On the nonlinear Neumann problem involving the critical Sobolev exponent and Hardy potential.

  • Jan Chabrowski
Palabras clave: Neumann problem, critical Sobolev exponent, singular Hardy potential, least energy solutions, topological linking

Resumen

In this paper we investigate the solvability of the Neumann problems (1), (12), (16), (32) and (43) involving the critical Sobolev and Hardy exponents. It is assumed that the coefficient Q is a positive and smooth function on ¯, µ and _ are real parameters. We examine the common effect of the mean curvature of the boundary @, the shape of the graph of the coefficient Q and the singular Hardy potential on the existence and the nonexistence of solutions of these problems.

Descargas

La información sobre descargas todavía no está disponible.
Publicado
2004-06-04
Cómo citar
Chabrowski, J. (2004). On the nonlinear Neumann problem involving the critical Sobolev exponent and Hardy potential. Revista Matemática Complutense, 17(1), 195 - 227. https://doi.org/10.5209/rev_REMA.2004.v17.n1.16800
Sección
Artículos