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Generalized Fourier expansions for distributions
and ultradistributions.

5. N. MELIKHOV

Abstract
Let D, (I1,)" be a space of distributions or ultradistributions of
p
Beurling type on p-dimensional parallelepiped I, := [] [-aj,¢;] C
i=1

R?. We investigate the following problems:
1) When can any element of D,([1,) be expanded in absolutely
convergent series in a system of generalized exponentials
(€x(, Inene with special exponents A(n), n € NP. 2) When can a se-

quence of the coefficients {¢n)nenr in an expansionsu = 3 €A,
nefNy
be chosen so that it depends in a continuous and linear way on

u € Du(Il), where 0 < b; < q; forall1 <j<p.

Introduction

The expansions of the distributions and the ultradistributions in gener-
alized exponential series have been investigated by many authors (see
Vladimirov [25] (Ch.I1, § 7}, Edvards [5] (12.5), Meise [14], Franken,
Meise [6], Braun, Meise [2]). Here the elements of kernels of convolution
operators have been expanded in the series of exponential solutions of
the corresponding homogeneous convolution equations, in particular, the
periodic distributions and ultradistributions. All these representations
have the uniqueness property, i.e. any distribution or ultradistribution
can be expanded in a unique way. This paper concerns the systems of
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generalized exponents (ey, Jnens in the spaces of distributions or ul-
P

tradistributions on the p-dimensional parallelepiped [, := [][~a;, a;],
j=t

where p € N and a; > 0 for any 1 < j < p, that admit a nontrivial

expansion of zero. First fundamental results for such systems of expo-

nentials (in the spaces of analytic functions in convex domains in C)

were obtained by Leont’ev (see [13]).

In presented paper we solve the following problem. Let D, (I1,)j
be the space of the ultradistributions of Beurling type or the distrib-
utions on the parallelepiped TT, with the strong topology. Let M) =

(/\E’))?,__l, n € NP, be a sequence of the exponents where (AL{’)MN for
any I < j < p are all zeros of an entire {in C) function L; and any
zero of L; is simple. In part one of the paper we show necessary and
sufficient conditions that any w-ultradifferentiable on [I, function can
be expanded in a generalized Fourier series in the system (C’A(,.))neNP

absolutely convergent in D, ([1;)5. These conditions are established in

traditional terms of lower bounds of |L;| and |L3()\£i))| foraltl1 < j <p.
We show too that if these conditions are fulfilled then any u € D)5
can be expanded in an absolutely convergent series in (€x(n )nenir. In the
terminology of Korobeinik [10] this means that the system (ex(ny Inetn
is an absolutely representing system (ARS) in D, (M.} Moreover we
show that this system (ex ,}nenr is an ARS in an ultradistribution or
distribution space D, (K)j for any compact set K C II,.

In part two we study when a sequence of the cocfficients {¢,)nepe in

an expansions uw = Y. €€l can be chosen so that it depends in
nENP

a continuous and linear way on u € D, (I1y); where 0 < b; < q; for all

1 < 7 < p. In other words, we solve a problem when a corresponding

representation operator £ : ¢ = }_ cnéy,, has a continuous lincar
nENy
right inverse. In addition for an entire function @ in C¥ with Q(z,2) =

)

[1 L;(2;) for all z € €7 we introduce an interpolating functional Qg :
J=1

C?r x D, (I1y); — Csuch that for any z, u € C? the functional Qg(z. p, )
is continuous and linear on D, (I1;)5. If a continuous linear right inverse
for the representation operator exists we show that one of them is the
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wres | (=1)PQo Ay Ay, /H LAYy
J 1 TIEN"

We note that a part of the the results of this paper which are related
to the case of the distribution space were annonced in [21].
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1 Generalized Fourier series for ultradifferen-
tiable functions in a space of ultradistribu-
tions

1.1 Definition. A continuous increasing function w : {0, +00) —
[U 400} is called a weight functionif it satisfies the following conditions:

(o) w(2t) = O(w(t)) as t = +oc

(1) Tiz)dt < o0
1

(7) logt = o{w(t)) as I = +oc
(8} ¢ = woexp is convex on R.

We denote by o™ the Young conjugate of ¢, i.e. @ () 1= sup(zy —
gzt
wl(y)}y forall z > 0.
Let w be a weight function. For a compact set & C R? we deline a
space

ELK) = {J € C=(K)|

bll]) Sllp If (-E ()\p _”h?" [} I < o v] f()l d“ in E N
l‘reb\lo IEJ\
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endowed with the natural topology of a Fréchet space.
For an open set  C RP let

£, (1) = Kpcr(é_LEw(K).

For a set K C RP the elements of £,{K) are called w-ultradifferentiable
functions of Beurling type on K.
For a compact set K C R? we put

D, (K) := {f € E.(R")|supp(f) C K}

and endow D, {K) with the topology induced by £, (R?).
For an open set £} C R? we define

D, () := h’lggn D (K).

For w(t) = log*t and a compact or open set K C R? let
D, (K) = D(K) = {f € C°°(RP) |supp(f) is compact in K}

and

EL(K) = C®(K).

The spaces D(K)} and C*(K) will be equipped with the natural
topologies.

By Do (K)j (resp. &,(K)j) we denote the dual space of D, (K)
(resp. £,(f()) endowed with its strong topology.

If w is a weight function, the clements of D_(K) are called w-
ultradistributions of Beurling type on K.

For a convex compact set K C RF let Hy denote its support function,
ie.

[{I\(y) =sup <x, ¥ >, YE Rpa
zeK

P
where < A, z>:= 3" Ajz; forall Az e CP.
j=t

For some r,¢q € R? we write r > ¢ if r; > g; forall 1 < j < p and
r>qifr;>qforalll1 <7 <p.
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P
For any r € RP such that r > 0 we put II, := J][-r;,r;] and
j=1

p
H, := Hy, . Note that H.(y)= }_ rjly;| for all y € RP. Hereafter,

3=1
l2] ;=< 2,2 >"2, w(z) :=w(lz]), Imz:=(Im z)i_, forall ze C.

For any r > 0 and ¢ € £,(I1,)" its Fourier-Laplace transform @ is
defined as

B(A) = elexp(—i < A, - >)), AeC.

We call the following elements ey € D, (Il,)’ the generalized expo-
nentials:

e/\(f) = f(A)l f€ Dw(nr)'l AeCr.

We define for all r > 0 the following spaces of entire functions:
Aun(r,p) = {f € A(C) |
Al = sup | f(z)| exp(—H,(Im z) + nw(z)) < oo}, n € N;
Au(r,p) = proj Aunlrip), Au(p) :=ind Au(r.p);

Bum(r,p) :={f € A(C?)|

Qm(f) ‘= sup |f(z)!exP(_Hr(lm z) - mw(‘z)) < 00}1 m € N;
zeCr

BW(T‘, P) = :r?g Bw.m(ra P)'

By Paley-Wiener-Schwartz theorem for ultradistributions and dis-
tributions (Braun, Meise, Taylor [3] (3.5 Proposition), Meise, Taylor
[17] (3.6 Proposition) and Hormander [8] {Theorem 7.3.1)) the following
holds

1.2 Proposition. Let w be a weight function or w(t) = logtt. The
Fourier-Laplace transform F : @ — @ is an isomorphism of D, (I1,)
onto Ay(r,p), of £,(11,); onto B,(r,p) for all r > 0 and of D, (R?)
onto Au(p).

1.3 Definition. As in Meise, Taylor [17] we call a weight function w a
strong weight function if in addition the following holds




354 S. N. Melikhov

(g) there are 1 < ) < C such that w{Ct) < Cw(t) for large ¢.

Note that w is a strong weight function if and only if the (equivalent)
conditions of 1.3 Proposition of {17] are fulfilled.

1.4 Convention. For the sequel, let w be a strong weight function
or w(t) := log*™t. We fix a € R? such that a > 0 and put E{a,p) :=
D,(M.)5. Forany 1 < j<plet L; € B,(aj, 1), (Aﬁj))new denotes the
set of d” zeros of L, and any zero of Lj is simple.

We write

P
Any 1= (AU)H, z::HLJ ) L' (M) H U),

=1

P
(z—p)' =TI (z; — ;) forall n € NP and z,,0€ CP.
=1
By 1.2 for any n € NP there exists a unique functional ¢, € £,(I1,)’
such that

Znlz)(z - /\(n])lL'(/\(n)) = L(z) forall z € C” and n € NP,

The system (@.)aenr is biorthogonal to ((;:_\(”])neNp, ie, ‘?‘D"(C'\(k]) =
dap for all n.k € NP, We call for any v € £,(I1,) the series
2 @n(v) ey, the generalized Fourier series of v.

C nghir

1.5 Remark. Note that the set of the functions Liny = L/(- - ,\("))',
n € NP, is bounded in B,(a,p), i.c. there is s € N such that

sup ¢s{L(n)) < oo
nelNr

We put forany r > 0and m e N

el = sup [u(FTN(N))] w € DL,
11lm=1

and

qr-n(f) -=  sup |}H_1(g)(f)l e fw(nr)

Qm(y)Sl

I we identify the dual space of A, (r. p) with D, (1.} by means of the
bilinear form < - >, then < fiex >= f(A) for all A € C and f €
Au{r.p). Therefore for any A € CP and me N

ealln, < exp(H {Im A) — mw(A}).
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To accurately desribe the space of the sequences of coefficients of all se-
ries in the system (e, Jnenr that are absolutely convergent in D, (11;)5
lower estimates of [[ea]|s, are necessary.

1.6 Definition. A weight function we call a (DN)-weight function if for
it the (equivalent} conditions of 3.4 Theorem [16] are fulfilled.

By Meise, Taylor [16] (3.1 Proposition) w is a (DN)-weight function
if and only if
for all C' > 1 there are By > 0 and 0 < & < 1 such that

w HCR)W™(6R) < (w™(R))? for all R> Ry. (1)

1.7 Examples. The functions w in (a}-{b) below are strong weight
function and (DN)-weight functions.

() w(t) :=t*(log(l +¢))° where0<a<1land o >0.
() w(t) = exp(aflog(1 +))?)(log(1 +¢))* where a, 3 > 0 and ¢ > 0.

1.8 Lemma. () For any r > 0 there are the functions uy and vy, M€
CP, which are plurisubharmonic on CF, such that uy(A) >0, wu\(A) >0
and for any k € N there are m € N and C > 0 with

upy(z) < He(Imz) — He(Im A} — kw(z) + mw(A) +C
and

va(z} < Hi(Imz) - Ho(Im A) + mw(z) — kw(A) + C
Jor all X,z e CP.

(71} The following assertions are equivalent:

(1) There are the functions uy, A € C*, which are plurisubharmonic on
CP. such that ux(AX) > 0 and for any k € N there are m € N and «
constant C with

ux(z) < mw(z) — kw(A) 4+ C for all A ze C.
(i) w is ¢ (DN)-weight function.

Proof. The statement (I) holds by Langenbruch [12] (4.10 Lemma: see
tts proof too).
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(11): (i} = (i): By Langenbruch [12] (3.1 Theorem b)) from (i} it
follows that

there is v > 0 such that forany C > 1 and forany n € N
there is /{n + 1) € N with

(@ (nR/ (21 (n+ D)0 (CR) < (W7 (R) O (2)

for large R.

For any C' > 1 we shall take n € N such that C'y/n < 1, choose
I{n+ 1) > n according (2) and put é := n/(2/(n+ 1)}. We have by (2)
that for large R

w ' (6R) _ [w ' (SR " cwTiB
w'(R) “\w'(B)) = wl(CR)

Hence (1) holds and w is a (DN}-weight function.
(11} = (z): We note that by Meise, Taylor [16] (3.1 Proposition) (i)
is equvalent to

For any d > 0 and any C > 1 there exists Fp and 0 < 4 < |
such that for all B > Rp the following holds

wHCR) (W™ (BR)) < (w7 (R (3)
By Langenbruch [12] (3.1 Theorem a}) {z) follows from

there are C' > 1 and v > 0 such that for any n € N
there is /(n) € N such that for large R

(w‘I(nR[IgnH)C‘Y/n < w_{R)

w1 (R) S CRY W

For any n € N and for d := 2/n, C := 2 we choose 0 < § < 1 and Ry
according (3) and /(n) € N such that n/I(n) < 4. Then by (3} for all
R > Ry

W RN fwm RN\ w (R
( o (B ) <(w-'(m> = STCRY

Hence {4) (with v = 1) and (i) hold.



Generalized Fourier expansions for distributions. .. 357

1.9 Corollary. For any r > 0 there are functions fy, A € CP, which are
entire on CP, such that fA(A) = 1 and for any k € N there are m € N
and C > 0 with

[fa(2)| € Cexp(He(Im z)— H,(Im A) = kw(z)+mw(A)}} for all A,z CP.

Proof. This assertion follows from 1.8 Lemma and Hérmander [9] {4.4.2
Theorem).

1.10 Corollary. For anyr > 0 and k € N there are m € N and ¢ > 0
such that for any A € CP the following holds

cexp(H(Im X) ~ mw(})) < llealfy < exp(H, (Im A) — kw(})).

Proof. The upper estimate for ||ey||; follows from the definition of ||-||}.

To prove a lower estimate, we take by 1.9 the functions fy € A, (7, p),
A € €7, with fy(A) = 1 such that for all & € N there are m € N und
C < oo with

a2} £ Cexp(H,(Imz)— H.(Im A} - kw(z) + mw(A)) for all A,z € CP.
For the functions gy := C~lexp(H,(Im A) — mw(A)) fx we have
< garex >= C lexp(H,.(Im X) — mw(})) and |ga|lx < 1.
Consequently for ¢ := C~! and for all A € C?
leally > e exp(H, (Im A) = maw(V)).

1.11 Coroliary. For any k € N there are m € N end B < oo such that
for any A, h € CP with |h| < p the inequality |Jexqn||s, < Blleall} holds.

1.12 Sequence spaces. Representation operator. Now we intro-
duce for all r € RP such that » > 0 the spaces of sequences corresponding
to the system (e, Jnene:

Kn(r) .= {c= (cn)nenr C C|

lelm = Z lea] exp(H (Im Agny) — mw(A(,y)) < o0}, m € N,
neNP
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K(r):=ind K,(r);

m—

Am(r) == {c= (en)nenr C C|

m

|Z| := sup |eafexp(=He (I Agyy) + mw(Agy)) < oo}, m e N;
nehe

Ar) == projAn(r).
=1

The space A(r) can be identified with the dual to K(r) space by the
bilinear form < c,d>:= 3 cpdy, c€ K(r), de A(r).
neNP
It follows from 1.10 Corollary that a series Y Cneh,, Where ¢, €
neNP

C for all n € NP, is absolutely convergent in D,({[1,)}; if and only if
(Cn)nENP € I((T‘).

As representation operator R we define by R{c) == 3 RN+

nel#

¢ € K{r). It maps continuously and linearly K(r) into Dy (1), By

Korobeinik [10] we call (€x(n Jnenr an absolutely represcnting system
(ARS) in Dy (M. )5 if R: I((rS — D, (11, )} is surjective.

In the first section we show that the system (e,\(n})nem is an ARS in
E{a, p) under the natural (traditional) conditions for the functions L;
(as in Leont’ev [13], Korobeinik [10]).

At first we characterize those functions L; as in 1.4 for which the
generalized Fourier series of v converges absolutely in £(a, p) to » for all
v € £,(11,). This question originates from Leont’ev’s study [13] for the
functions analytic on a convex domain in C. '

du
We put Dj(u) = —, u€ Ea,p),1<7<p
3Ij
1.13 Lemma. If for some A € C? and some v € E{a, p) the cquality
Dj(v) = —iAjv holds for all 1 < j < p, then there cxists pp € C such
that v = pey.

Proof. We give a bricf proof of the well known fact. Since D;{v)+idv =

0 for all 1 < j < p, applying the Fourier-Laplace transform, we obtain,

that < (z; — A;) f(2),v. >=0for all f € A (a,pyand 1 < j < p. If

g€ Ay{a,p)and < g,ey>=0,i.c. g(A) =0, for any 1 < j < pthere is
P

g, € Aula, p) such that ¢(z) = 3 (z; — Aj)g;(z) for ali z € C'. Then
i=1
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P
< g,v >= 3, < (z; — A;)g;(2),v. >= 0. Consequently there exists
1=1
i+ € C with v = pejy. )
1.14 Lemma. If M C C7 is an uniqueness set for A,(a,p) then M is
an unigueness set for B, (r,p) for any 0 <r < a.

Proof. Let f be a function in B,(r,p) such that f = 0 on M. We
choose zo € M and a function g € A (e — r,p) with g{z) # 0. Since
fg € A (a,p) and fg = 0 on M, we obtain that fg = 0 on C? and
consequently f = 0 on C°.

We note that D, (I1,); for any 7 > 0 is a regular (LB)-spase. Hence
by [18] (Theorem 5) a series 3 u, converges absolutely in Dy (I1,)} if
neNP
and only if there exists m € N with Y ||lu,||5, < o0.
neNP

1.15 Theorem. Let L;, 1 <3 <p, ¢n,n € NP, andw as in 1.4. The
Jollowing assertions are equivalent:
(¢) For any v € E,(I1.) the series 3 n(v) ey, converges absolulely

ngNP
in Ea,p) to v.

. . L{A)
(7) For any A € CP the series
& OO 3r)

1 eA(") converges

absolutely in E(a,p) to ey.

(#21) For any 1 < j < p the series (L;-(AH)))" €,(5) converges ab-
meN m
solutely in E(a;, 1) to 0.

. : . L;(z)
(iv) Forany 1 < j < p and z € C the series > - —¢€ ()
meh Ly (AN - W)

converges absolutely in E{a;, 1} to e,.
(v) Forany 1< j<p

1) there exists an increasing sequence Ry > 0, s € N, such that lim R, =
$—00

+oo and there is ¢ >t with
|L;(2)] > e~ Lexp(a;)lmz| — cw(z))

Jor all s € N and =z € C satisfying |z| = R, and
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2) |L'(A | > ¢ texp(a;|im /\(J)| - cw(/\s,{))) for all m € N.
(vi) For all f € Au(a,p) and A € CP the Lagrange’s interpolation for-
mula holds: L
f(A) = f(An ,
%:; ) TR T3 = 2!
where the series converges absolutely (in C).

Proof. (i) = (ii): This holds since by 1.4 for all A € C? and n € NP
pnlex) = @n(A) = LA/ (LA (A = Am)).

(i2) = (4i1): We fix A € CF with A; # A9 for all m € N and

. ) L(A)
1<7<p By (id) ex= €N 1,
STSP B = e T Ayt

converges absolutely in E(a, p). This implies that for all f; € A, (a;, 1)

[1505) = <H fj(zj),(ex)z> =
=1 Jj=1

where the series

> Eieas oL H HAE)
: Li(A9) 20) :

i \gmw LL8h oy

We fix 1 < k < p and obtain by (ii)

0 =iAgen+ Dilen) =

: L) [ T L;(A;) :
2 L(A‘”’) ( 1 L (EH0; A“’)) B O

nene L (Any') \ =150

where the series converges absolutely in E(a,p). Choose g; € A,(e;, 1)
for any 1 < j < p with j # k such that g;(};) # 0. We have by (6) for
all fe Ay(ax. 1)

0= (Z LR(’\k)) f(,\“‘))) H (Z L;(A;) Nl gj(AS,{)))-

meN Lk J=1j#k \meN L (’\(J)_)L___ m )
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From the last equality by (5) it follows that for all f € A (ax, 1)

Li(Ag) L
0= 3 Lty = (53 Bl )

k
L () ! foper®

Since Li(Ag) # 0, we obtain 0= 3 (L} (A(k))) NG where the series
meN
converges absolutely in E(ag, 1).

(i11) = (4): We use the idea of the proof of [20] (Thm 1, 1) = 3)).
By (iii) and 1.10 there is k € N such that

Z 17 IHE/\(H)Hk < oo. ()
neNP

By 1.5 the set {L/(- — Amy)! = Bnl'(A@m)) |n € NP} is bounded in
B.(a, p). Consequently there are s € N and C; > 0 with

Cs
lon(v}] < g5 (v )gs(Pa) < ET_)'%(U)

for all v € £,(M,) and n € NP. Hence by (7) 3 [wn(v)lllex, ik <
neNF
C,Aq*(v) forall v € £,(I1,) and a continuous linear operator

thn Jermy: V€ Eul(lla),
neNP

from £,(I1;) into E(a,p) is defined.
We prove that T : £,([1) = E(a,p) is the embedding map. Let

vy = T(ex), A € C°. From vy = 3, @n(A)ey, it follows that for any
neNP
1<k<p

(Dk(v\ +tz\kUA (H f_,(:L‘J))

; Lk(/\k) - P L (/\ J

for all A € CP and f; € Dw([—aj,aj]). Since by Braun, Meise, Taylor
[3](8.1 Theorem), Meyer [22] (if w is a weight function) and 7] (Ch.1I,
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§ 3, Ex.4) (if w(t) = log*t) the set of all functions 12] filz;), where

=1
fi € Dy([-aj,a;]) for any 1 < j < p, is total in D,(I,), we have
Di(vy) +idvy =0 forali A € C° and 1 < k < p. Hence by 1.13
Lemma for any A € C? there is h(A) € C with vy = A{A)ex. By the
definition of T" we have h(A(,)) =1 for all n € N?. Let 7" be an adjoint
to T operator from A, (a, p) into B,(a,p). Then T is the multiplication
operator with the function h,ie. TY(f) = hf forall f € A,(a,p). We
prove that h € B,(0,p). Since T : 4,,(a,p) — B.(a,p) is continuous,
by Grothendieck-Theorem there exists { € N such that 77 is continuous
from A, (a,p) to By (a,p). Consequently for any k € N thercis B > 0
such that for all f € A,(a,p)

sup |1(z) f(z}] exp(~Ho(Im z) ~ lw(2)) <
zer

B sup |f(z)] exp(~Ha(Im 2} 4 kw(2)). (8)
zeCr

From (8) with f := f\, where f are the functions from 1.9 Corollary,
it follows that there are m € N and C > 0 with |A{A)| < BC exp((m +
Dw(A)) for all A € CP. Since hf € B,(a,p) for all f € A,(a,p), the
function £ is entire in C7. Hence h € B, (0, p).

Since A{A)ey = ZI% {o‘n()\)e,\(n] for all A € CF , where the series

T P
converges absolutely i?] E(a,p), we have h{(A) f(A) = Y En{A) fAm)
n P

for all f € A,(a,p). Therefore for any f € A,(a,p) \ﬁiIih fApy) =0
for all » € NP it follows hf = 0 and because f = 0. Consequently
{Am) | m € NP} is the uniqueness set for Ay(a,p). By 1.14 Lemma it is
the uniqueness set for B, (0, p), too. Hence A = 1 and T is the embedding
map of £,(I1,) into E(a, p).

(¢4¢) = (2v): This holds by (1:d) = (i) for p = 1.

(tv) = (212): This holds by (i1} = (4i1) for p = 1.

(¢12} = (v): The proof of the conditions on L; as in (v) goes from
Leont’ev {13] (see Korobeinik [10] (p. 114,115) and [20], Note, p. 66, too).
We fix 1 € 5 < p. Since the series ZN(L:"('\Q))-EC-\E.{’ converges ab-
solutely to 0 in E{aj, 1) and the opcrftor Dhy is continuous in £(a;, 1),
the series ZE:[\!(L:,-(A&)))—ID?((;A%,) converges absolutely to 0in £{a;, 1)

LA
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too. Hence there is £ € N satisfying

1 Rk
K=y ——— (1 4+ D) le o lli < o0 (9)
,,% L (A9 A
Ly(z)

By (ii1) = {iv) we have ¢, = . .

i) = | mze:N L ATE=A8h
We put B, i={ze€C||z - Ag)l < (14 I/\L{)[)‘z} for any m € N. By
(9) for all z € C\(UpmenBm) the following holds

€0 forany z € C.
o

lfe-llx < K1L;(2)I- (10)

Since L; is an entire function of exponential type, we have > (1 +
meN

|)\${i)|)_2 < 0o. Hence there is an increasing sequence R; > 0 such that
{z € C||z| = Rs} N (UmenBm) = @ and consequently (10) holds for all
s € N and z € C with |z] = R,. From here by 1.10 we obtain (v), 1}.
From (9) and 1.10 it follows (v}, 2). _

(v} = (#42): From (v), 2) it follows that %N(L;(,\g)))‘le’\ﬁ, con-
verges absolutely in Efa;, 1) for all 1 < j < p. By (v}, 1) it converges
to 0 (see the proof of Theorem 5 in [20]).

Since the Fréchet space D, ([} is nuclear, by Pietsch [24] (4.4.2
Proposition) (47} is equivalent to (vz).

From the proof of {ii¢) = (v} in 1.15 Theorem it follows

1.16 Remark. FEvery of the assertions (#) — (vi) of 1.15 Theorem is
requivalent to

(v Forany1 <j<p

'Y there are o sequence of circles By 1= {z € C||z = pts| < t5}) and a

constant ¢ such that 3 15 < co and
seN

|L;(2)} > e Vexp(H,(In z) ~ cw(z)) for all z € C\ (Usenl3,)

and

2) Uf()\f,‘?)] > c"lcxp(uj|lm)\£,{}| - r:w(/\g,{))} for all wm e N.

From Korabeinik [10] (Theorem 7) we recall
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1.17 Lemma. For any sequence (suyqhene in O with |ug| — oo the
system (e#m)geNp isan ARS in E(a, p) f and only if for any k € N there
are m € N and a constant C' such that

I71lx < C'[SEUNIiIf(#(:))FeXP(HHa(Imi-t(a))+mw(#(:))) for all f e A,(a,p}.

1.18 Theorem. If the assumptions of 1.15 Theorem are fullfilled and
one of its statements (i) — (vi) holds, then (e, )nenr is an ARS in

E(a,p).

Proof. To apply 1.17 Lemma, we use a method of Napalkov [23]. We
fix £ € N. By 1.5 Remark and 1.15 Theorem, (v) there are m; € N and
a constant Cy such that forall A € CP and n € NP

|L(A)]

m S C] exp(Ha(Im /\) + mlw()\))

and
IL' (M)l 2 CT ' exp(Ho(Im Ay} = miw(Am)))-
Note that there exists K € N such that
P p
WD 4) S KO wltj)+1) for all ty,...,¢; > 0.
=1 i=l1

Since w is a subharmonic function of finite order on C, by Yulmukhaine-
tov [26] (Theorem 5) there are a function go € A{C), a sequence of
the circles B, := {z € C||z — p,| < ¢,} and a constant C satisfying

>ty <oc and
sEN

| K (my+k+1)w(z) —log|go(2)|] < Colog(l+{z]) for all z € C\(U,enB;).
(For w(t) :=log™t we put go(2) := zH(mi+5+1) It follows Cy = 0.) Let

B:={AeC||A;—pus|>tsfor all se N and 1 <5 <p}.

P
For a function g(A) := [] go(A;)} there is a constant Cy such that for all
=1

AeB
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(L+ A" exp((ms + & + Lw(A)) < Jg(V)] <
(14 [A]) % exp(K p(m1 + k + L)w()).

(For w(t) = log*t we have C3 = 0.) In a standart way (with the help of
the maximum principle) we deduce from the last inequalities that there
are a constant Cy and my € N such that |g(A)| € Cyexp(maw(A)} for
all A € CP. By 1.15 (vi) for any h € A,{a,p)

L)

= P
R(A) = n%;ph()\(n))[l,(,\(n))_ﬁ__ o) for all A € CP. {11)

Since fg € A,(a,p) for all f € A,(a,p}, by (11) we have forall A€ B

L(A)
Ay = A A
and
sup | F(A)|exp(= Ha{lm A) + kw(A)) <
»eB
CiCa Y 1f (Al exp(maw(Any) + muw(An)) = Ha(lm A()))
neNpP
sup exp{Cstog(l + |A]) — w(A))
AeCr
<Cs sup, |f (M)l exp(=Ha(Im Agny) + mow(Apy)),
where

Cs := CiCyexp ( (Cslog(1+ |A]) — w()\))) 2. exp(—2w(Am)) <

sup
AeCr neENF
oo and mg = + me + 2.

By the maximum principle there are C > Cs and m > mg such that for
all f € A, (a,p) we have

”f"k < C Séjrgp lf(’\(n))l exp(—Ha(lrn ’\(n)) + m'w(’\(n)))-

By 1.17 Lemma (ex , )aene is an ARS in E{a, p).
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Because statement (»} of 1.15 Theorem is valid for the functions
L;(z) :=sin(a;z), 1 £ j < p, the following corollary holds, where n/a :=
(nj/a;)i_, foralln e 2P !

1.19 Corollary. The system (exno)nezr is an ARS in E{a,p). Every
function v € E,(I1,) can then be expanded inio @ Fourier scries ab-

solutely convergent in E(a,p): v = 3 @u(v)esnsa, where the system
neZr

(On)nezr C EL(Ig) is such that

P
Gn(2)(z = )t = (=)l Ha;n’ sin{a;z;) forall z € CF and n € Z7.
=1

1.20 Corollary. Let K be a compact set in RP. For all a > 0 such that
K C N, and for all functions L;, 1 < j < p, satisfying the statement (v}
of 1.15 Theorem the system (ex, )nenr is an ARS in Dy, (K)}. Every
function v € £,(11,) in addition can then be ezpanded into a generalized

Fourier series absolutely convergent in Dy,(K)y: v = glpgon(v)e,\(ﬂ],
where the system (n)nenre in E,(I1,) asin 1.4.

1.20 Corollary follows from Hahn-Banach theorem, 1.15 Theorem
and 1.18 Theorem.

1.21 Remark. As in [19] we can prove:

"ADDED IN PROOF. The condition (v) of 1.15 Theorem is satisfied for the entire
functions L; of exponential type such that for each 1 < j < p there is a constant K
with

0< inf |Ly(z)fexp{—ay[lmz]) < sup [L, (s} exp(—a,|linz]) < +oc
bm z|> K ltm =)> K

and inf AV — )\s.’) > 0, where ,\L{’ mer 15 the set of all zeros of L, and any zero of
el J;

L, is simple. The functions as above are called the functions of sine type; the class
of such functions (for 4; = m) was introduced by B. Ya. Levin. Other examples of the
functions of sine type, besides sin(a,z), may be found in the paper of B. Ya. Levin and
Yu. I Lyubarskii " Interpolation by entire functions of special classes and expansions
in exponential series connected with it”, lzv. Akad. Nauk USSR Ser. Mat. 39
(1975), No 3, 657-702 (Russian}; English trans. in *Math. USSR lzv.” 0 (1975). In
particular, the condition (v} of 1.15 Theorem is satisfied for the functions L,(z) :=
Ayexp(iayz) + Byexp(—ta,z) + €, 2 € C, with A4, B, C, € C, 4,8, #0,C? #
14,8, 1 <5< p.



Generalized Fourier expansions for distributions. .. 367

Let (jiy)ken be a sequence in CP such that bty — 0o and the system
X = (e ke is an ARS in the space £,(I1,) of it endowed with induced
topology from E(a,p). Then X is an ARS in E{a,p) loo.

2 A right inverse for a representation operator
and a formula for it

In this part we solve the following problem: Assume that a sequence of
exponents (Aqny)nenr as in 1.5 is such that the statements (1) — (v1) of
1.15 Theorem are valid. We fix b € RP with 0 < b < a. By 1.20 Corollary
the system (e,\(n))neﬂp is an ARS in D, (Ip)j5- When does the surjective
representation operator R : K(b) = D.(Tlh)}; admit a continuous linear
right inverse (in the sequel, a right inverse)? As in the first section we
put E(b,p} := Du(y)5.

Foruw € E{b,p)and 1 < j <plet ugul) denote an antiderivatives of
(,—1))
7

u as in Bremermann [4] (2.11) such that D;(u = u.

We choose @; € Dy {[-b;,b;}) with [ ¢;(t}dt = 1 (the function ¢,

exists by Braun, Meise, Taylor [3], 2.6 Corcllary). For any f € D, (Ily)
and z € R? we put

filz) = /(f(:cl,...,asj_l,t,zjﬂ,...,J:p)—

w5 (1) [f(m,,...,:a:j_l,y,:cjﬂ,...,zp)dy)dt and -ug'”(f) = —u(f;).

(-1}

The map  w > u; is continnous und linear in £2(b, p).

For example ,
. -1 o .
—ix; ()l = ex = B, p1tg) fOr any A€ CFL (12)
_ NGRS
For any 1 € E(b,p) we put ul-1) = ( (u(l l)) ) .
2

P
The map w2 — ul=Y is continuous and linear in £(b,p).
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To derive the formulas for a right inverse for the representation op-

erator, we will use the following definition with goes back to Leont’ev
(13].

2.1 Definition. Let @ be an entire function in C? such that for any
# € CP the function Q(-, i} belong to A,(p). The functional

(e ) 1= (exue-) V) (FHQUM)), zne T, ue DR,

we call a Q-interpolating functional.

2.2 Lemma. Let Q be an entire function in A(C*) such that Q(-, i) €
Au(b, p) for any p € C°.

(1) For all z,t € CP

(=)t - 2)'Qo(z, 2, ) = Q(t, 2)+

r k
: Z(_l)k Z ( ésm(tsm - Zsm)) Q(S(Z,t), Z)r (13)

k=1 1< <52 <. <5, <p \m=

where s(z,t) € C° and s{z,t); 1= z; if j = s, for some 1 < m < k and
s(t,z)j:=t; if # sm forall 1 <m < k.

(i1) For all z,p € CF the functional Qq(z,p, ) is continuous and linear
on E(b, p).

]
(iii) We assume that Q(z, i) = [] Q;(z;,1;) for all z, p € C° where Q;
i=1
are entire functions in C* such that Q;(z;,z;) = Lj(z;) for all z; € C
and for all} < j < p and for any k € N there are m € N and a constant
C satisfying
1Q(2z, )| < Cexp{Hs(Im z) + Ho—p(Im 1) — kw(z) + mw(p))

for all z,u € CP. Then for any k € N there are s € N and B < oo such
that

IQQ(’\(n)z Afn)s u)| < Bexp{fo_p(Im A(n)) + SW(’\(n}))HHHE

for all v € E(b,p) and n € NP,
Proof. (i) follows from (12).
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(17): The map u — e,(ue;)(~!) is continuous and linear in E(b,p).
Since F~1(Q(-, 1)) € Do (INy), the linear functional v v(F~1(Q(:, 1))
is continuous on E(b,p). Hence Q(z,p,-) € E(b, p)".

(iii): By (13) for all t € C° and n € NP we have
(=9)P(t — a\(n))lQQ(/\(n), /\(n),et) = Q(t,)\(n)) and QQ(A(H}, )‘(n)sel) =
(=1)PQ(, A}/ (t — Am))'. We fix k € N and choose m for £ by 1.11
Corollary. From the estimates from above for |@Q| and 1.10 it follows
that there are /,s € N and Cy,C; < oo such that for all t € CP with
ft; — /\,(.J)| > 1forall r € Nand 1 < j < p the following holds

120 (Agnys Ay €6l S 1QE Amy)] £
Crexp(Hy(Imt) + Hap(Im Ayy) — lw(t) + sw(dny)) <
Coexp(Haos(Im A(ny) + sw(my))llecll;, for all n € NP.

By the maximum principle applying to the entire in C? function ¢ »»
QQ(A(n) A(n): €t) there is C3 < 00 such that for all { € C? and n € NP

1QQ()‘(H)! A(n): er)] < Cs exp(Hqa—s(Im ’\(n)) + Sw()\(n)))“et";-

We put An(t) := Q@A) Agnyr &) for all ¢ € €7 and n € NP. From
the estimates from above for || and (13} it follows that h, € A, (b, p}).
Since the linear functionals u > Qg (A(n), A(n)» #) (by 2.2 (4¢)) and u =<
hn,u > are continuous on E(b,p), for all t € CP we have < h,, e >=
QQ (A(n)) A(n)» €¢) and the set {e; |t € CP} is total in E(b, p), the equality
< hay e >= 29 (An) An): ¥) holds for all w € E{b,p) and n € NP. Hence
129 (Agnys Anys )| < Jluliz ||l for all » € NP and u € E(b,p). By 1.10
Corollary

onlle = sup |hn ()] exp{— Hp(Im ¢) + kw(t)) < sup
te

Czexp(Ha—p(Im Ay} + sw(A(ny)) for all n e NP.

The proof of the following lemma is based on an idea of 5. Momm.

2.3 Lemma. Let a; > b; for some | < j < p orw is a (DN)-weight
Junction (see 1.6). Then there is a function Q; € A(C?) such that
Qi(z,2) = L;j(2) and for any k € N there are m € N and a constant C
with

log|Q;(z,t)] € bj|lm z|+{a;—b;)|[Im t|—kw(z)+mw(t)+C for all z,t € C.
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Proof. By 1.8 Lemina there are the subharmonic on C functions iy
and vy, A € C, such that uy(A) > 0, vyA(A) > 0 and for any k € N there
are m € N and a constant ¢ with

un(z) < blIm 2| = bj|Im A] = kw(2) 4 mw(d) + C
and
valt) < (a; = b} Imt] = (a; — b;)|Im Al + mew(t) — kw(A} + C

forall z,2, A € C. The upper semicontinuous regularization w(z,t) of the

function sup(ux(z)+va(t)+b;]1m A|+ (a;~b;)|Im A}) is plurisubharmonic
AeC

on C? and such that w(z, z) > a;llm z| and for any & € N therearem ¢ N

and C < oo with

w(z,t}) < bj|[Im 2| 3 (a; — b;}Im | — kw(z) + mw(t) + C for all z,t € C.

By 1.4 there is s € N such that |L;(2)] < sexp(a;|hn z| + sw(z)) and
consequently |L;(z)} < sexp(w(z,z) + sw(z)) for all z € C. From a
modification of 4.4.3 [§] the existence of a function (); follows.

2.4 Lemma. There is no a family of the conver functions fi, £ 20, on
[0, +00) such that fi(t) > 0 and for any k € N there are m € N and «
constant C' with

fi(z) <C — kt+ma forall t,z > 0.

Proof. We assume that such functions f; exist. We put gi{r) =
limsup fr(nz)/n for all {,» > 0. Then ¢ are the convex funclions
n—co

satisfying g¢(¢) > 0 and for any & € N there is m € N such that

ge(z) < =kt + ma forall £,z >,

Since ¢1(0) < —& for all & € N, we have ¢,(0) = -0 and hence »
contradiction.

2.5 Lemma. [rom (i) follows (i7):
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{i1) There is a right inverse for the representation operator R : K(b) —
E{b,p).

(27) For any 1 < s < p there are functions vy, A € C, which are subhar-
monic on C, such that vy(A) > 0 and for any & € N there are m € N
and a constant C with

ua(f) € (as — bs)|Imt] = (as = b5)[Im Al + mw(t) — k(X)) + C
forallt, X e C.

Proof. We assume that there is a right inverse for . Then there is a
continuous linear left inverse k for ' : A,(b,p) = A(b). We put f, :=
w{er), where €}, := (0mn)mene for all n € NP. Since 5 : A(b) = A,(b, p)
is continuous, for any k& € N there are m; € N and C| < oo such that

forall n € NP and z € CP
(2] < Crexp(Hy(tm =) = Hy(Im Ay) = kw(2) + miew(A)). (14)
We fix 1 < s < p and choose z; € C and g; € D, ([-4;,b;]) for any

1 <j < pwith j # ssuch that L;{z;) # 0 and §;(z;) # 0. We put for
any zs, jts € C

Ts(zsa I"s) =

! LS s 5 ’~ j "
(WLi()) Y 2 (2} = M) (WG OE)) - 19

neNp MHs — An,

where ] denotes IE[ . By 1.5, 1.10, (14} the last series converges
i=lJs#s
absolutely in E{bs, 1) for all z;, i, € C. Since & is a continuous linear
left inverse for R’ : A_(b,p) -+ A(b), for all g € A (b, p) and A € C? the
following holds
gA = g fa (A (16)
neNF
Hence
€y = Z fn()\)e_\(", for all X e CP,
neN?
where the series converges absolutely in E(b, p). This uinplies that in

(b, p)

0= ider+ Dofen) =i Y fal M) (A = AD)es,,, for all A€ CP. (17)
neke

371
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By (15) and (17) we have for all g, € D, ([-bs,b,]) and z,, 4, € C

< sy iptsTs (23}#3) + Dy (T (ZM“S)) =

P
(IWL;i(z5)) D Lelps) fal2) (2 = AL) (H (A )

nelNp

By 1.13 for any z, € C there exists a function h,, : C -+ C such that
Ts(zs, pos) = hz, (ps)ey,, for all p, € C. (18)

From (15) and(18) it follows that for all z, € C the function &, is entire
in C. By (15), (16) and (18) we have for all g, € D, ([—bs, bs}) and
z, € C

r [

heo(2s)gs(2s) = (H L;( ..J)) Z Sfn(2) (H A(J) )
1

7=1 nelNpe i=
Ls(zs) (H'Lj (Zj)gj(zj)) gs(zs)-
Consequently, there exists a constant B :=I1'L;(z;}g;(z;) # 0 such that

h2,(zs) = BLs(z,) for all z, € C. (19)

From (14), (18) and 1.10 it follows that for any &£ € N there are m; € N
and a constant C such that for all z,,u, € C

loglh,, (1s)] < bsllm zg| + {as — bs)|Im pg] — kw(z,) + maw{ps) + Co.

By 1.16 Remark and (19) there is a sequence of the circles B := {z, €

C||zs — | < t;i} with > t; < oo and such that there are m3 € N and
ieN
'y < co with

log|h.,(25)] = log|Ls(zs)| + log B > ag|lm z,| — maw(z,} — Cy

for all z; € C\(U;enBi). We put tp:= 3 £ and
leN

P, (ps) == sup loglh,, (s + w)|, zs,ps € C.
|w| <ty
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The function P, is subharmonic in C and such that there are my € N
and a constant Cy with

P.,(zs) > aslim z5| — myw(z,) — Cy for all z, € C
and for any k& € N there are m € N and a constant C' with
P, (j1s) < bs|lm z5| + (@, — bs)|lm ps] = kw(z,) + mw(ps) +C

for all z,,; € C.
We can take now as vy the functions

up(t) = P(t) — as)Im Al 4+ maw(A) + Cy.

For any weight function o, any ¢ € R? with ¢ > 0 and any function
h € B,(c,p) we denote by M, the multiplication operator with the
function h,i.e. My(f) = hf. Forall r > 0 the operator M, is continuous
and linear from A, (r,p) into A,(r + ¢, p). Let R(D) the adjoint to My
operator from D, (Il;4.)} into Dy (I1,)5. Note that for each z € C7 the
equality i{D)(e;) = h(z)e. holds.

If ¢ = 0 we say that h(D) is an ultradifferential operator of class o.

2.6 Theorem. (I) Let w(t) = logtt. The representation operator R :
K(b) = E(b,p) has a right inverse if and only if b < a.

(IT) Let w be a strong weight function. The representalion operator
R : K(b) — E(b,p) has a right inverse if and only if a > b or there is
1 <7 <pwitha; =b; and w is a (DN)-weight function.

(I11) If a right inverse for R . K(b) = E(b,p) exists, there exisis the

function Q as in 2.2 (it} and a map

Qo (A An)s
PlEi ) e B,
{n) nelP
is a right inverse for the representation operator R : K(b) — E{b.p).
(IV) Letp=1. If S: E(b, 1) = K(b) is a right inverse for R : K{b) —

E(b, 1), then there is an unique function @ as in 2.2 (1) such that

QoA Ay
oo (el )y
ElAm) /nen

s += (=9
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Proof. NecEssITY IN ([): We assume that there are 1 < j < p with
a; = b; and a right inverse § for R : K{(b) — E(b,p}. By 2.5 Lemuma
there are the subharmonic in C functions vy, A € C, such that vy(A) > 0
and for any £ € N there are m € N and a constant C' with

va(z) < mlog™|z] — klogt|A| + C for all X\ z€ C.

The upper semicontinuous regularization v;(x) of sup{v{e??;) | € € R}
is radial subharmonic function in C such that v(t) > 0 and for any
k € N there are m € N and a constant C with

o,(x) < mlogtz — klog™t 4+ C for all £,z > 0.

Since the functions y — 9;(e¥) are convex on R, this contradicts 2.4
Lemma,

NECESSITY IN ([[}: It follows from 2.4 Lemma and 1.8 Lemma.

(I111) {AND SUFFICIENCY IN (/) AND (/1)) : If a right inverse for
R exists, by the necessity in (f) {resp. (/1)) a > b if w(t) := log*i
(resp. @ > b or there is 1 < 7 < p with a¢; = b; and w is a (DN)-
function). By 2.3 Lemma there exists a function ¢ as in 2.2(iil). By
2.2 (iii) .5 is a continuous linear map of £(b, p) into K (b). We prove that
Reo S = idE(b,p)-

By 2.2(i) and 1.15 (i1) we have for any z € C?

Q(zr A(ﬂ.))
Ko 5)e,) = E z &
L( )( ? )( ~) nelMr L( ) L’(A(n) zZ— (n})l '\[")

z L(z) = I, e, = z)e.
Q= D) (%‘N; T (s - A(ﬂ))le,\(,,,) = Q= 2)es = L{z)es.

(From the estimates from above for |@] it follows that for cach z € CP the
operator Q)(z, D) is continuous from E{a, p) into E(b, p).) Consequently
(RoS)(e;) =e, forall z e CP. Since the set {c, ]|z € C’} is total in
(b, p), this implies that (R o S)(u) = u for any v € E(b, p}.

(VY. Let §: E(b,1) - K(b) be a right inverse for B, Then its
adjoint operator S’ : A(b) = A, (b, 1) is a continwous lincar left inverse
for ' : A,(b,1) = A(b). As in the proof of 2.5 Lemma we put ¢} =

T
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(6tndiens Jn = S'(er), n € N, and choose a function h; € A(C) such
that

— L
ha(p)e, = Z ”_(A_? fal2)(z = Amy)eny, for all z,pe €. (20)

Let Q(z, ) := h.(jt), z,# € C. From (20) it follows that Q € A(C?).
By the proof of 2.5 Lemma we get Q(z,z) = L(z) for all z € C. From

(20), 1.10 we have the estimates from above for |Q| as in 2.2 (iii).
By (20) the following holds

Q(Z, ’\(n))
L'(A))(z = Agmy)

To show that S = (=i {A(n), A(n), )/ L'(A(n)))nen we note at first that
by (21) for all z € C and ¢ € A())

fu(z) = for all z€ C and n e N. (21)

! z} = Q(ZTA(n)) =< 5'{c), e, >=< ¢, S{e
5(C)(/-)—%cn(z_)\(ﬂ})[),wﬂ)) < 8'(c),e; >=< ¢, S{ez) > .

z, A
Qfz, (ﬂ)) ) . By (13) we have

Hence S(e. :(
(€:) (z = A L' (M)

Qo (A, At €2
Sle:) = | -1 QA Agn): &2) for all z € C.
["'(A(n)) nel

(_ QQ(’\(H)a ’\(n)s E)\
\ X)) 7 neN
tinuous from F£(b,1) into K (b). Hence for all u € E(b,1) S(u) =

(—I' QQ(A(TI)1 ‘\(n)! u)a
L'(Am) nek

To prove the uniqueness of Q, we assume that the functions @, @
satisfly of the conditions of 2.2 (iii) and for all v € E(b,1) and for all
n €N QQ] ()\(n), ’\(n} H.)/L’(A(n)) = QQI(’\ (n)s n),’!t)/L'( } Then
by 2.2 (i) Lemma  Q1(z. Apy) = Qa(z, Apy) for :l" :eC and n € N.

We fix z € €. The estimates from above for |Q],1Q2| imply that
Qu(z,),Q(z,-) € Bu(a—b.1). Since by 1.15 Theorem. (vi) (Ap))ne is

By (/1) the lincar operator u — is con-
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the uniqueness set for A, (a, 1), by 1.14 Lemma (A(,))nen is the unique-
ness set for B,(a — b, 1)) too. Hence Qy{z, ) = Q2(z,p) for all yr € C
and Q, = @, in C2.

We give in conclusion an adding to 8 Theorem in Braun [1].

2.7 Corollary. For any b > 0 and any weight function o with w(t) =
o(o(t)) as t — 4oo there are an ultradifferential operator of class o

h(D) : £,(Iy) = D, (Ms)p such that there is a continuous and linear
operator T : E(b, p) — E,{Ily) with h(D) o T = id g3 p)-

Proof. We exploit an idea of Korobeinik of the construction of a right
inverse for a convolution operator with the help of a right inverse for a
representation operator. By 1.19 Corollary and 2.6 Theorem there is an
ARS (ex, Jnene in E(b,p) with A,y € R? for all » € N? and such that
the representation operator R : K(b) = E(b, p) have a right inverse S.
By Braun [1] {Theorem 7) there is a function A € B4(0,p) such that
{h(z)| > exp{o(z)) for all z € RP. The ultradifferential operator h(D)
maps D, (Ily)p into Dg(I1s)5 and, consequently, £, (Tly) C D, (I1,)} into
D, (I1;)j; continuously and linearly. We put

S
T( )_ ngp h(A(n)) An}? € E(b:p)

By the estimates from above for the norms of e, in £,{Il;) (see Braun,
Meise, Taylor [3], 7.1) this series converges absolutely in £,({Il,) for all
v € E{b,p). Hence by Banach-Steinhaus theorem the operator T is
continuous and linear from E(b, p) into £,(I1;). Moreover we have

h(DYoT(u) = > (S(u))ner, =u forall ue E(b,p).
nelNr

We note that if w is a weight function, by Braun, Meise, Taylor [3]
(1.6 Lemma) there exists a weight function o with w(t) = o(co(t)) as
{ = -+oo. [f w(t) := log™t, for any weight function o by 1.1(y) we have
w(t) = o(o(t)) as t = +oo.
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