Study of a Complete Abstract Differential Equation of Elliptic Type with Variable Operator Coefficients, I

  • Angelo Favini
  • Rabah Labbas
  • Keddour Lemrabet
  • Boubaker-khaled Sadallah
Palabras clave: Abstract differential equations of second order, Variable operator coefficients, Mixed boundary conditions, Maximal regularity, Compatibility conditions,

Resumen

The aim of this first work is the resolution of an abstract complete second order differential equation of elliptic type with variable operator coefficients set in a small length interval. We obtain existence, uniqueness and maximal regularity results under some appropriate differentiability assumptions combining those of Yagi [13] and Da Prato-Grisvard [6]. An example for the Laplacian in a regular domain of R³ will illustrate the theory. A forthcoming work (Part II) will complete the present one by the study of the Steklov-Poincaré operator related to this equation when the length δ of the interval tends to zero.

Descargas

Los datos de descargas todavía no están disponibles.

Descarga artículo

Crossmark

Métricas

Publicado
2008-04-15
Cómo citar
Favini A. ., Labbas R. ., Lemrabet K. . y Sadallah B.-k. . (2008). Study of a Complete Abstract Differential Equation of Elliptic Type with Variable Operator Coefficients, I. Revista Matemática Complutense, 21(1), 89-133. https://doi.org/10.5209/rev_REMA.2008.v21.n1.16438
Sección
Artículos