultaneously (see Figures 10b and 10c) since each requires
trials placed either above or below the region of support of
Ψ. In contrast, conventional and single-presentation MOCS

do not seem to face any more problems estimating γ than
λ (see the top panels in Figures 10b and 10c). Yet, different
broad types of either UDTR or UDWR staircases seem well
suited to estimating each of these two parameters. In
particular, 1–d UDTR and k� UDWR staircases (see examples
in the third and fifth rows in Figure 10) provide proper
estimates of λ because they use an upper starting point and
they tend to place trials above the midpoint of the region
of support of Ψ. Their drawback is that they do not sample
sufficiently below this region, which would be required to
obtain proper estimates of γ. Conversely, u–1 UDTR and 1–

k
�

UDWR staircases (see examples in the fourth and bottom

rows in Figure 10), which use a lower starting point and tend
to place trials below the midpoint of the region of support
of Ψ, provide proper estimates of γ but fail to sample the
region that would allow obtaining proper estimates of λ.

Thus, 1–d and u–1 UDTR staircases merely differ in that
their patterns of usability for γ and λ are interchanged, but
they both yield the same patterns for σ and overall (com-
pare the third and fourth rows in Figure 10); k� and 1–

k
�

UDWR staircases differ in the same respects (compare the
bottom two rows in Figure 10). And note that UDWR stair-
cases slightly outperform UDTR staircases, yielding higher
usability with any given N and ∆. Finally, 1–1 UDTR

staircases with large steps are only slightly less efficacious
than conventional MOCS in any variant (compare the darker
circles in the second row in Figure 10 with the traces for
conventional MOCS in the top row). The slightly higher
usability of 1–1 UDTR staircases for λ than for γ (compare the
second panels in Figures 10b and 10c) arises because these
staircases used an upper starting point and, then, placed a few
more trials above than below the region of support of Ψ.

5.2. Statistical Properties of Estimates From
Conventional and Single-Presentation MOCS

Figure 11 shows histograms of estimates of γ, λ, θ, and
σ (left to right) with 1000 trials from 5-level conventional
MOCS (first row), 10-level conventional MOCS (second row),
and single-presentation MOCS (third row). Single-presentation
MOCS outperforms conventional MOCS at estimating γ and λ,
but estimates of θ and σ are slightly poorer in that their
standard deviation is larger. There appears to be no difference
between the distributions arising from 5-level and 10-level
conventional MOCS, nor did any of these differ from those
obtained with intermediate numbers of levels. When N =
100 (results not shown), γ and λ were not estimated well
with any method, but θ and σ were well estimated except
by single-presentation MOCS.

Figure 12 plots means and standard deviations of the
estimates of γ, λ, θ, and σ (left to right) for all variants of
conventional MOCS and for single-presentation MOCS, as a func-
tion of N. Similarly to results shown in Figure 7 for 2AFC
detection tasks, estimates of λ (and here also γ) from single-
presentation MOCS are slightly more accurate and have smaller
variability than those obtained from conventional MOCS; however,
estimates of θ and σ from single-presentation MOCS have larger
variability than those arising from conventional MOCS. Note also
by comparison with Figure 7 that the standard deviations of θ̂
and σ̂ are generally much smaller here, something that has
already been reported for θ̂ (McKee et al., 1985). And note
again that the number of levels in conventional MOCS does
not seem to make any difference when N is fixed.
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for a broader picture.
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Figure 10. Overall usability indices (a) and usability for γ (b), λ (c), and σ (d) as a function of number N of trials in yes–no tasks for
conventional MOCS, single-presentation MOCS, and QUEST (first row), 1–1 UDTR staircases (second row), 1–4 UDTR staircases (third row),
4–1 UDTR staircases (fourth row), 4� UDWR staircases (fifth row), and 1–

4
� UDWR staircases (sixth row). The generating Ψ was logistic

with γ = 0.02, λ = 0.02, θ = –1.5, and σ = 1 (b = 9.19), the fitted Ψ̆ was logistic too, and usability refers to ML estimation.
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Figure 11. Distributions of ML estimates of γ (first column), λ (second column), θ (third column), and σ (fourth column) from runs of
N = 1000 trials arising from 5-level conventional MOCS (top row), 10-level conventional MOCS (center row), and single-presentation MOCS

(bottom row) in yes–no tasks. Generating Ψ and fitted Ψ̆ were as in Figure 10. The inset list down the top right corner in each panel
gives the mean M, standard deviation SD, skewness SK, and sample size n (excluding improper estimates) of each distribution. The
value of nall in the leftmost panel in each row indicates the overall number of runs (out of 10,000) that yielded data allowing the estimation
of all parameters.
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Figure 12. Mean (top row) and standard deviation (bottom row) of ML estimates of γ (first column), λ (second column), θ (third column),
and σ (fourth column) arising from single-presentation MOCS (open squares in each panel) and six variants of conventional MOCS (circles
in each panel) as a function of the overall number N of trials in yes–no tasks. Generating Ψ and fitted Ψ̆ were as in Figure 10.



5.3. Statistical Properties of Estimates from
Adaptive Staircases

Histograms of estimates from adaptive staircases had
the same aspect as those in Figure 11, and their presentation
is omitted. Figure 13 shows means and standard deviations
of estimates of γ, λ, θ, and σ (left to right) as a function of
N for 1–1 (upper part), 1–4 (center part), and 4–1 (lower
part) UDTR staircases; Figure 14 does the same for 4� (upper
part) and 1–

4
� (lower part) UDWR staircases. Differences

between 1–4 and 4–1 UDTR staircases (center and lower parts
in Figure 13) and between 4� and 1–

4
� UDWR staircases

(Figure 14) again lie only in that their patterns of results
for γ and λ are interchanged and that misestimation of θ
has opposite sign. In general, UDWR staircases do better
overall than comparable UDTR staircases. Finally, 1–1 UDTR

staircases (upper part in Figure 13) seem superior in that θ
and σ are estimated still better and the properties of γ̂ and
λ̂ are not as imbalanced as they are with other UDTR

staircases or with UDWR staircases. A comparison with Figure
8 (for analogous results in 2AFC detection tasks) also reveals
that the standard deviations of θ̂ and σ̂ are much smaller
here (see also Kershaw, 1985).

5.4. Discussion

Again, no single sampling plan outperforms the rest in
providing better estimates of all four parameters of interest
in yes–no tasks. The ideal plan would have the usability
indices of single-presentation MOCS (top panel in Figure
10a), but the estimates of γ and λ should have the properties
attained with UDWR staircases using large steps (darker circles
in the first column in the lower part and in the second
column in the upper part of Figure 14), the estimates of θ
should have the properties attained with conventional MOCS

or 1–1 UDTR staircases (third column in Figure 12 and in
the upper part of Figure 13), and the estimates of σ should
have the properties attained with 4� UDWR staircases (fourth
column in the upper part of Figure 14). A sampling plan
that brings together most of these properties will be presented
in Section 7.2.

With respect to the variability of estimates from adap-
tive methods as compared to that from conventional MOCS,
in the case of yes–no tasks the comparison yields different
results (not shown) for different up–down rules. Only
1–1, 1–2, and 2–1 UDTR staircases render smaller
variability for θ̂ than comparable conventional MOCS, but
1–3, 1–4, 3–1, and 4–1 UDTR staircases render larger
variability. And only 2� and 1–

2
� UDWR staircases render

smaller variability for θ̂ than MOCS, whereas 3� and 1–
3

�

UDWR staircases yield about the same variability as MOCS

and 4� and 1–
4

� UDWR staircases render more variability. The
variability of σ̂ is larger (and that of γ̂ and λ̂ smaller) from
adaptive staircases.

6. Results: III. Miscellanea

The results presented in Sections 4 and 5 covered only a
small subset of all the conditions described in Sections 3.1–3.5.
Results in the rest of the conditions are described next.

6.1. Other Constraints on γ and λ: 2AFC
Discrimination Tasks

In 2AFC discrimination tasks, each interval shows a
detectable stimulus and the subject must respond which one
has, say, higher contrast, guessing at random when uncertain.
One of the stimuli is a standard of fixed contrast (say, S),
whereas the other is a comparison whose contrast x varies
across trials and may be below or above S. Then, Ψ describes
the probability that a comparison at x is picked as the stimulus
with the higher contrast. Despite the 2AFC format, Ψ ranges
from near zero (because the comparison will rarely be
perceived as having higher contrast than the standard when x
is sufficiently below S) to near one (for an analogous reason).
The point θ at which the probability of picking the comparison
is 0.5 is called point of subjective equality. Moreover, γ is
absent and its place in the functional expression of Ψ is taken
by λ because lapses may occur with the same probability when
x is either well above or well below S. Hence, in 2AFC
discrimination tasks Ψ has a range similar to that in yes–no
tasks, with the important difference that the lower and upper
asymptotes are equidistant from 0 and 1, respectively. Two
further consequences are that there are only three parameters
to estimate and that Ψ must be odd symmetric about its
inflection point (i.e., Ψ cannot be a Weibull function).

Simulations involving all the sampling plans in Section
5 (for yes–no tasks) and differing only in that the logistic
Ψ was appropriately modified (so that γ is replaced with λ)
rendered results that only differed noticeably in that λ could
be estimated more often (which boosted usability indices)
and better, undoubtedly because trials placed above or below
the region of support of Ψ contribute jointly to the estimation
of λ. As for the remaining parameters, the characteristics of
the estimates of θ and σ were generally analogous to those
reported in Figures 12–14, except that the estimates of σ
were slightly better here with all variants of conventional
MOCS and the estimates of θ and σ were also slightly bet-
ter here with k� and 1–

k
� UDWR staircases.

6.2. 3AFC and 4AFC Detection Tasks

In 3AFC and 4AFC detection tasks, the chance level γ
gets closer to its values in yes–no tasks (although γ is still
a constant here). Simulations involving all the sampling
plans in Section 4 (except UDTWR staircases), and differing
only in that γ = 1/m and π = (m + 1)/2m with m = 3 or 4
(see Section 3.1), rendered analogous results but with the
differences described next.
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Figure 13. Similar to Figure 12, but for 1–1 UDTR staircases (upper part), 1–4 UDTR staircases (center part), and 4–1 UDTR staircases (lower part).



Usability increased slightly with all plans as m increased.
The overall usability of single-presentation MOCS, which lay
below that of conventional MOCS in 2AFC detection tasks
(top left panel in Figure 5), turned out to be about the same
as that of conventional MOCS in 3AFC detection tasks, and
slightly surpassed that of conventional MOCS in 4AFC
detection tasks. This result reflects a tendency towards higher
usability of single-presentation MOCS compared to
conventional MOCS as γ approaches zero, the most extreme
case of which can be observed in the top panel of Figure
10a for yes–no tasks with γ = 0.02. In addition, the
variability of the estimates of all parameters decreased for
all sampling plans as m increased, again reflecting a
progression from the picture of variability shown in Figures
7 and 8 (where γ = 0.5) towards that shown in Figures 12–14
(where γ = 0.02) as γ approaches zero. These progressions
are simply caused by the fact that γ gets closer to zero,
whether or not γ itself is a free parameter.

6.3. Other Values for the Parameters of Ψ

Very few of the plans showed any traces of rendering
different results when the true values of γ (only in yes–no
tasks), λ, θ, or σ changed within the ranges expressed in
Section 3.1. Exceptions for the better occurred when λ =
0 (and also when γ = 0, where applicable), because this
precluded lapses (or false positives) and, thus, improper
estimates of λ (and γ where applicable). Exceptions for
the worse occurred when the values of θ and σ were such
that the region of support of Ψ was not entirely contained
within the available range of stimulus levels. The
deterioration in these cases is as naturally expected as it
is uninteresting, for it only reveals that the estimation
problem is ill posed. The differences under other circum-
stances, if any, with respect to the results presented in
Sections 4 and 5 are summarized next, one sampling plan
at a time.
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Figure 14. Similar to Figure 12, but for 4� UDWR staircases (upper part) and 1–
4

� UDWR staircases (lower part).



Because the range and spacing of levels in our
implementation of conventional MOCS depends on the true
values of θ and σ (see Section 3.4), varying the latter did
not have any effect as long as θ and σ were such that the
region of support of Ψ was within [xl, xu]. This raises the
question of how a practitioner can figure out an appropriate
spacing and positioning under uncertainty as to the values
of θ and σ. A discussion of this problem is deferred to
Section 8.3.

Single-presentation MOCS spreads stimulus levels evenly
over [xl, xu]. Its performance deteriorated when the region
of support of Ψ was too close to the boundary of this range
but also when σ was small compared to xu – xl. A virtue of
single-presentation MOCS is that it provides good estimates
of γ and λ by placing trials above and below the region of
support of Ψ, a characteristic that disappears if this region
is too close to the boundaries of the range of stimulus levels.
That is, single-presentation MOCS requires that Ψ be more
interior within the range of stimulus levels than it is allowed
to be under conventional MOCS. On the other hand, when σ
is too small, very few trials are placed within the region of
support of Ψ, which impairs the estimation of σ.

Because step sizes for our adaptive staircases depend on
the value of σ (see Section 3.4), variations in σ cannot affect
our results in any way. On the other hand, the location of
Ψ, as determined by the value of θ, does not affect the
implementation of adaptive staircases, which always start-
ed near one of the boundaries of the stimulus range and
moved towards the appropriate region adaptively. Thus,
when θ was far from starting point and σ was not too large,
a few more trials were used to reach the region of support
of Ψ. As a result, estimates of λ were a little better and
estimates of θ and σ did not suffer much. Conversely, when
θ was close to starting point and σ was again not too large,
estimates of λ were a little worse and estimates of θ and σ
did not improve significantly. Again, from the practitioner’s
point of view, staircases pose a problem similar to that posed
by MOCS, although here the only decision that has to be
made right concerns the size of the steps. We also defer a
discussion of this issue to Section 8.3.

6.4. Other Forms for Ψ, and Mismatch Between
Actual Ψ and Model Ψ̆

When actual Ψ and fitted Ψ̆ were both Weibull instead
of logistic, the results did not show any noticeable difference
except that conventional MOCS performed a little worse and
adaptive staircases performed a little better in terms of bias
and variability. Yet, the mismatch between Ψ and Ψ̆ greatly
affected the quality of the estimates and the deterioration
did not change whether Ψ was logistic and Ψ̆ was Weibull
or vice versa. In all cases, γ (when applicable), λ, θ, and σ
were substantially misestimated. Figure 15 illustrates with
representative results from 1–4 UDTWR staircases in 2AFC
detection tasks. In comparison with results for logistic Ψ

and Ψ̆ (lower part of Figure 8), all parameters were
overestimated when Ψ was logistic and Ψ̆ was Weibull
(Figure 15a) and they were underestimated when Ψ was
Weibull and Ψ̆ was logistic (Figure 15b).

Interestingly, despite the deterioration in the quality of
the estimates, the relative performance of the different
sampling plans considered in this study remained identical.
In addition, the relative performance of variants of these
sampling plans (where applicable) also remained identical.
For instance, estimates of θ can be seen in the second
columns of Figures 15a and 15b to be unbiased and have
smaller standard errors for N > 500 when ∆ = σ/10 (open
circles), and this was also the optimal spacing for estimation
of θ when Ψ and Ψ̆ were both logistic (see the lower part
of Figure 8). A similar analysis for the remaining parameters
reveals comparable relative outcomes across values of ∆ in
Figure 15 and in the lower part of Figure 8.

Because the actual mathematical form of Ψ is never
known, practitioners should realize that there is always a
potential for bias in estimates of λ, γ (when applicable), and
σ, a bias whose presence can never be assessed because it
depends on the similarity of the actual Ψ to the model
function Ψ̆. The results in Figure 15 indicate that, using the
optimal spacing ∆ and a sufficiently large number N of trials,
estimates of λ and γ will be biased by about ±25% of their
actual value, whereas estimates of σ will be biased by about
±10% of its actual value. The reason for this bias lies in the
failure of the mathematical form of Ψ̆ to accommodate data
describing a shape generated by Ψ and further contaminated
by random noise, but a thorough analysis of this
characteristic is beyond the scope of this paper.

6.5. Other Parameter Estimation Methods

Despite an occasional better behavior of OLS methods
(see Figure 3), usability indices for OLS estimation were
generally lower than for ML estimation, and the global prop-
erties of OLS estimates were often noticeably worse than
(occasionally similar to) those of ML estimates. In particular,
in 2AFC detection tasks, conventional and single-presentation
MOCS render very similar OLS and ML estimates of all three
parameters. UDTR and UDWR staircases yield OLS underesti-
mates of λ, and OLS estimates of θ and σ that are similar
to their ML counterparts. UDTWR staircases, finally, yield OLS

overestimates of λ and θ, and OLS underestimates of σ. In
yes–no tasks, on the other hand, OLS and ML estimates had
similar distributions with the only exceptions that (1) λ and
γ are underestimated with UDTR and UDWR staircases and
(2) estimates of σ from all UDWR staircases and from UDTR

staircases not using the 1–1 rule have more variability.
The generally inferior performance of OLS estimation

may simply reveal its theoretical inappropriateness when
the errors are not normally distributed and the variances are
not homogeneous across stimulus levels, as was pointed out
in Section 3.5. We also discussed there that the appropriate
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alternative, WLS estimation, cannot be used with single-
presentation MOCS and that its use must discard non-trivial
amounts of data with all of the remaining sampling plans.
As a result, in 2AFC detection tasks with N = 1000 trials,
usability indices were only 14.51% and 0.33% respectively
for QUEST and UDTWR staircases because with these sampling
plans most stimulus levels are tried just once. With the

remaining plans (conventional MOCS, UDTR staircases and
UDWR staircases), usability was slightly inferior than under
OLS or ML estimation. The distributions of estimates under
the latter sampling plans were nevertheless similar to those
described above for OLS estimation. Results of application
of WLS estimation in yes–no tasks and 2AFC discrimination
tasks yielded a similar picture: only 1.02% usability for
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Figure 15. Mean (top row) and standard deviation (bottom row) of ML estimates of λ (left column), θ (center column), and σ (right
column) arising from 1–4 UDTWR staircases as a function of the overall number N of trials in 2AFC detection tasks. In (a), the generating
Ψ was logistic with γ = 0.5, λ = 0.02, θ = –1.5, and σ = 1 (b = 9.19) and the fitted Ψ̆ was Weibull. In (b), the generating Ψ was Weibull
with γ = 0.5, λ = 0.02, θ = –1.5, and σ = 1 (β = 2.66) and the fitted Ψ̆ was logistic.
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QUEST, slightly lower usability for conventional MOCS and for
UDTR and UDWR staircases than under OLS or ML approaches,
and distributions of estimates that are thoroughly analogous
to those obtained with OLS estimation. The lack of a significant
improvement in the performance of WLS compared to that of
OLS is understandable because weights are reciprocals of
estimated variances at the data points, something that requires
large numbers of trials per point in order to obtain reliable
estimates of these variances (see Myers, 1990, p. 319).

As for BQ estimation, usability stayed at 100%, but
estimates were generally poor: The distributions were either
too broad or they were centered too far from true values.

It should be stressed that the input data were exactly the
same in all cases (ML, OLS, WLS when reasonably applicable,
and BQ) and, thus, the outcomes just discussed only reflect
the differential performance of the four estimation methods.
These results strongly advice against OLS, WLS, and BQ

estimation.

7. The Optimal Sampling Plans

Figure 4 showed representative outcomes of all the types
of sampling plan included in this study. Among the entire
set of plans (but excluding the inefficacious QUEST), single-
presentation MOCS is the worst in that it produces estimates
of θ and σ that have larger variability than those obtained
with other plans, but it produces better estimates of λ (and
γ, where applicable; see Figure 11). Given that one is usually
more interested in estimating θ and σ than in estimating λ
or γ,5 the use of single-presentation MOCS is inadvisable. On
the other hand, the properties of all parameter estimates are
similar with conventional MOCS and all forms of staircase.
In principle, this could lead to considering the use of
conventional MOCS, but recall that this plan ran here with
the advantage that the range of stimulus levels only spanned
the region of support of Ψ. Empirical use of conventional
MOCS can only be expected to provide estimates with the
characteristics reported here if it is set up as we did which,
in turn, requires preliminary sessions to locate the region
of support of Ψ. When the extra trials thus spent are count-
ed up, the efficiency of conventional MOCS is seriously
reduced. And there is also the issue that some variants of
adaptive staircase have higher usability than comparable
conventional MOCS (see Figure 5).

In contrast, adaptive staircases find the right location in
only a few trials that were counted up in our analyses. But
results in Sections 4–6 indicate some dependence of usability
and the quality of estimates on relative step size, an un-

known in practice because step size is set without knowl-
edge of the value of σ. As discussed in Sections 4.3 and
5.3, large relative step sizes allow a precise estimation of γ
and λ because a sufficient number of trials is thus placed
beyond the region of support of Ψ. But large step sizes
impair the estimation of θ and σ. This latter characteristic
perhaps reveals only the effect of sampling resolution, which
can easily be untangled from step size by interweaving s
staircases using a common base step size ∆ (chosen to be
reasonably large) but whose sampling lattices are
progressively offset by ∆/s. This strategy provides each
staircase with large step sizes (valued at ∆) that allow placing
trials where they are needed for a proper estimation of λ
(and γ when necessary) without compromising the fine
resolution (valued at ∆/s across the interlaced lattices) that
is required for accurate estimation of θ and σ.

Sections 7.1 and 7.2 document the performance of
configurations of two interwoven staircases that can be used
with each class of Ψ as regards the status of γ. The need
for tailored sampling plans arises from the peculiarities of
each class of Ψ. All plans should render fine resolution with-
in the region of support of Ψ so that θ and σ can be
accurately estimated but,

— in mAFC detection tasks, where the lower asymptote
of Ψ is a constant, the uninformative area below the
region of support of Ψ should be avoided, whereas
the area above the region of support of Ψ need only
be coarsely sampled to allow the estimation of λ;

— in 2AFC discrimination tasks, where both asymptotes
are determined by λ, a sufficient number of trials
should be placed above or below (or both above and
below) the region of support of Ψ because both areas
are informative as to the value of λ; and

— in yes–no tasks, where the lower and upper
asymptotes of Ψ are respectively determined by γ and
λ, a sufficient number of trials should be placed both
below the region of support of Ψ (to allow γ to be
estimated) and above it (to allow λ to be estimated).

7.1. 2AFC Detection Tasks

In 2AFC detection tasks, the strategy of interweaving
two staircases with offset lattices and base step sizes ∆ =
σ/2, σ/3, σ/4, and σ/5 was evaluated for all UDTR, UDWR,
and UDTWR staircases considered in Section 4. Each
interwoven ran for N/2 trials so that N still represents the
cost of the entire procedure, and the two interwovens differed
only in that their starting points were offset by ∆/2 (as
illustrated in Figure 16a for dual 1–3 UDTWR staircases).
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5 An exception to this general rule occurs when trials in mAFC detection tasks have to be segregated by presentation location or
interval because Ψ must be fitted separately to each subset of data. In these cases, guessing strategies may result in γ being different
within each subset, although it will still be valued at 1/m for the overall data (see García-Pérez, Giorgi, Woods, & Peli, 2005, their
Appendix B).



Compared to single-staircase designs (see Figure 5), dual
staircases improved usability and reduced or removed its
dependence on relative step size for all types of staircase,
although there were still differences among them in these
respects. In 1–d UDTR staircases, 100% usability was attained
regardless of relative step size only when d = 4 and after
900 trials; in k� UDWR staircases, 100% usability could not
be achieved when k = 2 or ∆ = σ/2 but otherwise it was
attained in 700 trials regardless of relative step size; finally,
in 1–d UDTWR staircases, 100% usability was attained
irrespective of relative step size with 700 trials provided d
≥ 2. Independence of usability from relative step size is
desirable because values for relative step size can only be
chosen in practice when σ is known. Overall usability im-
proved because λ and σ could both be estimated more often:
λ as a result of the two sets of trials placed above the region
of support of Ψ (see Figure 16a) and σ as a result of the
double resolution within the region of support of Ψ. Proper

estimates of θ could be obtained 100% of the times. Usability
for both λ and σ showed much less (if any) dependence on
relative step size than was reported in Figure 6.

Figure 17 shows the properties of the estimates obtained
with dual-staircase designs involving the same rules for which
single-staircase results were presented in Figure 8. The most
conspicuous differences in favor of dual-staircase designs
are a reduced underestimation of λ (compare the left columns
in Figures 17 and 8) and a reduction of the dependence of
the properties of the estimates of θ and σ on relative step
size (center and right columns in Figures 17 and 8).

Considering usability and the properties of estimates,
dual 1–3 UDTWR staircases with upper starting points offset
by ∆/2 appear to be the best sampling plan in 2AFC
detection tasks (see the lower part of Figure 17). This design
renders data that plotted along with the fitted function may
not look appealing (see the right panel in Figure 16a). If
graphical appeal is wanted, dual 3� UDWR staircases render
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Figure 16. Sample tracks (left column) and results (right column) of the application of three sampling plans with dual staircases. These
incidental results do not necessarily reflect the average performance of each plan, which is shown in Figures 17 and 18 below. All meth-
ods ran 100 trials of a putative 2AFC detection task (a), 2AFC discrimination task (b), or yes–no task (c). Pictorial conventions as in
Figure 1. In all cases Ψ was logistic with λ = 0.02, θ = –1.5 and σ = 1, and the lower asymptote varied with the type of task: γ = 0.5
in (a), γ absent and replaced with λ = 0.02 in (b), and γ = 0.02 in (c). The two staircases in each track actually ran with their trials
randomly interwoven but here they are shown unscrambled for clarity, the first staircase running for trials 1–50 and the second one
running for trials 51–100. (a) Dual 1–3 UDTWR staircases (thus using ∆+ = 1.3526∆–) each with ∆– = σ/4 = 0.25 that differ only in that
their starting points are offset by ∆–/2 = σ/8. (b) Dual 3� and 1–

3 
� UDWR staircases with ∆ = σ/4 too, one with an upper starting point

and one with a lower starting point at locations such that their lattices yield a joint resolution of ∆/2 = σ/8 in the region of overlap, which
coincides with the region of support of Ψ. (c) Dual 1–3 and 3–1 UDTR staircases with ∆ = σ/4, one with an upper starting point and one
with a lower starting point at locations such that their lattices also yield a joint resolution of ∆/2 = σ/8 within the region of support of Ψ.
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Figure 17. Similar to Figure 8, but 2AFC detection data were gathered with pairs of interwoven staircases each running for N/2 trials
and whose upper starting points were offset by ∆/2. The upper, center, and lower parts respectively describe results for dual 1–3 UDTR

staircases, dual 3� UDWR staircases, and dual 1–3 UDTWR staircases.



estimates with similar characteristics provided ∆ ≥ σ/2
(center part in Figure 17). In either case, 500 trials ensure
98% overall usability (always implying 100% usability for
θ and σ), negligible misestimation of θ and σ, and accept-
able misestimation of λ.

7.2. Yes–No Tasks and 2AFC Discrimination Tasks

The same interweaving strategy was evaluated with
yes–no and 2AFC discrimination tasks using base step sizes
∆ = σ/2, σ/3, σ/4, and σ/5 for all UDTR and UDWR staircases
in Sections 5 and 6.1. Each interwoven ran also for N/2
trials. The two interwovens implemented inverse rules and
had starting points at opposite ends of the range of stimulus
levels (see Figures 16b and 16c).

In yes–no tasks, usability increased considerably in
comparison with results reported in Figure 10a for single-
staircase designs. Yet, overall usability of 100% irrespective
of relative step size was only achieved with dual UDWR

staircases involving k = 4 and N ≥ 600. Higher usability
arises because starting points on opposite ends of the range
of stimulus levels allow gathering data to estimate both γ
and λ, instead of only one of them in single-staircase designs
(see Figures 10b and 10c). The interlaced lattices provide
fine resolution within the region of support of Ψ so that all
dual-staircase designs rendered 100% usability for σ
regardless of relative step size with N ≥ 400, besides the
usual 100% usability for θ in all conditions. Then, limited
usability arises from occasional failures to estimate γ and
λ, not because σ or θ cannot be estimated.

Figure 18 shows the properties of the estimates from
dual-staircase designs involving the rules for which single-
staircase results were shown in Figures 13 and 14. Dual-
staircase designs reduce misestimation of γ and λ, equalize
the properties of γ̂ and λ̂ (compare the first and second
columns in Figures 13, 14, and 18), and reduce or remove
the dependence of the properties of the estimates of θ and
σ on step size (third and fourth columns in Figures 13, 14,
and 18). Also, dual UDWR designs (lower part of Figure 18)
outperform dual UDTR designs (upper and center parts of
Figure 18), providing unbiased estimates of all parameters
regardless of step size when N ≥ 300 trials. Among them,
dual UDWR staircases with k = 4 represent the best choice.
In terms of bias, this design yields estimates of γ and λ with
properties similar to the optimum provided by single-
presentation MOCS (compare with the first and second
columns in Figure 12) along with estimates of θ that are
comparable to those provided by conventional MOCS (com-
pare with the third column in Figure 12) and better estimates
of σ than those provided by any individual plan (compare
with the fourth column in Figures 12–14). In terms of
variability, the dual-staircase design also reaches an optimum
compared to individual plans.

In 2AFC discrimination tasks, usability improved even
further, understandably a consequence of improved usability

for λ because data collected on both ends of the range of
stimulus levels contribute to its estimation. This, in turn,
resulted in still more accurate estimates of λ with smaller
variability. Usability for θ and σ was not altered. Thus, the
best dual-staircase design for use in 2AFC discrimination
tasks involves UDWR staircases with k = 4 and provides
unbiased estimates of θ and σ as well as acceptable (though
minimally negatively biased) estimates of λ with N ≥ 300
trials. Nevertheless, with dual UDWR staircases using k = 2
or 3, λ was only insignificantly underestimated and with a
slightly larger variability but, in return, estimates of θ and
σ (which were also unbiased) were noticeably less variable.

7.3. Discussion

A comparison of Figure 17 with Figure 8, on the one
hand, and of Figure 18 with Figures 13 and 14, on the other,
reveals that the best dual setup is much more so in the case
of yes–no and 2AFC discrimination tasks than in the case
of 2AFC detection tasks. Regardless of its magnitude, the
improvement consists of (1) a reduction in bias with small
numbers of trials, where it was more needed, and (2) a
reduction or elimination of variations related to relative
step size, which is useful in case of uncertainty as to the
value of σ.

One might interweave four staircases instead of just two.
The set of staircases would render lattices that are progress-
ively offset by ∆/4 units, and their starting points should
balance the number of upper and lower positions so as to
yield estimates of γ and λ with similar properties (if this
strategy is used in 2AFC detection tasks, only upper starting
points should be used as illustrated in Figure 16a). We have
run simulations of 4-staircase designs that are otherwise
analogous to those described in Sections 7.1 and 7.2 above.
The results (not shown) indicate that usability increases
because γ and λ can be estimated yet more often as a
consequence of the extra sets of initial trials, whereas the
properties of the estimates of θ and σ do not suffer. At the
same time, the properties of the estimates became much
more independent of step size, since even our largest steps
(∆ = σ/2) render a resolution of σ/8 within the region of
support of Ψ.

8. General Discussion and Conclusion

8.1. Summary of Our Results

The most salient finding across Sections 4–6 is that no
individual sampling plan provides optimal estimates of all
parameters for each class of Ψ. Each parameter is optimally
estimated by a different plan and the conjunction of those
optimal properties across parameters define the target
performance of the ideal sampling plan. The reason for the
suboptimal behavior of all plans with some of the parameters
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Figure 18. Similar to Figures 13 and 14, but yes–no data were gathered with pairs of interwoven staircases each running for N/2 trials,
implementing inverse rules, and with starting points at either end of the range of stimulus levels. The lattices of the two staircases in
each pair are also offset by ∆/2. The upper, center, and lower parts respectively describe results for dual 1–1 UDTR staircases, dual 1–4
and 4–1 UDTR staircases, and dual 4� and 1–

4
� UDWR staircases.



is that each plan samples with a fixed pattern, when accurate
estimation of different parameters appears to require that
trials be placed with different patterns. Knowledge of these
characteristics helped design optimal sampling plans that
were shown in Section 7 to approach ideal performance.
The optimal sampling plan differed for each class of Ψ
because the classes are defined by the status of the lower
asymptote and, therefore, by whether parameter γ needs to
be estimated and also by whether or not both asymptotes
are determined by the same parameter. In any case, the
optimal sampling plan represents a larger improvement over
individual plans in yes–no and 2AFC discrimination tasks
than in 2AFC detection tasks.

Second, a mismatch between the actual form of Ψ and
that of the fitted Ψ̆ introduces systematic errors in the
estimates. In practice, little can be done to prevent these
errors because the form of Ψ is unknown. Thus, one can
only hope that the actual form of Ψ across the set of
subjects from which results will be aggregated and across
the set of stimuli for which results will be compared
does not vary, so that systematic errors caused by a
potential mismatch between the forms of Ψ and Ψ̆ do not
contaminate the results differentially. An interesting and
useful result in this respect is that this deterioration does
not have implications on the choice of an optimal sampling
plan.

A third major finding arises from our comparison of the
estimates obtained with different estimation methods. From
results discussed in Section 6.5, only the use of ML meth-
ods is advisable; OLS, WLS (when applicable) and, especially,
BQ estimates are remarkably poorer.

Finally, psychophysical methods that place most trials
in a narrow range of stimulus levels and fail to sample
across the region of support of Ψ are remarkably
inefficacious and greatly underestimate σ. This may seem
natural in retrospect, but QUEST was included in our study
because it has been (and still is) widely used for the
estimation of Ψ, as mentioned in Section 2.3. Other adap-
tive methods exist that produce tracks similar to that shown
for QUEST in Figure 1c in that they seek some target point
quickly and then place all subsequent trials within a very
narrow vicinity of that point. These include stochastic
approximation (Robbins & Monro, 1951; used in
simulations by Treutwein & Strasburger, 1999), YAAP

(Treutwein, 1997; applied to empirical data by Treutwein
& Strasburger, 1999), or ML-PEST (Hall, 1981; Harvey,
1997; used in empirical studies by Strasburger, 2001). All
of these methods are bound to be inadequate for the same
reason. Klein (2001, p. 1450, original italics) stressed that
“if one wants to measure (...) slope using adaptive methods,
one should use a method that places trials at well separated
levels.” Our results with QUEST indicate that failure to do
so overestimates slope (i.e., underestimates σ). Next we
analyze the causes of slope bias in QUEST and other
methods.

8.2. Slope Bias, or Support Instead of Slope

Several causes contribute to the slope bias documented
in the literature (Berkson, 1955; Kaernbach, 2001; Leek et
al., 1992; Maloney, 1990; O’Regan & Humbert, 1989) and
that has also come out in our study. Not all of these causes
have been previously acknowledged.

The most important and least known of them is, so to
speak, constitutional. Although regularity conditions ensure
that ML estimators of either b or σ are asymptotically normal
and unbiased, this does not imply that the rate of
convergence towards asymptotic behavior is identical for
both. We have examined preasymptotic distributions of
logistic b̂ and σ̂ obtained either by estimating b in Equation
1 or by estimating σ in Equation 10 for values of N up to
15,000 and using 10-level conventional MOCS. This analysis
revealed that the pre-asymptotic distribution of b̂ is positively
skewed with its mode (not its mean) near the true value of
b, whereas that of σ̂ is positively skewed but peaks below
the true value of σ. These characteristics were apparent in
Figure 4. Moreover, the rate of convergence towards
asymptotic normality and unbiasedness is slower for b̂ than
for σ̂ (results not shown). Because bias must be defined as
the difference between the expected value of an estimator (not
the mode or the median) and the true value of the parameter,
slope estimators must be positively biased in pre-asymptotic
situations which, according to our results, imply all N < 5000
trials in 2AFC detection tasks. Conversely, estimates of σ
reach asymptotic normality when N ≥ 400 trials. In retrospect,
there is probably a reason that statistical texts (e.g., Balakrish-
nan, 1992; Evans, Hastings, & Peacock, 1993) define the
logistic distribution using a mathematical form that involves
a divisive parameter such as σ in Equation 10 instead of a
multiplicative parameter such as b in Equation 1.

A second cause of slope bias is that not every data set
can yield a proper slope estimate (this was clear in Figure
4) and lousy data are likely to yield overestimation. Because
slope estimation requires data collected at well separated
locations, insufficient resolution may leave basically only
one point at which the proportion of correct responses is far
from the asymptotic regime of Ψ. The remaining points are
then absorbed into the estimated asymptotes. This naturally
inflates the slope estimate as seen in the top left and bottom
right panels of Figure 3. The reason appears to be that, under
the metric implied in the criterion function, there is basically
only one point that is unmistakably within the region of
support of Ψ (see the points marked with arrows in the top
left and bottom right panels of Figure 3). This point dictates
a location, the estimated curve passes right through it, and
there is no extra information in the data that can set an upper
limit for the slope of the curve once the asymptotes are
established. It looks as if stray data with this characteristic
were more prevalent than data with the characteristics shown
on the right panel of Figure 1e, which tend to deflate slope
estimates. Inadequate sampling plans like QUEST often produce

GARCÍA-PÉREZ AND ALCALÁ-QUINTANA286



data with a similar characteristic (see the right panel in Figure
1c), namely, a few points within an extremely narrow range
of stimulus levels and displaying percentages dominated by
binomial variability. Because ML-PEST is similar to QUEST in
this respect, it seems clear that the high slopes reported by
Strasburger (2001) are inflated and flawed, a result of the
inadequate distribution of slope estimates arising from QUEST

or QUEST-like methods (see Figure 4).
Slope bias has often been understated through inadequate

statistical analyses. Either to compensate for the presence of
improper estimates or directly to compensate for the positive
skewness of the distribution of slope estimates, some authors
have indicated bias by reporting median estimated slope
(Kaernbach, 2001; Wichmann & Hill, 2001a), by reporting
the geometric mean of estimated slope (Leek et al., 1992),
or by reporting the mean of log estimated slope (Swanson
& Birch, 1992). All these actions have the effect of making
bias look smaller than it really is, but slope bias is the
difference between mean estimated slope and true slope.

Kaernbach (2001) claimed that slope bias only occurs
with data gathered with adaptive methods and he went to
great lengths to make his point. He claimed without proof
that slope estimates from MOCS are unbiased. The third and
fourth columns in our Figures 4a and 4b show that
conventional MOCS overestimates slope just as adaptive
staircases do, and that estimates of σ with either method
are unbiased when N is sufficiently but not unreasonably
large. To look into this issue more closely, we carried out
a simulation for one of Kaernbach’s conditions, namely,
10,000 replicates of 1–1 UDTR staircases starting on threshold,
∆ = σ/11 (comparable to the step sizes used by Kaernbach),
48–120 yes–no trials (Kaernbach used 10–100), and a
logistic Ψ (Kaernbach used a cumulative Gaussian) with λ
= γ = 0, θ = –1.5, and σ = 1; and we also simulated MOCS

set up as always in this paper, running for the same numbers
of trials, and using L = 12 so as to render the same sampling
lattice as the adaptive staircase. The distributions of b̂ turned
out to be positively skewed both with adaptive staircases
and with MOCS. In all cases the mode occurred at b̂ � b =
9.19 and the mean (ranging between 9.8 and 10.2) was still
too high when N = 120. Then, slope bias is definitely not
caused by the nature of adaptive data.

It should further be stressed that not all adaptive methods
are equally prone to large slope bias and that a statement
to that effect by Strasburger (2001) is in error. From our
results, adaptive staircases that use fixed step sizes
overestimate slope to the same extent as conventional MOCS,
whereas adaptive methods that progressively reduce step
size to end up placing most trials virtually at a single
stimulus level (e.g., stochastic approximation, QUEST, ML-
PEST, YAAP, etc) overestimate slope to a much larger extent.
And not for being adaptive but for placing most trials within
too narrow a range of stimulus levels.

Given all of the above, the practical question is how to
go about this nagging property of slope estimates. We believe

that our alternative measure of support σ is the solution for
a number of reasons. First, σ and b (or β) are merely
inversely related to one another (see Section 3.1) and, then,
they do not carry different information: They only differ as
to how they carry it. Second, σ has a much more direct
interpretation by naturally describing the width of the region
over which performance depends on stimulus level. Third,
estimates of σ have much better statistical properties than
estimates of b or β: For one thing, the distribution of σ̂ is
symmetric provided that N is not ridiculously small or an
inappropriate method such as QUEST is used (see Figure 4).
Fourth, because σ is a measure of length, interval estimates
yield a range of values that are much easier to interpret (as
a range of sizes) than the analogous interval estimates for
b or β, which are obscure transformations of the slope of
Ψ at a usually irrelevant point. Finally, the logistic
distribution is more often defined in statistical texts using
a divisive parameter as in Equation 10 than using a multi-
plicative parameter as in Equation 1, so there is no reason
to linger on b. And other forms for Ψ (e.g., cumulative
Gaussian) do not even have a slope parameter.

Support σ further provides a common metric for the
comparison of psychometric functions of different form, but
it also allows a better understanding of the differences
between functions of the same form. For instance, if two
logistic Ψ differ only in that one has b = 10.21 and the other
has b = 9.19, little can be said immediately except that the
former is steeper; but the first one has σ = 0.9 whereas the
second has σ = 1, which leads to picturing the region of
support of the first as being 10% narrower than that of the
second. Also, suppose a psychophysicist claims that the
slope of a Weibull Ψ is β = 3.5 for a condition where others
have reported logistic Ψ with b = 12.09; they both would
have found that σ = 0.76 and, hence, the range of stimulus
levels that affects performance is identical in both cases.

8.3. Practical Recommendations

When the goal is estimating all the parameters of Ψ, our
results advise against the use of QUEST and similar methods
(stochastic approximation, ML-PEST, YAAP, etc) that progres-
sively reduce step size to end up placing most trials with-
in a narrow range of stimulus levels. This would only result
in underestimates of support and improper estimates of the
asymptotes.

Our results also recommend steering away from
conventional MOCS. Its performance has been documented
here for the ideal case in which its levels span the region
of support of Ψ. However, setting up conventional MOCS in
this way requires that the location and width of the region
of support of Ψ be known in advance for every combination
of stimulus and participant. Although rough estimates could
be obtained in preliminary sessions, the cost of obtaining
them should be taken into account when assessing the
efficiency of the method. This cost was not included in our
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results, but it would greatly diminish the efficiency of
conventional MOCS if the number of trials invested in the
preliminary sessions is sufficiently large so as to provide
dependable data. Trying to save trials in this preliminary
phase can only result in initial estimates that are too rough,
which will in turn affect the appropriateness of the choice
of levels for conventional MOCS. In any case, for those who
will not let go of conventional MOCS, our results can tell
post-hoc what the quality of their final estimates was: Once
Ψ has been estimated from the data, simply determine how
many levels fell within the region of support of the estimated
Ψ and how many trials were given altogether in that subset
of levels; as shown in Sections 4.2 and 5.2, the overall
number of trials within the region of support of Ψ indicates
the quality of the estimates of θ and σ, provided there were
at least five levels within the region of support of Ψ.

It is far more sensible to allow an adaptive staircase to
find out the region of support of Ψ. This only leaves
uncertainty as to the appropriate size for the steps. Interestingly,
multiple-staircase designs discussed in Section 7 minimize or
eliminate the effect of relative step size on the properties of
parameter estimates. The only psychophysical method that our
study found appropriate is the optimal dual-staircase design
that was identified in Section 7 for each class of Ψ, namely,
1–3 UDTWR (or, as a second-best option, 3� UDWR) staircases
in 2AFC detection tasks and 4� (but also 3� and 2�) UDWR

staircases in yes–no or 2AFC discrimination tasks. Users need
only guesstimate σ and set ∆ ≥ σ/3 so that there are at least
six samples within the region of support of Ψ. Of course, with
UDTWR staircases (only recommended for use in 2AFC
detection tasks) this issue is less critical because the sampling
plan that they render explores the region of support of Ψ
densely (see Figures 1f and 16a). Then, understandably,
usability indices as well as the statistical properties of parameter
estimates from UDTWR staircases depend on relative step size
less than in other types of staircase (see Figures 5, 8, and 17).
The only trouble may then come when UDTWR staircases cannot
be used (i.e., in yes–no tasks, mAFC detection tasks with m
> 2, and 2AFC discrimination tasks) and the guesstimate of
σ turned out to be in gross error, so that ∆ happened to be too
large and fewer than four samples lay within the region of
support of Ψ. Interweaving s > 2 staircases with offset lattices
will protect against the effects of base steps ∆ that were too
large in retrospect, because the resolution within the region
of support of Ψ is ∆/s.

Finally, the properties of parameter estimates vary with N.
Figures 17 and 18 showed, for the optimal dual-staircase
designs, that bias is negligible in all cases and that variability
decreases as N increases. Those relations can be used to
determine how many trials are needed to ensure that the
standard errors stay within predetermined bounds. Our results
indicate that 300 trials (in yes–no or 2AFC discrimination
tasks) or 500 trials (in 2AFC detection tasks) suffice to obtain
unbiased estimates with usability above 95% (always implying
100% usability for θ and σ) and acceptable standard errors.

But our experience is that human observers are less dependable
than simulated subjects in ways that the simulations reported
here do not mimic (Alcalá-Quintana & García-Pérez, 2004b).
As a rule of thumb, determine a minimum number of trials
using the relationships of variability to N given in Figures 17
and 18 and, if at all possible, run 50% more trials.
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