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A new method to obtain decay rate estimates
for dissipative systems with localized damping.

Patrick MARTINEZ

Abstract

We consider the wave equation damped with a locally distrib-
uted nonlinear dissipation. We improve several earlier results of E.
Zuazua and of M. Nakao in two directions: first, using the piece-
wise multiplier method introduced by K. Liu, we weaken the usual
geometrical conditions on the localization of the damping. Then
thanks to some new nonlinear integral inequalities, we eliminate
the usual assumption on the polynomial growth of the feedback
in zero and we show that the energy of the system decays to zero
with a precise decay rate estimate.

1 Introduction

The problem of stabilization of the wave equation in a bounded domain
with the Dirichlet boundary condition by the use of a locally distributed
damping has been studied by several authors. Consider the following
gystem

" — Au+p(z,u)=0in Q@ x Ry,
u =0 on % X R+,
u(0) = w0, v'(0) = ul,

Define the energy of the system by

E@t) = % fn (w? +|Vul?) dz.
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C.M. Dafermos [5] and A. Haraux [10] studied the strong stability
of this system. M. Aassila [1] extended some of their results in the case
of unbounded domains.

When the feedback term depends on the velocity in a linear way, i.e.

p(z,v) = a(z)v',

E. Zuazua [23] proved that the energy decays exponentially if the damp-
ing region, where a(x) > a > 0, contains a neighbourhood of 9 or at
least a neighbourhood of

[(z% := {z € 3, (¢ — 2% - v(z) > 0},

where v is the outward unit normal to Q and 2° ¢ RV. His proof is
based on the multiplier method and on a compactness argument. On the
other hand, C. Bardos, G. Lebeau and J. Rauch [3] obtained a necessary
and sufficient condition using microlocal analysis: the energy decays
exponentially if and only if the damping region satisfies the "geometric
optics condition”.

M. Nakao extended the results of E. Zuazua [23] treating first the case
of a linear degenerate dissipation ([18]), and then the case of a nonlinear
dissipation ([19]), assuming as usually that the function p(z,-) has a
polynomial growth in zero.

M. Aassila [2] extended some results of M. Nakao [17] concerning weak
dissipations.

L.R. Tcheugoué Tébou [21] improved slightly the estimates of M. Nakao
[19].

Recently K. Liu [14] studied the observability of a class of P.D.E.s
in a internal subdomain. He extended the results of E. Zuazua [22]
weakening the geometrical conditions on the observation region: using a
piecewise multiplier method he obtained very general and easily verifi-
able geometrical conditions. K. Liu and M. Yamamoto [15] adapted this
method and norm inequalities developped by V. Komornik [11] to estab-
lish the observability of the system of the wave equation with the Dirich-
let boundary condition under the same geometrical conditions with very
precise estimates on the time duration 7.

In the following we introduce a new method useful to eliminate the
assumption of the polynomial growth of p(z, -). We combine this method
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to the piecewise multiplier techniques developped by K. Liu [14] to show
that the energy of the system decays to zero with a precise decay rate
estimate if the damping region satisfies some geometrical conditions.
This method can also be used to study the case of the wave equation
damped with a velocity feedback on the boundary (see [16]). Under some
geometrical conditions, and without assuming that the feedback has a
polynomial growth in zero, this method gives a more explicit decay rate
estimate than the result of I. Lasiecka and D. Tataru [12}, who studied
the more general case of a semilinear wave equation damped with a
nonlinear velocity feedback acting on a part of the boundary. Without
any geometrical condition and without assuming that the feedback has
a polynomial growth in zero, they showed that the energy decays as fast
as the solution of some associated differential equation.

In Section 2, we precise our results (see Theorem 1) and we apply it
on some examples. In Section 3, we give an analogous result for elasto-
dynamic systems. In Section 4, we establish the new integral inequalities
useful to prove our result. Section 5 contains the technical part of the
proof; its goal is to prove Proposition 5.1. In Section 6 we conclude
using Proposition 5.1 and Lemma 3.

2 Statement of the problem and main results

Let §2 be a bounded open set of RY of class C? and w be a subset of Q.
Let p:  x R — R be a continuous function. Denote Ry := [0, +ool.
Consider the following evolutionary problem

u —~ Au+p(x,4) =0in Q x Ry, (2.1)
v=00ond2x Ry, (2.2)
u(0) = u%, w'(0) = u'. (2.3)

As usually, we define the energy of the solution u by:

_ 1 2 2
B(t) =3 /ﬂ (v +{Vul?) da. (2.4)
We will use the following notations:

e =z -y represents the euclidean scalar product of z by y in RV,



254 Patrick Martinez

e if ; C R" is a Lipschitz domain, v; represents the outward unit
normal vector to 4%;,

¢ if O C R and z € RV, d(z,0) = infyeo|z — y|, and N,(0) :=
{ze RN :d(z,0) <¢)}.

We make the following assumptions:

Hyp. 1: assume that p : (z,v) — p(z,v) belongs to C( x R)
and is monotone increasing in v. Assume that there exist a nonnegative
bounded function a : @ —= R and a strictly increasing odd function
g : R — R of class C! such that

a(@)lv] < lp(=, v)| < Ca(a)[o] if [v] > 1, (2.5)
a(2)g(v)) < lo(z,v)| < Ca(z)g (W) i b < 1, (2.6)

where g~1 denotes the inverse function of g and C'is a positive constant.
Denote

G(v) = vg(v) and H(v) = % 2.7)

Note that G is continuous, strictly increasing on [0, 1] and G(0) = 0; H
is continuous on [0, 1] and H(0) = ¢'(0). M. Nakao [19] treated the case
when g(v) = v? for p > 1. :

Hyp. 2: assume the following geometrical conditions on € and w as
in Liu [14]: there exist £ > 0, domains Q; C 2,1 < j < J with Lipschitz
boundary 9€2; and points z; € R" such that

QN =0ifi # 7, (2.8)
w D QNN[Y;TiE) U (2\U95)], (2.9)
where [';(z;) ;= {z € 89Q; : (z — z;) - v;(z) > 0}. (2.10)

The usual assumption made by E. Zuazua [23] corresponds to the case
where we have only one subdomain €2; equal to Q2. Denote m;(z) =
T — ;.

The existence and the regularity of the solution « of (2.1)-(2.3) is
given by the following standard proposition (see, e.g. A. Haraux [9]):

Proposition 2.1. Assume that Q is of class C2. Under Hypothesis 1
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1. given (u®, u') € HY{(Q) x L?(Q), the problem (2.1)-(2.8) admits a
unique solution u(t) in the class:

u € C(Ry, HY () NCY{ Ry, L3(D)). (2.11)

2. given (u°,u') € H2 N H}(Q) x HL(Q), the problem (2.1)-(2.8)
admits a unique solution u(t) in the class:

u € WH°(Ry, LY () n WY (R, HY(Q)) N L (R, HA(R)). (2.12)

Theorem 1. Assume that a € C°(Q) and is bounded from below by
some positive constant o > 0 on w:

View, a(z) > a>0. (2.13)

Under Hyp. 1 and Hyp. 2, we have:

1. In the simpler case when g(v) = v, the energy decays exponen-
tially: there exists a constant v = v(Q,w, o, 5, z;) > 0 such that, given
(u% u') € HJ(2) x L%(Q), the energy of the solution v of (2.1)-(2.3)
satisfies the following estimate:

vt > 0,E(t) < E(0)e'™, (2.14)

2. In the general case, the energy of the solution u of (2.1)-(2.8)
decays as

~1 )2

Vt>0,E(t) <C (G (?)) , (2.15)

with a constant C only depending on the initial energy E(0) (and in a
continuous way).

3. Moreover if H is an increasing function and H(0) = 0, then in
fact

1.42
vt > 0,E(t) < C(g'l(E)) , (2.16)
with a constant C' only depending on the initial energy E(0) (and in a
continuous way).

Remarks. 1. Part 1 of Theorem 1 improves the geometrical conditions
of the result of E. Zuazua [23]. It is not difficult to construct a function
a which satisfies (2.13) without satisfying the condition

a(z) > a on I'(zY),
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for example if € is the open ball in R? centered in O and of radius R,
and a is a continuous function equal to zero only on the set of points
z € {z,]2| = R} N {|Re 2| < §}. Define

Q= QN B(2R:, 3—?) and , = 2Rq,

Q, :== QN B(-2R;, ??R) and z9 := —-2Rq,

w::{zEQ:|lmz|g§f—}.

Then (2.8)-(2.10) are satisfied if ¢ is small enough. (see K. Liu {14}
for other examples)

The proof is based on the piecewise multiplier method introduced in K.
Liu [14] and gives an explicit estimate of the constant 7.

2. Part 2 and Part 3 of Theorem 1! improve the result of M. Nakao
[19] in two directions: we weaken the geometrical conditions and we do
not assume that g has a polynomial growth in zero. The proof is based
on some new integral inequalities stated in Section 4.

For example, let @ be a nonnegative continuous function that satisfies
(2.13). Then:

Example 1. If
plz,v) =a(@)e Y ifo<v <1
for some p > 0, then (2.16) gives the estimate

_C
(nt)/e’

E(t) <
Example 2. If
plz,v) =a(z)e=" f0<v <1,
then (2.16) gives the estimate

C
EO < Gy
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Example 3. If
plz,v)=a(z)o?if0<v <1

for some p > 1, the method that leads to (2.16) gives by an induction
argument:

B(t) < CtwTe,
which is close to the estimate found by M. Nakao [19]:

E(t) < Ct1.

3 Application to elastodynamic systems

We can apply the method that lead to prove Theorem 1 to study the
following elastodynamic system: let (a;;jx)} be a tensor such that

Gijkl = Qjikl = Qklij

(all indices run over the integers 1...N), satisfying for some g > 0 the
ellipticity condition

Gkt €ij €kl 2> BEij €5

for every symmetric tensor ¢;;. {Here and in the sequel of this section
we shall use the summation convention for repeated indices.)

Let  be a bounded open domain in R" having a boundary 85 of class
CZ. Given a function € : @ — R, £(z) = (&;(z), - -+, En(2)), we shall

use the notations
1
Eij = E(fi,j + &) and 0i; = aijuen,

where §; ; = 3;/0z;.
Consider the problem

E:’ ~ 05+ p(I,f:) =0in O x R, (3'1)

E=00n 02 x Ry (3.2)
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£0)=¢%¢0)=¢". ' (3.3)
Define the energy by

E(t) = /QE:E: + 035645 dzx.

Assume that (2.5)-(2.10) are satisfied. Then we have the following result:

Theorem 2. Assume that a € C°(Q) and is bounded from below by
some positive constant a > 0 on w:

Ve €w, a(z)>a>0. (3.4)

Under Hyp. 1 and Hyp. 2, we have:

1. In the simpler case when g{v) = v, the energy decays ezponen-
tially: there exists a constant vy = y(Q,w, @, Q;, ;) > 0 such that, given
(u®,w') € HE(Q) x L(R), the energy of the solution u of (3.1)-(3.3)
satisfies the following estimate:

vt > 0, E(t) < E(0)e' . (3.5)

2. In the general case, the energy of the solution u of (2.1)-(2.3)
decays as
142
Vt > 0,E(t) <C (G‘l(?)) : (3.6)
with a constant C only depending on the initial energy E(0) (and in a
continuous way).
3. Moreover if H is an increasing function and H(0) = 0, then in
Jact
1.2
vi>0,B() < C(s7'(D) (8.7)
with a constant C' only depending on the initial energy E(0) (and in a
continuous way).

The proof of Theorem 2 is similar to the proof of Theorem 1.

The proof of Theorem 1 is based on the following integral inequalities
that generalize a result from A. Haraux {8]:
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4 Some nonlinear integral inequalities
4.1 The key integral inequality
Lemma 1. Let E : Ry — R, be a nonincreasing function and ¢ :
R, — R, a strictly increasing function of class C! such that
¢(t) — +oo ast — +o0. (4.1)

Assume that there ezist o > 0 and w > 0 such that:
+00
VS > 1, f E@)™¢/(t)dt < %E(S). (4.2)
s

Then there ezists C > 0 depending on E(1) in a continuous way such
that

ifo =0, then E(t) < Ce~*?*®) vt > 1, (4.3)
ifo >0, then E(t) < C(¢(t))"V7,vt > 1. (4.4)

Proof of Lemma 1. Let us introduce f : [¢(1), +oo[— R defined
by

f(7) = E(¢7'(7)).
Then f is nonincreasing and satisfies

#(T) #(T)
VigS<T<oo: [ fr)tear= [ BT ) dr
#(5) #(5)

T Lt s 1 1
:]s E@*7¢' (®)dt < —E(S) = = f((S))-

As lim 744009(T) = +00, a well-known Gronwall type result (see Ko-
mornik [11] p. 124) gives

f(r} < Ce ™™ V1 > ¢(1), if 0 =0,
and

f(r) <crH7 ¥r > ¢(1), if 0 > 0,

with C only depending on f(¢(1)) = E(1) and in a continuous way.
Since E(t) = f(¢(t)), (4.3) and (4.4) follow.
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4.2 Consequences

First we deduce from (4.4) the following result:

Corollary 4.1. Let f : By -— R, be a nonincreasing continuous
function.
Assume that there exist 0 > 0, ¢’ > 0 and ¢ > 0 such that:

Vi>1 f fr) dr < cf( ) (4.5)

Then there ezists C > 0 depending on f(0) in a continuous way such

that
C

Vi1, f(t) < s (4.6)
Proof of Corollary 4.1. Define
gty = 28 f(t) 6> 1.
¢ is nonincreasing and satisfies
+o0 ;
vt > 1,/ g(r)" o (149) gr < cq(t).
t
Then we can apply Lemma 1 with
B(t) = 70041
to deduce that g decays as
C C
9(t) < t@ (4o 1)z - op(l+onfe
So (4.6) follows.
n

Then we deduce the following integral inequality from Corollary 4.1:

Lemma 2. Let f : Ry — R, be a nonincreasing continuous function.
Assume that there exist o > 0, o' > 0 and ¢ > 0 such that:

Vi > 1,["” F(O)* dr < cf(t)+e +c’;£,). (4.7)
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Then there exists C' > 0 depending on f(0) in a continuous way such
that c

vt>1,f(t) < e

(4.8)

Proof of Lemma 2. The idea is that the term in f(£)**° is negligible with
respect to the second term. We prove (4.8) using an induction argument.
In the following we denote by C all the constants (that depend on f(0}
in a continuous way).

First we deduce from (4.7) that

$o0
[ e ar<cso.
t
Then we deduce from Corollary 4.1 that

C
f(t) < rYZE

Then we use this estimate in (4.7) to deduce that f satisfies

f+ f(T)H-a dr <C () (t)

t"'

Define o; = inf{1, ¢’}. Then we have
+
[ s dr < cf( )
t

and we conclude using (4.6) that

c
1O < s

If o/ <1 we get (4.8). In the contrary

C
f(t) < 'tz_/;._:

and we conclude by an obvious induction argument.

261
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Now we can state the integral inequality that we will use to prove
Theorem 1:

Lemma 3. Let £ : R, — R, be a nonincreasing function and ¢ :
R, — R, a strictly increasing function of class C' such that

o(t) — +oo as t — +oo. (4.9)

Assume that there exist 0 > 0, ¢/ > 0 and ¢ > 0 such that:

VS > 1,[S+°° E)'*¢ (t)dt < cE(S)1° +cf(é—§3;. (4.10)

Then there exists C > 0 depending on E(0) in a continuous way such
that

C
Proof of Lemima 3 It is sufficient to introduce
f(r) = E(¢7'(r))
and to use Lemma 2.
||

5 Proof of Theorem 1

First remark that it is sufficient to prove the estimate (2.15) when the
initial conditions verify:

(u%,u') € (H*(Q) U Hy(Q)) x H§(%). (5.1)

Then an easy density argument (see for example in Komornik [11] p.

108} gives the result for all initial condition in H3(2) x L?(Q). The

regularity given by (2.12) allows us to justify the following computations.
First we verify that (2.1)-(2.3) is a dissipative problem:

Lemma 4.

T
Y0< S < T <+oo, E(S)-E(T)= /S fnu'p(x,u') dr dt. (5.2)
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Proof of Lemma 4. We multiply (2.1) by v’ and we integrate by parts

on I x [S,T]:
[ ftnesn = [ o= e
E(T) - E(S).

The proof of Theorem 1 is based on the following inequality:

Proposition 5.1. Assume that Hyp. 2 is satisfied. Let ¢: Ry, — R
be a strictly increasing concave function of class C2. Set ¢ > 0. There
exists a positive constant C such that, given (u®, u') € (H2(Q)UHE(Q)) x
H(Q), the solution u(t) of (2.1)-(2.8) satisfies

T T 2
/S B¢ dr <C ] B4 / u'? dz dr (5.3)
5 w

T
+C / E°g [ p(z,v)? dz dr + CE(S)'+°.
s Q

Remarks. 1. The proof of (5.3) is based on multiplier techniques; the
constant C will be explicit.

2. When ¢'(t) = 1, (5.3) is classical. E. Zuazua [23], M. Nakao {19
and L.R. Tcheugoué Tébou [21] proved it under different hypothesis on
the term p(z,-) when w contains a neighborhood of I'(z%); K. Liu and
M. Yamamoto [15] proved it under Hyp. 2 with p(z,v") =0 and ¢ = 0.
The term ¢/(t) will be essential to obtain a precise estimate on the decay
rate of the energy when we do not make any assumption on the behavior
of g near 0. In Section 6 we will show how to define ¢: ¢ will be closely
related on the behavior of p(z, -) and will allow us to eliminate the usual
assumption of polynomial growth of p(z,") in zero.

In the following computations, leading to prove (5.3), we omit to write
the differential elements in order to simplify the expressions. All the
constants C will be explicit.

5.1 The piecewise multiplier method

Lemma 5. Let O C Q be a Lipschitz domain.

263
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Let h: O — RN be a vector field of class C'. Let ¢ : Ry — Ry a

function of class C2. Set 0 < § < T < 400 and 0 > 0. Then we have
the following identity:

T o ! 72 2
/S E ¢/;026yuh-Vu+(h-u)(u — V) (5.4)
= [e°¢ /o Qu'h-Vu]:— fs T(aE’E"“¢'+ E°¢") fo 'k - Vu
T
o+ fs E¢ fo (div B)(u? - |Vu]?)

Ohy 8u Ou

Remark. The integrations by part that lead to (5.4) can usually be
done if O is of class €2, and remain valid if ¢ is only Lipschitz thanks
to the results of P. Grisvard [6].

Proof of Lemma 5. This identity is given by the multiplier method:
integrate by parts the following expression:

T
0=/ E°¢'/ 2h - Vu (v — Au+ p(z, o))
S a

= [E’a(ﬁ'j;)?u'h . V”]Z - LT(JE'E”‘I¢'+EO¢”) L?u’h -Vu

T T
—/ E"qb'] 2u'h-Vu'-] E"qb'f 20,u h-Vu
s o ) ag

T
+[S E"qi)’j;)Vu-V@h-Vu)+2p(m,u')h'Vu,

T T
= ey f 2'h- V| - / (cEE'¢ + E°9) f 2k - Vu
o s s o
T T
-f E"’(,b'f 23, u h.-Vu+h-uu'2+/ E'"qb"[ {div k) u'?
s 50 s o

T
+./s E"(b'/OQZ(B,-hk Oiu B + hy, B;uazku) + 2p(z, u")h - Vu,
ik
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= [E°¢ ]o 2u'h,-vu]: - /S T(aE’E"_qu"--i- E°¢") fo 2u'h - Vu

T
—/ E"d)'f 28,u h-Vu+h-v(u’ - |Vu|?)
s 80

T
+ fs E°d /O (div k) (2 — [Vl

+2 Z B;hy O;u Oyu + 2p(z, u)h - Vu
i,k

So, putting the boundary integrals in the left-hand side, we get (5.4).
n

The main problem is to estimate, and more precisely to majorate,
the boundary integrals in (5.4). Usually this kind of identity is used with
O = Q and an adequate vector field » so that the boundary condition
allows us to estimate the boundary integral: this can be easily done on
{u=0}n{m-v <0}, and h is chosen so that it is equal to zero on the
other part of the boundary.

In our case, we will use this identity on each domain ;. In order to
avoid the problems given by the lack of information about the values of
u on each 3(Q;, Liu [14] constructed a special vector field &; that allows
us to use the same strategy as before: one of its properties is to be equal
to zero on (9€2; \ 0N) UT;{z;). We describe the construction of A;:

set 0 < g9 < €1 < g2 < £ and define for i =0 to 2:

Q: = N, [Ujrj(zj) U (Q \ U_,'Qj)]. (5.5)

Since (2; \ ©@1) N Qo = 0, we can construct a function ¥; € Ce(RN)
that satisfies:

0<y; <1, (5.6}
¥; = lon Q;\ Qy, (5.7)
¥; =0 on Qo. (5.8)

Now we use the identity (5.4) with @ := §}; and k = h;(z) := ¥;(z)m;(z):

T
fs E° ./an,- 20,u Pjmj - Vu+ (;m; - y)(u,"2 — |Vul?) (5.9)
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T T
= [E"qb’ ,/9 _2u'¢,-mj.vu]s— /S (aE'E“"¢’+E"¢”) /ﬂ 2u'p;m;-Vu
5 5

T
+ [, B [ @ pm)? [l

du du
+22 %Z" kaf Ba; + 2p(z, 'L.L)gbj'.r.nv,_T Vu.

First we look at the boundary integral in (5.9). Because of its con-

struction, ¥; = 0 outside ((8%; \ T, (2;)) N 0K2). So only the part on
((BQ \I‘ (:z:,)) N dR) has to be ta.ken in count. But on this part, u = 0,

so u' = 0 and Vu = (,u)v = (8,,u)v;. Thus the boundary integral in
(5.9) is equal to

f E"¢’f 20,,,u $ym; - Vu+ (Ym; - 1)) (v = |Vuf?)
5 ((89;\T3(x;))n84)

T
= ] By f $i(m; - v;)}(B;u)? < 0.
5 ((80,\T5(z5))naG)

So, using (5.8), we deduce from (5.9) that we have for each index j
o i f / T T Po—1 1t o L !
{Eqb./‘)‘?uwjmj-Vu]S—/;‘(aEE ¢+E¢)L‘2u¢jmj-Vu
¢} fl
T 2
+ B [ (v gmy) - [Vu
s 2,\Qo

a i f ('J’ij)k du Ou <
+[S E’¢ nj\quzg_; i 2. Gar + 2p(z, w')p;m; - Vu < 0.

Thanks to (5.7), we have
a o / T
Y (o9 fn_zu $jm; V| (5.10)
7 1
T
- [ (BB + Bog) [ 2ubm; - v
s Q;

T
+ f E°¢ / Nu'? + (2 - N)|Vu?
&) Q;\Q
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T
+ E°¢Y | 2p(z,u)p;m;-Vu
sf ], s

T
ST, B [, g 0 i) = 1)

8(y;m )k Ou du
+ 2 § 33,‘ 6:::.- ('h:k

T
<oy [ Ee [ e val
i ) Q001

T
<cf B¢ [ vl
s QnQs
where C = C{p, m) is a positive constant that only depends on ¢; and

m;. (Note that U;(Q; \ Q1) = 2\ Q1.)
As usually, we obtain another key identity multiplying (2.1) by (N—-1)u:

V-1 [ ¢ [0 - Autpan)) =0,

80
T
(N - D[E°# fn we'] |~ (V- 1) fs (cB'E + ") jﬂ wid
T 2
+(N-1) [S B¢ [ﬂ IVaf? — o + up(z, w') = 0. (5.11)
Denote
h(z) = ¢;(z)m;(z) if z € Q;,
h(z) :=0if z € Q\U;Q;,
and

M(u) :==2h-Vu+ (N ~1)u. (5.12)
We add (5.11) to (5.10) to obtain:

[Ec,rd’!.[ﬂM(u) up]'g _ /ST(aErEa—l(‘,bf_J'_Ea'qbﬂ) (/;2 M(u) ul)
+ j: E"q&'/ﬂ M(u) p(z,v') + ]: Ead),lr\q, u? +{Vul?

T
<c f E°d / o + \Vull.
8 2NnQ,
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So
2 fs CEeg < (04 1) [S Tpog /ﬂ o wE vl (5.13)
- [Eo'qbrjs; M (u) u']:+ -[ST(UEFEJ_I¢’+ Ea¢") (/‘; M(w) uf)
- /S oy /9 M (u) plz, ).

This is the key inequality to prove (5.3). Next we estimate the different
terms of the right-hand side member.
5.2 Estimates of the right-hand side terms of (5.13)

Let ¢ be an increasing concave function of class C? on R,.

Lemma 6. There ezists a positive constant C such that

E¢ fﬂ M(u) ' dz| < C B(t)*+. (5.14)

Proof of Lemma 6. By hypothesis ¢ is a nonnegative and nonincreas-
ing function. So ¢’ is bounded on R,. Since there exists ¢ > 0 such
that
/ M(u)? dz < cE(1),
Q
we have

I/ﬂ M(u) v da:‘ < E(1),

and so (5.14) holds.

Lemma 7. There ezists a positive constant C such that

| fs T(aE’E“_1¢'+E"¢”) ( fﬂ M(u) ' dz) dr’ < CE(S)™*°. (5.15)
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Proof of Lemma 7. Since ¢ is concave and E is nonincreasing, we
have

| [S ’ (oB'E"¢ + B°¢") fn M(u) o da)|
< /S T|aE'E°'-1¢' + E°¢" lcE('r) dr,
T T
<ec /S _E'(r)E(r)° dr + cE(S)*° fs _g"(r) dr

[
140

< E($)1 4 ¢¢'(S)E(S)!°.

Lemma 8. There ezists a positive constant C such that for all 6 > 0
we have

U;T E°¢'LM(u)p(m,u') dz d'r. (5.16)

c T T
< —/ E“qb'f ple,uN? dz d‘r+é[ V¢ dr.
6 Js Q s

Proof of Lemma 8. Set § > 0.
T & LF ! T a 4! 6 2 1 n2
lf E q&fM(u)p(m,u)lgj Ed)f—M(u) + —p(z,n)
8 Q s a2 26
< ﬂfT E1+U¢I+LITE0¢If P(x ul)2
- 2 Js 28 Js o
[ ]

Using the estimates (5.14)-(5.16) with & small enough, we deduce from
(5.13) that there exists a positive constant C' such that

T T
/ E1+a¢r dr < CE(s)l-’ra' +Cf Ecr¢ff p(z,u’)2 dr dr
S5 s Q
T .
+C f oy f o + |Vuj? de dr. (5.17)
S Qg

It remains to estimate the last term.
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Lemma 9. There ezists a positive constant C such that, for allé > 0:

T
/ E°d / |Vul? dz dr < CE(S)™+ (5.18)
8 ang,

T
+ C/ E°¢ v + p(z,v)? + u? dz dr.
s QnQ»

Proof of Lemnma 9. Since BV \@2NQ; = @, we can construct e
CP(RYN) that satisfies

0<€<,
E=].OIIQ],
£=00on RN\ Q,.

We multiply (2.1) by £u to obtain:

[ 59 [ ~cupte,) = [[E76 [ eu - au)
— [EGQS"/‘;E““']z—-[QT(UE’EJ—I¢’+E0¢”)/g;guu’
+/:E"¢5’[ﬂ-—£u'2 + Vu - V(Eu),
= [E¢ [ eun]’ - /. T(aE’E"1¢’+E"¢”) [ guw
+ [S oy [ﬂ E(Vul® - ?) - %umg.

We deduce that
]ST E"?V_/;mc1 |[Vu? < ——[E"qb'j;lfu u']:
+ fs T(oE'E"‘qS’+E"qS") j‘; Eu'
+ /ST E“é’/ﬂ ~Eup(z,u') + u'? + %u?Af

T
< CE(S)™* + c/ E¢ | plou)P4+u?4d’. m
S

Qng;
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At last we adapt a method introduced in Conrad and Rao [4] to

estimate the last term of (5.18):

Lemma 10. There exists a positive constant C' such that, for all 7 > 0:

T
/_Wdf utwm<cma“ﬁwf_ﬂﬂwm (5.19)
ang2
+ & [ °¢f (o,0)? dz dr + 2 fE”¢/u’2dzdr

Proof of Lemma 10. Since BV \wN@Q; = 0, we can construct 3 €
C(RM) that satisfies

0<8<1,
ﬂ=10nQ2,
B=00n RN\ w.

Fix ¢ and consider the solution z of the following elliptic problem:
Az = f(z)u in §, (5.20)

z=0on J9. {(5.21)
We multiply (5.20) by z to deduce that there exists ¢ > 0 such that:

-/;]|Vz|2 = —fﬂﬁu z < cllull 2@yllizll 2y

So
Nzll 2oy < ellull L2y (5.22)

On the other hand, deriving with respect to ¢, we see that 2’ is solution
of the problem:

Az = B(x)v in Q, (5.23)
Z' =0 on 9. (5.24)

[z <c/ Bu’. (5.25)

So we deduce that
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Next we multiply (2.1) by z:
T
0 =/ E"¢'[ z (v — Au + plz, u'))
g 2
T
= [qublf Zu’]T—f (O‘E’EO*IQS"}‘E"-QSH)] zu'
Q s Js 2
T
+/ E"(,b’f —Zu —ulAz+zp(z,v).
5 Q
So
T
f E”q&'/ﬁuz E"¢/zu _] O'E’Ea ld’ +Ed¢‘”)./‘;2'u’
+[ E’é/ -2’ + zp(z,v). (5.26)
First we note that
[Bo¢ [ =], - [ N(oBE g 4 B0} [ 2w < By
a 15 Js o - '

Next set > 0:

T T
i] EGQ’J'/ z’u’|<[ E'”¢"c fﬂu'2 lﬂ [u’2)1,2
8
Sl o s T me [0
<5 [y [ D [y
S _c_] Ea¢l/ uf +CT,[ E1+a¢,.
nJs w s
The last term can be treated in the same way:
T e (T T
|f E’"¢’/ zp(w,'u')l < —f E"qb’/ p(x,u’)2+n6f Etg.
5 11 nJs Q S

We deduce from (5.26) and from the last three estimates the validity of
(5.19).
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5.3 End of the proof of Proposition 5.1.

Now we can achieve the proof of Proposition 5.1: using (5.18) and then
(5.19), we deduce from (5.17) that there exists C' > 0 such that for all
n>0

T T
/ E™°¢ dr < CE(S)** 4+ & / B f o(z, u')? de dr
by nJs 2
C (T 5 T
+5 / E° f W dzdr+ 7 f EYo g dr.
s w g

So if we choose 7 < 1, we get (5.3).

6 Estimates on the decay rate of the energy

When p(z,-) has a polynomial growth in 0, the last two terms of (5.3)
can be estimated using the Holder inequality (see e.g. V. Komornik
(11]). But when we don’t make any assumption on the growth of p(z,")
near (), we cannot apply the same reasoning. The information we need
on the growth of p(z, -} will be contained in the behavior of ¢ at infinity.
The function ¢ will be carefully chosen so that we can apply Lemma 3.
6.1 Exponential decay of the energy if g(v) = v

We set in the case where

Ve € Qv e R,a(@)lo] < Jo(z, v)| < Ca(z)ol.

Then we show that the energy decays exponentially: since a(z) > a > 0
on w, we deduce from Proposition 5.1 that

T T
/ EWog dr < CEM(8) +C / E°d f au dz dr (6.1)
s s o
T
< CE™(5)+C [ E°d / o p(z, ') dz dr.
s Q
Choosing ¢(t) = ¢t and o = 0, we deduce from (6.1} and from (5.2) that

T T , ,
/S E(r) dr < CE(S) +Cf5 /‘;up(a:,u) dz dr = 2CE(S). (6.2)
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Then the well-known Gronwall type inequality (4.3) gives us that
E(t) < C'e~t(0), (6.3)

(Note that it is easy to see that C' = e£(0).) This achieves the proof of
the first part of Theorem 1.

6.2 General estimate on the decay rate: proof of (2.15)

Assume that Hyp. 1 is satisfied with some strictly increasing odd func-
tion g of class C!. Fix ¢ = 1. Assume now that ¢ is a strictly increasing
concave function of class C? such that

&(t) — +oo and ¢'(t) — 0 as t — oo (6.4}

(for example ¢+ In(1 + ).
We estimate the terms of the right-hand side of (5.3) in order to
apply the results of Lemma 3: first we look at

T 2
f B¢ / v’ dz dt
g w

We have the following estimate

Lemma 11. There exists C' > 0 such that

[ 86 [ wtaascpsyrrcrs [ o @w) “

Proof of Lemma 11. Let us introduce
h(t) = g7 (¢' (1)) (6.6)
h is a decreasing positive function and satisfies
h(t) — 0 as t — +o0.
Fix ¢t > 1 and define

Q= {z € Q: W/ < A1)}, (6.7)
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0, = {z €2 1 h(t) < o] < (1)}, (69)
Q= {x e Q: | > h(1)}. (6.9)

Fix S > 1; first we look at the part on f ;. We deduce from (2.5)-
(2.6) that there exists ¢ > 0 such that

lo(z,v)| 2 ca(z)|v] if |v| 2 h(1),

because

and, if h(1) <1,

el > a(@ ) > caa)if ol € 1), 1
So we have
[:Eqb' » au’dzdt < %/;Edf/;v u p(z,u) drdt
< f-%‘gl fs " B(-F) < CE(S)". (6.10)

Next we look at the part on €2} ;: by monotenicity, if z € Qf ,, then
¢'(t) = g(h(t)) < lg(v)].
Since
a(z) u” lg(w)] < v lp(z, w)} < W/ plz, w) if '] < 1,
and, if h(1) > 1,

E'_—E(é_l)'_ a(z) a(z) £ 1y
P lg(w)] 2 Ta@w)] 2 sy T 1 E AL

we have

T 2 T 2
f E¢ au'dzdt g[ E/ a lg(u)| " dz dt (6.11)
5 i 5 Qf 5

T
<C j E f o p(z, ) dz dt < CE(S)?.
s Q}.z
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At last we look at the part on Q2 ,:

/STEQS’/m av'?drdt < c/STE(t)qb'(t)(fﬂt

<dRUES) [ #0( 0 ®)’ . (612
S

Since a(z) > a > 0 on w, we add (6.10)-(6.12) to conclude.

h(t)* dz) dt

"Next we estimate the term
T
j Ed)'j p(z,v')? dz dt.
s 43
Lemma 12. There exists C > 0 such that

fTE¢’/ (2,42 de di < C E(5)? CES)qub’(t)(‘1(q5’(t)))2dt
[ £ et asasomsrrone [ofren) @

Proof of Lemma 12. We follow the same idea: fix ¢ > 1 and define

Qtz‘l ={z e Q: || <)}, (6.14)
Do ={z€Q:¢'(t) < |v/| < ¢'(1)}, (6.15)
Qs :={z€Q:|]> ¢ 1)} (6.16)

With this partition of £ we easily see that

[
2,3

T T
/ Eqb'f plz,v)dz dt < C/ E¢ u' p{z,v) dz dt
s L, s Q

<C /S " B(—B < CE(S)™. (6.17)

Next we look at the part on 2% ,: by monotonicity, if z € Q4 ,, then

T T
/ Eqﬁ'[ p(z, v dzdt < / Ef [u'| p(z, w')? dz dt
8§ 95‘2 s 95'2

T
gcf E [ o p(e,u) dedt < CE(S)™. (6.18)
5 92'2
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At last we look at the part on Qf ;:

fST E4 /ﬂa,. p(z, o) de dt < c[ST E®)#(¢) ([ﬁ (g7 D) de) at

2,1

<dalEs) [ 60(s ¢ W) d. (6.19)

It is sufficient to add (6.17), (6.18) and (6.19) to conclude.
(Note that if ¢/(1) # 1, we repeat the arguments used to prove (6.10)-
(6.12).)

Assume that ¢ satisfies the following additional property:
] ¢@) (o7 (#'(1))) dt converges. (6.20)
1

This property is closely related to the growth of g near 0 and the decay
rate of ¢’ at infinity. Then we deduce from (5.3) and the estimates
(6.5)-(6.13) that there exists a positive constant C such that

Vi<S< T,LT E(t)24'(t) dt < CE(S). (6.21)

This gives a first estimate on the decay rate of the energy: we can apply
the Gronwall type inequality (4.2) with ¢ = 1 and we deduce that there
exists C' depending on E(0) such that

C
V2 1L,E(@) < oo (6.22)

So the problem is to find a strictly increasing function ¢ satisfying the
following conditions

¢ is concave and ¢(t) —+ +o00 as t — +00, (6.23)
¢'(t) — 0 as t — Fo0, (6.24)

/; e #'(t) (g'l(¢'(t)))2dt converges, (6.25)
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and then to estimate the growth of ¢ at infinity in order to prove (2.15).
If such a function exists, we can assume that ¢(1) = 1. With the change
of variable defined by

T = ¢(t)
we see that
+oo ! - t 2 _ too 1o - 2
[T eoltew) a= [ (e @et o) e
= [T} ?
= /1 (a7 = (T))) dr. (6.26)
Let us define 1 by
t1
= — dr. 6.2
Viz 190 =1+ S (6.27)
Then % is a strictly increasing function of class C? that satisfies
W(t) = —1 — +o00 as ¢ — +oo.
9(3)
So
$(t) — o0 as t — o0
and

f:m (g‘l(wtr)))zfif = flm % dr < +o0.

Moreover 1’ is increasing so v is a convex function. Then it is easy to
verify that ¢~! is concave: derivating two times the expression

P (1) =T,

we see that

(1) (r) = _¢"(¢—l(r))((¢—1)'(r))2 I i o

Vi) (W)
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That is why we define ,
V> 1,6() = 7A(0). (6.28)

Then ¢ is a strictly increasing concave function of class C? that satisfies
all the assumptions we made in our computations: (6.23) and (6.25) are
already verified, (6.24) is also true because

¢'(t) =

1 (=1} — 0 when t — +o0
f] en .
OO
Note that ¢(1) = 1 because (1) = 1. So we have explicitly constructed
a function ¢ that satisfies the required properties. With that special
choice we have

T 24 2 +°° RV T
[, B0 @ d <cES?+CES) [ (a7 ) &
2 L 2, ~E(S)
< CE(S)* + CE(S) f [, i =CEEy 0. (629)
Then we can apply Lemma 3 with ¢ = ¢’ = 1 to deduce that
L) C
L) = ¢(t)2' (6‘30)

It remains to estimate the growth of ¢. This is equivalent to majorate
the function ¢~1 = 7. Set 7y such that

)< 1.
g(_m) <

By monotonicity we have

1 1 1
Vr 2 1o, %(r) <14 (7 - 1)9(%) < 'rg(%) =50’ (6.31)
So
1 1
o] < - (6.32)
with 1 1 1
t= G G (3)- (6.33)

Thus the proof of (2.15) is achieved.
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6.3 Improved estimate on the decay rate of the energy

When H is an increasing function whose value in zero is zero, let us now
define

h(t) = H™Y(¢'(1)). (6.34)
Since we have
¢ () < Hw)u™ = u'g(u')

on {2 ,, the same reasoning holds. So with

67 (1) = 1+ fl t F:l—)dr, (6.35)
we see that
B < (o),

which gives (2.16) that is a better estimate than (2.15).
So the proof of Theorem 1 is achieved.

6.4 The case of the polynomial growth

If g(x) = 2 for some p > 1 on (0,1), then H(z) = zP~! is increasing.
So (2.16) gives the estimate

C

B(t) < 777

We did not manage to find a function ¢ that gives directly the estimate
first found by M. Nakao [19] or A. Haraux {7] in the case of internal
damping or L.R. Tcheugoué Tébou [21] for localized damping:

c
E®) < ooy

However the method leading to (2.16) allows us to find again a decay
rate as close as we want than this one: set

n>l,
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and define _
Pn(t) = /-1 4 ¢ > 1.

¢y, is chosen so that

1
(¢n1)J_L s
Moreover we see that ¢, is a concave function that satisfies (6.4). So we
derive from (6.1) that E satisfies

M=o

T T
[, B0 war < cE(S)2+CE(S) JRCACICaCAON R

E(S

< eB(S)? / : E(S)

cE(S)  + CE(S) — dr < cE(S)“+ 26":14(’"(5,)2"_1
(6.36)

Then we apply Lemma 3 with ¢ = 1 and ¢/ = 2n — 1 to deduce that

Cn
_ =

E(t) < re (t)2" = C, t"6- T (6.37)

It is sufficient to choose n large enough to obtain a decay rate close
enough than the classical one.
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