Real Cubic Hypersurfaces and Group Laws

  • Johannes Huisman
Palabras clave: real cubic hypersurface, real cubic curve, real cubic surface, pseudohyperplane, pseudo-line, pseudo-plane, linear subspace, group,

Resumen

Let X be a real cubic hypersurface in Pn. Let C be the pseudo-hyperplane of X, i.e., C is the irreducible global real analytic branch of the real analytic variety X(R) such that the homology class [C] is nonzero in Hn−1(Pn(R), Z/2Z). Let L be the set of real linear subspaces L of Pn of dimension n − 2 contained in X such that L(R) _ C. We show that, under certain conditions on X, there is a group law on the set L. It is determined by L + L0 + L00 = 0 in L if and only if there is a real hyperplane H in Pn such that H • X = L + L0 + L00. We also study the case when these conditions on X are not satisfied.

Descargas

Los datos de descargas todavía no están disponibles.

Descarga artículo

Crossmark

Métricas

Publicado
2004-01-01
Cómo citar
Huisman J. (2004). Real Cubic Hypersurfaces and Group Laws. Revista Matemática Complutense, 17(2), 395-401. https://doi.org/10.5209/rev_REMA.2004.v17.n2.16739
Sección
Artículos