Groups with complete lattice of nearly normal subgroups

  • Maria De Falco
  • Carmela Musella

Resumen

A subgroup H of a group G is said to be nearly normal in G if it has finite index in its normal closure in G. A well-known theorem of B.H. Neumann states that every subgroup of a group G is nearly normal if and only if the commutator subgroup G0 is finite. In this article, groups in which the intersection and the join of each system of nearly normal subgroups are likewise nearly normal are considered, and some sufficient conditions for such groups to be finite-by-abelian are given.

Descargas

Los datos de descargas todavía no están disponibles.

Descarga artículo

Crossmark

Métricas

Publicado
2002-01-01
Cómo citar
De Falco M. y Musella C. (2002). Groups with complete lattice of nearly normal subgroups. Revista Matemática Complutense, 15(2), 343-350. https://doi.org/10.5209/rev_REMA.2002.v15.n2.16891
Sección
Artículos