
In this paper, the distributional properties and power rates of the Lz, Eci2z, and Eci4z
statistics when they are used as item fit statistics were explored. The results were compared
to t-transformation of Outfit and Infit mean square. Four sample sizes were selected: 100,
250, 500, and 1000 examinees. The abilities were uniform and normal with mean 0 and
standard deviation 1, and uniform and normal with mean –1 and standard deviation 1.
The pseudo-guessing parameter was fixed at .25. Two ranges of difficulty parameters
were selected: ±1 logits and ±2 logits. Two test lengths were selected: 15 and 30 items.
The results showed important differences between the T-infit, T-outfit, Lz, Eci2z, and
Eci4z statistics. The T-oufit, T-infit, and Lz statistics showed poor standardization with
estimated parameters because their distributional properties were not close to the expected
values. However, the Eci2z and Eci4z statistics showed satisfactory standardization on
all conditions. Further, the power rates of Eci2z and Eci4z were 5% to 10% higher than
the power rates of Lz, T-outfit, and T-infit to detect items that do not fit Rasch model.
Keywords: Rasch model, item response theory, appropriateness measure, item fit statistics

El objetivo de este trabajo fue estudiar la potencia y propiedades distribucionales de tres
estadísticos de medida de la adecuación cuando se utilizan como estadísticos de ajuste
de los ítems. Los estadísticos sometidos a comparación fueron: Lz, Eci2z y Eci4z. Los
resultados obtenidos se compararon con los estadísticos T-outfit y T-infit. Se seleccionaron
cuatro tamaños muestrales: 100, 250, 500 y 1000 sujetos. Se sometieron a estudio
distintas distribuciones de habilidad: uniforme y normal, con media 0 y desviación típica
1, y uniforme y normal con media –1 y desviación típica 1. El parámetro de pseudo-azar
fue fijado en .25. Para los parámetros de dificultad se utilizaron dos distribuciones uniformes
de ±1 logits y ±2 logits. Por ultimo, se consideraron dos longitudes de tests: 15 y 30
ítems. Los resultados mostraron que los estadísticos Lz, T-outfit y T-infit no tienden a los
valores esperados cuando se calculan con parámetros estimados, mientras que los
estadísticos Eci2z y Eci4z mantuvieron mejor las propiedades de sus distribuciones
teóricas. Además, la potencia de estos dos últimos estadísticos para detectar ítems no
ajustados al modelo de Rasch estuvo entre un 5% y un 10% más que la potencia de
los estadísticos Lz, T-outfit y T-infit.
Palabras clave: modelo de Rasch, teoría de la respuesta al ítem, medida de la adecuación,
estadísticos de ajuste de ítems
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Psychological measurement has changed from the
massive administration of the classic test model (Gulliksen,
1950; Lord & Novick, 1968) to the use of mathematical
models that demand severe restrictions of the data to
justify that the test designed measures the attribute it is
meant to measure. One of the models that has generated
the most research ever since its publication in 1960 has
been the model of Rasch (Fisher & Molenaar, 1995;
Rasch, 1960; Van der Linden & Hambleton, 1997; Wright
& Stone, 1979), which shares with the other item response
theory (IRT) models the assumptions of unidimensionality
and local independence. Unidimensionality is evidence
that the items essentially measure one and only one
attribute (Stout, 1987), whereas local independence is
evidence that the responses to an item are not influenced
by the responses to prior or subsequent items, or that the
responses of a group of subjects of the same ability are
not related to each other (Hambleton & Swaminathan,
1995). If these assumptions are met, then Rasch’s
probabilistic model guarantees a unidimensional scale of
the attribute measured, where the separability of item
parameters and examinee abilities is a reality instead of
a mere hypothesis assumed in the model (Bond & Fox,
2001). But, as occurs with the rest of the models in the
IRT framework, Rasch’s model (Rasch, 1960; Wright
&Stone, 1979) does not assume that unidimensionality
and local independence are mere hypotheses that are
deduced after the model has been fitted, but instead they
should be empirically proved. That is, before stating that
a set of items met the Rasch model’s expectations, studies
of fit must be performed, both on the items and on
examinee response patterns, in order to determine the
extent to which the responses obtained follow the pattern
expected in the model. 

Several statistics have been proposed to prove that item
response patterns and/or examinee patterns met the model
characteristics. Some fit statistics have been specifically
developed for Rasch’s model, such as the residual statistics
of Wright and Stone (1979), whereas statistics based on the
likelihood function (Drasgow & Levine, 1986; Levine &
Rubin, 1979) and on the comparison of item characteristic
curves—ICCs— (Harnish & Tatsuoka, 1983; Tatsuoka, 1984)
can be used in any of the dichotomic item response models:
Rasch’s model  (Rasch, 1960; Wright  & Stone, 1979), the
2-p logistic model (Birnbaum, 1968; Lord, 1980), and the
3-p model (Birnbaum, 1968; Lord, 1980). Generally, these
statistics have standardized versions under the normal curve
that allow making decisions about fit with specific
significance levels. 

The residual statistics were developed to study the fit
of the items and of examinee response patterns to the model
(Wright & Masters, 1982; Wright & Stone, 1979), whereas
the statistics based on the likelihood function (Drasgow &
Levine, 1986) and those that use the comparison of  ICCs
(Harnish & Tatsuoka, 1983) were developed exclusively to

study the fit of the examinee response pattern to the proposed
model, generating a research field known as appropriateness
measure (Hulin, Drasgow, & Parsons, 1983). However, as
with the residual statistics, appropriateness measure statistics
can be applied as item fit statistics and vice versa, item fit
statistics as statistics to study the degree of aberration of
examinee response patterns (Reise, 1990). 

Outfit Statistic

The unweighted total fit statistic (Outfit) is based on the
residual obtained from subtracting the probability predicted
by the model as a function of the estimated parameters from
the observed response. It is calculated as:

1 (Ui – Pij)
2

MS(UT) = —— ∑ ———————––– 
N wij

(1)

where Uij is the observed response for the subject i in the
item j,  Pij is the probability of a correct response according
to the Rasch model, wij = Pij (1 – Pij), and N is the sample
size. Note that wij is the information function of the item
defined in the model. The standard deviation of this statistic
can be estimated by:

1[∑——------- – 4N]wij
s(UT) = —————————––———————

N
(2)

The unweighted total fit statistic (MS(UT)) follows a
c2 distribution with one degree of freedom. Its
mathematical expectation is 1 and its standard deviation
is obtained by Equation 2. Smith (1991) and Smith,
Schumacker and Bush (1998) showed that there is no
unique critical value to study item fit, but instead it
depends on sample size and on information function.
Moreover, this statistic is highly affected both by high-
ability subjects’ unexpected incorrect responses to easy
items and by low-ability subjects’ unexpected correct
responses to difficult items.  

Infit Statistic 

The weighted total fit statistic (Wright & Masters, 1982)
has the following form:

∑ (Uij – Pij)
2

MS(UT) = —————————––———————                  (3)

∑wij

where Uij, Pij, and wij are interpreted as in Equation 1. In
this statistic, the residual is weighted by the information
function, which reduces the influence of extreme values. Its
standard deviation is:
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[∑wij – 4 ∑w 2 
ij]

s(UT) = ——————–––––—–––-——––——————---—              (4)

∑wij

Both statistics, Outfit and Infit, have been standardized
under the normal distribution by the following transformation:

3         s
t = [(MS1/3 – 1) (––––)] + [––––]               (5)

s 3       

where MS is the mean square of Equations 1 or 3, s is the
standard deviation of Equations 2 or 4. As Lz and the indexes
ECI2z and ECI4z of Tatsuoka (1984) are also standardized
under the normal distribution, in this study, we will use the
t transformation of the Outfit and Infit mean square, which
we shall call T-outfit and T-infit. Values of T-outfit and T-
infit of less than –2 indicate less variation than expected by
the model, which means that the response pattern is fairly
close to the expected Guttman pattern, whereas values of T-
out and T-infit higher than +2 indicate that the response pattern
obtained has more randomness than expected by the model. 

Lz Statistic

The Lz statistic is calculated by:

l(q) – e[l(q)]
lz = ——————–––––—–––-——––—— (6)

{Var [l(q)]}1/2

where

l(q) = ∑[Uij (InPij) + (1–Uij)(InQij)]

e[l(q)] = ∑[Pij (InPij) + Qij(InQij)]

Pij  
Var[l(q)] = ∑PijQij [In(––––––)]Qij 

where Uij and Pij are defined as in the Outfit and Infit
statistics, and Qij = 1 – Pij . This statistic follows a standardized
normal distribution when calculated with true item and subject
parameters (Reise, 1990). Negative Lz values are associated
with unlikely response patterns, whereas positive values are
associated with more consistent response patterns than
expected by the model. 

Eci2z and Eci4z Statistics

Tatsuoka and Linn (1983) developed six caution statistics
(ECI1 to ECI6) to detect aberrant response patterns. These
statistics were standardized and adapted under the IRT by
Tatsuoka (1984). In this study, we will use two statistics
(ECI2z and ECI4z) out of the six original ones, because

Tatsuoka (1984) suggested that ECI4z and ECI6z have
identical standardized forms, and the correlation between
ECI1z and ECI2z was very close to 1.

Caution statistics are based on the ratio between two
covariances. The numerator is the covariance between the
observed item patterns and the test response patterns,
whereas the denominator is the covariance between the
pattern expected by the model and the Guttman pattern. The
mathematical expression of the statistic ECI2z is:

∑(Pij – Uij)(Gi – mG)

ECI2z = ——————–––––——––——––––––––––––––– (7)

[∑PijQij (Gi – mG)2]
and of the ECI4z statistic:

∑(Pij – Uij)(Pij – mP)

ECI4z = ——————–––––——––——––––––––––––––– (8)

[∑PijQij (Gi – mP)2]
where Uij, Pij y Qij = 1 – Pij were already commented on in 

1                      1
the previous statistics  Gi =  –– ∑Pij , mG =  –– ∑Gi ,n                      N

1 
mP =  –– ∑Pi , n is the number of items and N is the

N

number of persons.

Thus, ECI2z compares the pattern of item scores with
the mean probability through the test items, whereas ECI4z
compares the pattern of item scores with the expected
probability according to the Rasch model. Low values,
around 0, of these statistics represent a good fit of the data
to the proposed model (Birenbaum, 1986).

Previous Studies

When a test is developing, it is important to decide what
kind of items to use as a latent construct indicator. In
psychometric tests, closed-answer items are generally used;
items with several options from which examinees must select
one. If the test is an achievement, skill, or ability test, there
will only be one correct choice, which means that some
examinees, usually low-ability ones, will try to guess the
correct answer randomly, thus artificially altering the
parameters of these items (Meijer, 1996). In the Rasch
model, the probability of a minimum-ability examinee
guessing an item correctly is 0 (Rasch, 1960; Wright &
Stone, 1979), so the item fit statistics employed in this model
must detect the items that have received a higher than
expected percentage of random responses. Moreover, the fit
statistics should maintain their distributional characteristics
even when the conditions under which the test is
administered are not optimal. 
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Research carried out till now, however, has revealed that
the fit statistics show problems in their distributions when
the conditions of response-pattern evaluation are not optimal,
that is, when these response patterns do not clearly fulfill
the assumptions of the model. Thus, Meijer and Sijtsma
(2001) stated that it is doubtful whether the t transformation
of the Outfit and Infit mean squares follows a normal
distribution, although Rogers and Hattie (1987) found that
they were sensitive to guessing. Smith (1991) found that
the t transformations only followed a normal standardized
distribution when they were calculated from true parameters,
but when calculated from item or examinee estimated
parameters, or from both, this produced severe restrictions
in the means and standard deviations, which affected Type
I error rate. However, Smith (1991) found that these
transformations were sensitive to random guessing of items. 

Regarding the statistics used in the field of measurement
of aberrant patterns, Molenaar and Hoijtink (1990, 1996)
found that the statistic Lz only followed a normal
standardized distribution when calculated from true
parameters, and its variance, calculated from estimated
parameters, was smaller than the one expected under normal
distribution (Molenaar & Hoijtink, 1990; Nering, 1995,
1997; Reise, 1995). Noonan, Boss, and Gessaroli (1992)
also found that the distribution of Lz was negatively skewed. 

Drasgow, Levine, and McLaughlin (1987) stated that
ECI4z was better standardized (Li & Olejnik, 1997) and
had a higher detection rate than ECI2z. On the other hand,
Noonan et al. (1992) said that ECI4z had means and standard
deviations close to the normal distribution, although the
distributions were positively skewed, and this skewness was
less than one half of that of the other statistics (ECI2z and
T-Infit) and, moreover, was less affected by test length.

The object of this investigation is to study the power of
three statistics normally used in the field of appropriateness
measure: Lz of Drasgow and Levine (1986), and Eci2z and
Eci4z (Tatsuoka, 1984) as item fit statistics under the Rasch
model, and to compare them with the statistics (Outfit and
Infit), and their corresponding t transformations, generally
used to study item fit in the context of this model. The
distributional properties of these five statistics in the context
of random item guessing will also be studied. 

Method

Experimental Conditions

An item with k response options has a 1/k probability
of being randomly guessed correctly. In IRT, this probability
is expressed in the pseudo-guessing parameter, defined as
the probability of a low-ability level examinee correctly
guessing an item randomly (Hambleton & Swaminathan,
1985; Lord, 1980). To evaluate the extent to which the five
statistics can detect this alteration with regard to the Rasch

model, four sample sizes were selected: 100, 250, 500, and
1000 subjects. Each sample size was simulated under two
types of distribution: uniform and normal, with mean 0 and
standard deviation 1.In order to increase random guessing,
we subtracted a unit of each value from the original samples,
resulting in two new distributions (uniform and normal) in
each sample size, with mean –1 and standard deviation 1. 

Two test lengths were selected: 15 and 30 items, to
observe whether any differential effect was produced as a
function of text length. The discrimination parameters (a)
of the items in all tests were 1.00 (expected in the Rasch
model), whereas for the difficulty parameters (b), two
uniform distributions were employed: ±1 logits and ±2 logits.
Finally, the pseudo-guessing parameter for all items was
fixed at 0.25. In summary, a total of 64 conditions— 4
(Sample Size) � 4 (Type of Distribution) � 2 (Test Length)
� 2 (Distribution of b)—were examined. Each experimental
condition was replicated 50 times.

Generation of Item-Response Data

The item-response data were generated under the 3-p
model with all the discrimination parameters set at 1. The
item responses were generated with a computer program
that works as follows: Using the examinees’ true ability
parameters and the true discrimination, difficulty, and pseudo-
guessing parameters of the items, it calculates the likelihood
of responding correctly to the item (Pij). The program
subsequently generates a random number R in the range [0,
1], and it compares it with Pij. If Pij > R the response is 0;
if Pij < R, then the response is 1.

Fit Evaluation

To examine the behavior of the fit statistics, the ability
and item parameters were estimated in each replication using
the incorrect model; that is, the Rasch model. Parameter
estimation was performed with the ConQuest program (Wu,
Adams, & Wilson, 1998). These parameters, together with the
original response matrixes, were the basis of a new computer
program to calculate the five fit statistics: T-outfit, T-infit, Lz,
ECI2z, and ECI4z. Subsequently, with SYSTAT 10.0, the basic
statistics were determined (means and standard deviations)
and the power of the items that did not fit the model. To
determine the power, the cutting-point score ±2 was employed,
which corresponds roughly to the nominal rate a = .05.

Results

Basic Statistics

In Tables 1 and 2 are displayed the means and standard
deviations obtained for each of the fit statistics studied and
in each of the manipulated conditions. As expected, the fit
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statistics revealed considerable differences in their
standardization when calculated from the estimated
parameters. Thus, in this study, Lz means were higher than
0, indicating that the response patterns obtained for the items
were more consistent than those expected by Rasch’s model
and they increased systematically with sample size, group
ability level, and amplitude of test-difficulty interval. Thus,
in a 15-item test, the Lz mean changed from .075 (N = 100)
to .199 (N = 1000) when the distribution of group ability
was normal and equal to the test difficulty mean, and the
test-difficulty interval was logits (see Table 1). If the
difficulty interval was increased to logits, then the Lz mean
was .218 for N = 100, increasing to .699 for N = 1000. If
the fit statistics in a lower ability group —N (–1, 1) — were
calculated, they would also be affected by the same
conditions. Thus, if the test-difficulty interval was ±1 logits,
the mean was .112 for N = 100, which increased to .304 for
N = 1000; and if the difficulty interval was ±2 logits, then
the mean changed from .232 for N = 100 to .715 for N
=1000. This pattern occurred regardless of whether the ability
distribution was normal or uniform. 

If the test length was increased to 30 items, a similar
pattern was observed, although ±1 in the logit difficulty
interval, the mean of the Lz statistics was approximately 0
when the ability distribution was normal or uniform. Thus,
the Lz mean was between .044 (N = 100) and –.002 (N =
500) when the ability distribution was normal, and between
–.011 (N = 1000) and .008 (N = 500) when the distribution
was uniform. However, in a lower ability group, the Lz
mean was between .061 (N = 100) and .181 (N = 1000)
when the ability distribution was normal, and it increased
from .051 (N = 100) to .169 (N = 1000) when the ability
distribution was uniform. When the difficulty interval was
increased to ±2 logits, an increase in the Lz mean was
observed in all experimental conditions, from a small sample
size (N = 100) to a large one (N = 1000).

The statistics based on residuals (T-outfit and T-infit)
presented a pattern similar to that obtained by the Lz statistic.
In some conditions, the means were negative, indicating that
the simulated response patterns have less variation than
expected by the model, approaching the Guttman pattern.
Thus, in short tests (n = 15) with normal ability distribution
and difficulty interval of ±1 logits, the T-outfit mean was
–.050 (N = 100), which decreased to –.200 (N = 1000), and
the T-infit mean was –.068 (N = 100), which decreased to
–.128 (N = 1000). Again, the same effect was observed when
the ability distribution was uniform, that is, the T-outfit mean
was –.063 (N = 100), decreasing to –.220 (N = 1000), and
the T-infit mean was –.047 (N = 100), decreasing to –.165
(N = 1000). When the difficulty interval increased, the T-
outfit and T-infit means in all experimental conditions
decreased. The same occurred when the fit statistics were
calculated in a lower ability group (see Table 1).

When test length was increased to 30 items, the
distribution was centered, and the test difficulty interval was

between ±1 logits, a similar effect was obtained to that
observed in Lz. The T-outfit mean was between .001 (N =
100) and –.037 (N = 500) when test length was 30 items,
whereas the T-infit mean was –.025 (N = 500), which changed
to .023 (N = 1000). The test was subsequently compared to
a lower ability group, resulting in a T-outfit mean between
–.069 (N = 100) and –.150 (N = 1000), whereas the T-infit
mean was between –.062 (N = 100) and –.199 (N = 1000).
If the distribution was uniform, the T-outfit mean was
between –.027 (N = 100) and –.164 (N = 1000), and the T-
infit mean was between –.058 (N = 100) and –.203 (N =
1000). If the test difficulty interval was increased to logits,
all T-outfit and T-infit means were considerably reduced. 

However, the means of the statistics Eci2z and Eci4z
were similar in the experimental conditions manipulated in
this study. Thus, when using a short test (n = 15), difficulty
interval of logits, and normal ability distribution, the Eci2z
mean was between –.002 (N = 100) and –.007 (N = 1000)—
see Table 1—and the Eci4z mean was between –.024 (N =
100) and –.046 (N = 1000). The Eci4z mean was an
unexpected value only in a few conditions. Thus, with a 30-
item test, difficulty interval of ±2 logits, and normal ability
distribution (see Table 2), the Eci4z mean was –.122 (N =
500) and –.163 (N = 1000). In the same experimental
conditions, but with uniform distribution, the Eci4z mean
was –.141 (N = 1000).

Regarding the standard deviations, a more or less common
pattern in all five fit statistics was observed. Thus, the
standard deviations only maintained their expected value of
1 when the sample size was relatively small (100 and 250),
but they increased considerably when the sample size was
500 or higher. That is, with a short test (n = 15), difficulty
interval of ±1 logits, and normal and centered ability
distribution (see Table 1), the Lz standard deviation was .978
(N = 100) and .988 (N = 250), but it increased to 1.442 (N
= 1000). In the lower ability group, the standard deviation
was between .959 (N = 100) and 1.573 (N = 1000).

The variability of the fit statistics increased considerably
when the test difficulty interval was logits, especially when
the sample size was 500 or more. Thus, with a short test (n
= 15) and normal ability distribution, the standard deviation
of Lz was 1.235 (N = 500) and 1.605 (N = 1000), slightly
higher than those obtained in the same sample sizes at the
difficulty interval of ±1 logits (see Table 1). If the ability
distribution was uniform, then a small increase in the standard
deviations of all statistics was observed in the various
experimental conditions. This was systematically repeated in
all fit statistics, observing high standard deviations in the
Eci2z and Eci4z statistics when the sample size was 500 or
more persons. A similar effect was observed in the standard
deviations of the Lz, T-outfit, and T-infit statistics when
increasing test length to 30 items, but very few relevant
differences were observed in short tests (n = 15). That is, the
standard deviations of these statistics changed as a function
of the type of ability distribution (normal vs. uniform) of the
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Table 1
Means and Standard Deviations (in brackets) of the Five Fit Statistics in the 15-Item Test with Normal and Uniform
Distributions, Two Difficulty Intervals, and Four Sample Sizes

Difficulty Interval
[–1, +1]                                                          [–2, +2]

Sample size                                                     Sample size 
Distribution Statistic 100      250 500 1000 100  250 500  1000

Lz
.075 .108 .141 .199  .218  .359 .481 .699 

(.978) (.988) (1.184) (1.442) (.860) (.988) (1.235) (1.605)

T-outfit
–.050 –.097 –.152 –.200 –.145 –.331 –.457 –.650

(.958) (1.035) (1.191) (1.435) (.961) (1.086) (1.378) (1.769)

(0, 1)
T-infit

–.068 –.099 –.128 –.190 –.208 –.333 –.474 –.708 

(.900) (.966) (1.165) (1.412) (.829) (.945) (1.165) (1.519)

Eci2z
–.002 –.003 –.005 –.007 –.004 –.016 –.019 –.019 

(1.034) (1.057) (1.241) (1.458) (1.039) (1.208) (1.486) (1.959)

Eci4z
–.024 –.022 –.031 –.046 –.052 –.066 –.095 –.130 

(1.036) (1.055) (1.235) (1.444) (1.045) (1.197) (1.442) (1.872)

Lz 
.112 .161 .223 .304 .232 .354 .490 .715

(.959) (1.104) (1.263) (1.573) (.936) (1.058) (1.284) (1.638)

T-outfit
–.087 –.151 –.195 –.283 –.190 –.323 –.413 –.638 

(.983) (1.100) (1.262) (1.552) (.995) (1.135) (1.415) (1.819)

(–1, 1)
T-infit

–.113 –.168 –.235 –.319 –.237 –.366 –.524 –.761 

(.958) (1.101) (1.253) (1.560) (.910) (1.027) (1.230) (1.551)

Eci2z
–.002 –.002 –.003 –.003 –.006 –.002 –.011 –.009

(1.090) (1.237) (1.438) (1.802) (1.194) (1.382) (1.701) (2.227)

Eci4z
–.008 –.008 –.014 –.012 –.032 –.023 –.063 –.067

(1.091) (1.236) (1.426) (1.788) (1.189) (1.373) (1.674) (2.159)

Lz
.061 .098 .135 .183 .203 .329 .460 .642

(1.014) (1.187) (1.316) (1.728) (.990) (1.204) (1.483) (1.995)

T-outfit
–.063 –.110 .148 –.220 –.186 –.340 –.494 –.693

(1.008) (1.164) (1.304) (1.677) (1.084) (1.249) (1.561) (2.113)

(0, 1)
T-infit

–.047 –.089 –.123 –.165 –.184 –.311 –.439 –.625

(1.001) (1.169) (1.295) (1.703) (.944) (1.163) (1.417) (1.893)

Eci2z
.002 .001 –.001 –.002 –.003 –.004 –.011 –.018

.(1.105) (1.232) (1.340) (1.723) (1.153) (1.406) (1.718) (2.206)

Eci4z
–.012 –.019 –.025 –.030 –.044 –.042 –.061 –.098

(1.111) (1.230) (1.327) (1.704) (1.151) (1.392) (1.663) (2.202)

Lz
.098 .139 .200  .280 .214 .335 .456 .654 

(1.030) (1.235) (1.516) (1.950) (.989) (1.279) (1.613) (2.168)

T-outfit
–.067 –.141 –.190 –.281 –.172 –.309 –.442 –.614

(1.029) (1.200) (1.472) (1.864) (1.097) (1.369) (1.715) (2.314)

(–1, 1)
T-infit

–.111 –.146 –.218 –.307 –.221 –.358 –.489 –.720 

(1.028) (1.241) (1.515) (1.948) (.957) (1.232) (1.541) (2.062)

Eci2z
.000 –.003 –.005 –.005 .000 –.004 –.005 –.011 

(1.133) (1.357) (1.677) (2.178) (1.226) (1.616) (2.080) (2.816)

Eci4z
–.017 –.006 –.014 –.016 –.023 –.034 –.045 –.074

(1.132) (1.352) (1.663) (2.150) (1.216) (1.579) (2.008) (2.720)

Normal
Distribution

Uniform 
Distribution
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Table 2
Means and Standard Deviations (in brackets) of the Five Fit Statistics in the 30-Item Test with Normal and Uniform
Distributions, Two Difficulty Intervals, and Four Sample Sizes

Difficulty Interval
[–1, +1]                                                          [–2, +2]

Sample size                                                     Sample size 
Distribution Statistic 100      250 500 1000 100  250 500  1000

Lz
044 .000 –.002 –.001 .090 .126 .182 .249 

(.948) (1.021) (1.204) (1.434) (.858) (1.052) (1.278) (1.654)

T-outfit
.001 –.025 –.037 –.035 –.076 –.155 –.216 –.306 

(.968) (1.040) (1.211) (1.431) (.933) (1.148) (1.432) (1.860)

(0, 1)
T-infit

–.011 .021 –.025 .023 –.056 –.094 –.154 –.216  

(.919) (.993) (1.169) (1.393) (.816) (.992) (1.190) (1.531)

Eci2z
–.005 –.011 –.017 –.026 –.021 –.041 –.063 –.082 

(1.095) (1.169) (1.364) (1.612) (1.134) (1.384) (1.699) (2.216)

Eci4z
–.019 –.024 –.036 –.062 –.050 –.077 –.122 –.163  

(1.094) (1.168) (1.354) (1.593) (1.135) (1.364) (1.643) (2.133)

Lz 
.061 .090 .132 .181 .104 .175 .249 .343 

(1.968) (1.094) (1.306) (1.585) (.879) (1.064) (1.322) (1.706)

T-outfit
–.039 –.064 –.116 –.150 –.085 –.155 –.249 –.341 

(.975) (1.098) (1.309) (1.574) (.975) (1.196) (1.485) (1.945)

(–1, 1)
T-infit

–.062 –.100 –.143 –.199 –.096 –.181 –.261 –.365  

(.963) (1.085) (1.293) (1.567) (.837) (1.000) (1.240) (1.582))

Eci2z
–.005 –.007 –.013 –.013 –.011 –.014 –.029 –.038

(1.131) (1.297) (1.555) (1.927) (1.240) (1.565) (1.981) (2.635)

Eci4z
–.012 –.019 –.021 –.026 –.028 –.039 –.059 –.081

(1.133) (1.292) (1.546) (1.910) (1.223) (1.534) (1.937) (2.563)

Lz
.001 .012 .008 –.011 .063 .107 .162 .209

(.990) (1.100) (1.317) (1.719) (.970) (1.273) (1.612) (2.143)

T-outfit
–.004 –.037 –.041 –.066 –.076 –.185 –.262 –.365 

(.979) (1.095) (1.287) (1.653) (1.032) (1.357) (1.710) (2.290) 

(0, 1)
T-infit

.016 .009 .013 –.015 –.027 –.066 –.124 –.154

(.962) (1.078) (1.290) (1.683) (.916) (1.201) (1.527) (2.008) 

Eci2z
–.003 –.007 –.012 –.013 –.024 –.040 –.053 –.083

(1.115) (1.201) (1.437) (1.850) (1.211) (1.556) (1.980) (2.653)

Eci4z
–.018 –.018 –.034 –.040 –.052 –.066 –.090 –.141

(1.117) (1.200) (1.425) (1.827) (1.199) (1.521) (1.917) (2.545)

Lz
.051 .078 .116 .169 .088 .156 .222 .325 

(1.046) (1.288) (1.629) (2.031) (.977) (1.317) (1.682) (2.283)

T-outfit
–.037 –.081 –.118 –.164 –.069 –.185 –.267 –.369

(1.048) (1.286) (1.594) (1.988) (1.063) (1.442) (1.682) (2.498)

(–1, 1)
T-infit

–.058 –.090 –.140 –.203 –.089 –.163 –.236 –.366  

(1.039) (1.277) (1.626) (2.022) (.931) (1.243) (1.585) (2.135)

Eci2z
–.003 –.010 –.012 –.015 –.007 –.018 –.026 –.032  

(1.192) (1.447) (1.834) (2.334) (1.235) (1.823) (2.372) (3.238)

Eci4z
–.013 –.016 –.023 –.031 –.030 –.034 –.046 –.074

(1.190) (1.436) (1.840) (2.313) (1.322) (1.782) (2.312) (3.142) 

Normal
Distribution

Uniform 
Distribution



mean group ability, and the sample size, but no appreciable
changes were observed due to increase in test length. Thus,
if n = 15 items, ability distribution is normal, and the difficulty
interval is ±1 logits (see Table 1), the standard deviation of
T-outfit was 1.435 (N = 1000), and in the same conditions
but with a 30-item test (see Table 2), the standard deviation
of T-outfit was 1.431 (N = 1000). Only the standard deviations
of Eci2z and Eci4z increased slightly because of the increase
in test length. Thus, with a 15-item test, normal ability
distribution, and difficulty interval of logits (see Table 1), the
standard deviation of Eci2z was 1.458 (N = 1000), but if the
test length was increased to 30 items, the standard deviation
of Eci2z increased to 1.612 (N = 1000). 

Power of Fit Statistics

In Tables 3 and 4 is showed the power of each of the fit
statistics examined, in each of the manipulated conditions.
As all the items were simulated under the modified 3-p model
with the probability of randomly correct guessing at c = .25,
it was expected that none the items would be detected as
fitting the model, assuming that, for the Rasch model, the

probability of random correct guessing is 0. However, Table
3 (n = 15) and Table 4 (n = 30) provide very different results
from those expected. Generally, the power was low or very
low, especially in the Lz, T-outfit, and T-infit statistics, and
somewhat higher in Eci2z and Eci4z. When the ability
distribution was normal, regardless of whether the test length
was short (n = 15) or longer (n = 30), the power of the fit
statistics was very low when sample size was 500 or more.
For example, when the test difficulty interval was ±1 logits,
at the sample size of 500 and normal ability distribution, the
power of the five fit statistics was between 9% (Lz and T-
infit) and 11% (Eci2z and Eci4z). If the fit statistics were
calculated in the lower ability group, the power was between
12% (T-infit) an 18% (Eci2z and Eci4z).

As expected, the power increased with sample size in
all experimental conditions, but in sample size N = 1000,
using a lower ability group than the mean test difficulty,
uniform distribution, and item difficulty interval of ±2 logits,
the power of the fit statistics was close to 70%. Thus, when
n = 30, test difficulty interval was ±1 logits, the power of
Eci2z and Eci4z was 50% and 49%, respectively, which
increased to 71% and 70% when the test difficulty interval
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Table 3
Power of the Five Fit Statistics in the 15-Item Test with Normal and Uniform Distributions, Two Difficulty Intervals, and
Four Sample Sizes

Difficulty Interval
[–1, +1]                                                          [–2, +2]

Sample size                                                     Sample size 
Distribution Statistic 100      250 500 1000 100  250 500  1000

Lz .03 .05 .09 .14 .03 .04 .10 .30 
T-outfit .04 .05 .10 .15 .04 .05 .18 .38  

(0, 1) T-infit .03 .04 .09 .14 .03 .04 .09 .23 
Eci2z .06 .06 .11 .16 .06 .10 .20 .36 
Eci4z .06 .07 .11 .16 .06 .09 .17 .34 

Lz .04 .08 .13 .26 .03 .06 .15 .35 
T-outfit .05 .08 .13 .24 .04 .07 .21 .42 

(–1, 1) T-infit .05 .07 .12 .25 .03 .06 .14 .32 
Eci2z .08 .13 .18 .32 .10 .15 .27 .44 
Eci4z .08 .12 .18 .31 .09 .15 .25 .44 

Lz .06 .09 .11 .30 .04 .10 .18 .53 
T-outfit .05 .09 .13 .29 .06 .12 .24 .57 

(0, 1) T-infit .06 .09 .11 .29 .04 .09 .15 .43 
Eci2z .08 .12 .13 .29 .08 .16 .26 .46 
Eci4z .08 .11 .13 .27 .07 .16 .25 .44 

Lz .05 .12 .22 .40 .04 .11 .24 .55 
T-outfit .05 .09 .20 .37 .05 .16 .34 .56 

(–1, 1) T-infit .05 .13 .22 .39 .04 .11 .27 .52 
Eci2z .07 .16 .27 .45 .11 .24 .43 .63 

Eci4z .08 .16 .27 .44 .11 .24 .40 .61 

Uniform 
Distribution

Normal
Distribution
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was increased to ±2 logits. The increase was also significant
for the Lz, T-outfit, and T-infit statistics, which, at the
difficulty interval of ±1 logits obtained power values of
44%, 41%, and 43%, respectively; and they increased to
61%, 65%, and 56%, when the difficulty interval was logits.

Conclusions

In this simulation study, we examined whether three fit
statistics that are habitually used in the area of detection of
aberrant response patterns (appropriateness measure) can
also be used to detect items that do not fulfill the
assumptions of the Rasch model.

In view of the results obtained, it seems that the
usefulness of the item fit statistics (T-outfit and T-infit) and
of the statistics of appropriateness measure (Lz, Eci2z, and
Eci4z) is very limited because when using estimated
parameters, low or very low detection rates, usually with
sample sizes of less than 500 examinees, were detected. 

In any case, all the computer programs of parameter
estimation with IRT models include one or more item fit

statistics, so that psychologists should decide whether these
fit statistics are useful when making decisions to select items.
If they decide that they are useful, the following information
should be taken into account. First, the Lz, T-outfit, and T-
infit statistics do not tend toward the expected values when
they are calculated using estimated parameters. These results
are in accordance with those reported by Smith (1991) on
the evaluation of item fit and by Moleenar and Hoijtink
(1990, 1996) on the evaluation of person fit. As occurs in
person-fit evaluation (Li & Olejnik, 1997; Noonan et al.,
1992), the distributions of these statistics depend on sample
size, test-difficulty interval amplitude, group ability level,
and test length. Nevertheless, if the item difficulty interval
is relatively narrow, as the test length increases, the properties
of the distributions of the Lz, T-outfit, and T-infit statistics
improve considerably.

Second, despite the fact that the Lz, T-outfit, and T-infit
statistics are based on different concepts to evaluate the fit
of the items to the model, no important differences were
observed in the distributional properties of these statistics.
In fact, their behavior was observed to be similar
independently of the factors manipulated in this study. 

Table 4
Power of the Five Fit Statistics in the 30-Item Test with Normal and Uniform Distributions, Two Difficulty Intervals, and
Four Sample Sizes

Difficulty Interval
[–1, +1]                                                          [–2, +2]

Sample size                                                     Sample size 
Distribution Statistic 100      250 500 1000 100  250 500  1000

Lz .04 .05 .10 .15 .03 .06 .11 .23 
T-outfit .05 .05 .09 .16 .04 .08 .15 .35    

(0, 1) T-infit .04 .05 .09 .14 .02 .05 .09 .19    
Eci2z .07 .10 .16 .23 .08 .15 .26 .48    
Eci4z .07 .09 .15 .23 .08 .15 .25 .46   

Lz .04 .07 .13 .27 .03 .05 .10 .33    
T-outfit .04 .07 .13 .24 .04 .08 .19 .45    

(–1, 1) T-infit .05 .07 .12 .25 .02 .04 .08 .23    
Eci2z .08 .13 .21 .38 .11 .22 .37 .60    
Eci4z .08 .13 .21 .37 .10 .21 .35 .58  

Lz .05 .07 .13 .25 .05 .11 .24 .42    
T-outfit .05 .07 .12 .25 .05 .13 .28 .56    

(0, 1) T-infit .05 .07 .12 .25 .05 .10 .22 .37    
Eci2z .07 .10 .18 .32 .11 .21 .37 .60    
Eci4z .08 .10 .17 .32 .10 .21 .36 .58   

Lz .06 .12 .26 .44 .04 .12 .29 .61    
T-outfit .06 .12 .25 .41 .05 .17 .37 .65    

(–1, 1) T-infit .06 .12 .26 .43 .03 .09 .24 .56    
Eci2z .10 .17 .34 .50 .14 .32 .52 .71    

Eci4z .10 .17 .33 .49 .13 .30 .49 .70   

Uniform 
Distribution

Normal
Distribution
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Third, the behavior of the statistics Eci2z and Eci4z
(Tatsuoka, 1984) is satisfactory in all experimental conditions,
except for some isolated case of Eci4z. Therefore, it seems
that their distribution (the mean) is relatively stable,
independently of test length, sample size, type of ability
distribution (normal vs. uniform), and group ability level.
The same cannot be said about their variability, which showed
an increase as a function of sample size, test length, difficulty
interval amplitude, and type of ability distribution. These
results partially contrast with those found when these statistics
are applied to evaluate person fit. Thus, Noonan et al. (1992)
found that the ECI4z statistic fit a normal distribution better—
both the mean and the standard deviation—than the ECI2z
statistic and the Lz, T-outfit, and T-infit statistics, showing
a less skewed distribution and showing less influence of
sample size. However, Noonan et al. (1992) study used true
parameters, not estimated ones. 

Fourth, a small sample size (N = 250 or less) may be
sufficient (Lord, 1983) to obtain estimations that are consistent
with item difficulty parameters, but it will not help to decide
whether or not the items fit the Rasch model, because the
power of the five fit statistics was relatively low or very low. 

Fifth, the power of the fit statistics drops drastically
when the item is a multiple-choice item and can be guessed
correctly at random. In this case, not even a large sample
size (N = 1000) ensures sufficient power of any of the five
statistics to guarantee that an item does not follow the
assumption of the Rasch model, where the probability of
correct guessing at random is 0. In any case, if N = 250 or
higher, the ECI2z and ECI4z statistics present higher power
to detect these items than the statistics based on the
likelihood function (Lz) or on T-outfit and T-infit residuals. 

Finally, in practically all the experimental conditions
manipulated, the power of the Eci2z and Eci4z statistics was
between 5% and 10% higher than that Lz, T-outfit, and T-
infit, although these differences were even greater when the
ability distribution was normal, their mean was the same as
the test mean, and the sample size was less than 1000 cases. 

In view of these results, perhaps some of the well-known
computer programs used to examine the fit of the Rasch
model should include the Eci2z and Eci4z statistics as item
and person fit statistics. 
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