Volumen 12, número 1: 1999

http://dx.doi.org/10.5209/rev_REMA.1999.v12.n1.17219

Boundary singularities of solutions of sublinear elliptic equations.

Philippe GRILLOT

Abstract

Let Ω be a domain of \mathbb{R}^N , $N \geq 3$, such that $0 \in \partial \Omega$. In this paper we study the behavior near 0 of any nonnegative solution $u \in C^2(\Omega) \cap C(\overline{\Omega} \setminus \{0\})$ of equation of the type $-\Delta u + a(x)u^q = 0$ where 0 < q < 1 and function a behaves like a power of |x|.

1 Introduction

In this article we study the boundary behavior of the nonnegative solutions of sublinear elliptic equations of the type

$$-\Delta u + a(x)u^q = 0 \tag{1}$$

in a domain Ω of \mathbb{R}^N , $N \geq 3$, $q \in (0,1)$, with a possible isolated singularity at one point of the boundary. More precisely we assume that $0 \in \partial \Omega$ is the singular point and $a \in C^1(\Omega)$ with:

$$a(x) = |x|^{\sigma} (1 + o(1))$$
 (2)

$$|\nabla a(x)| = O(|x|^{\sigma - 1}) \tag{3}$$

near 0, where σ is a given real.

Our first question is the following: let $u \in C^2(\Omega) \cap C(\overline{\Omega} \setminus \{0\})$ be a nonnegative solution of (1) in Ω such that

1991 Mathematics Subject Classification: 35J67.

Servicio Publicaciones Univ. Complutense. Madrid, 1999.

$$u = \phi \quad on \quad \partial \Omega \setminus \{0\} \tag{4}$$

where ϕ is a given continuous function on $\partial\Omega$; can we extend u as a continuous function defined in whole $\overline{\Omega}$? If not, the second point is to describe the precise behavior of u near 0.

This boundary singularity problem for sublinear elliptic equation is a new type of problem. In the superlinear case, the problem has been studied by analystic methods by Gmira and Véron [9] and Sheu [12] in the regular case, Fabbri and Véron [8] in the non regular case and by probabilistic methods by Le Gall [10] and Dynkin and Kuznetsov [7]. Recall that the singularity is removable only in the case q > N+1/(N-1), when $\sigma = 0$.

When the singular point lies in Ω , equation (1) has been studied in the superlinear case q > 1 in [6], [11] and [13] and in the sublinear case q < 1 in [1] and [2].

In the present work, we consider the case where Ω is a ball, for example

$$\Omega = B(x_0, \frac{1}{2})$$
 with $x_0 = \frac{e_N}{2}$,

where $(e_1, ..., e_N)$ is the canonical basis of \mathbb{R}^N . Our results depend on the relative positions of q, N and σ . The principal point is to obtain a priori estimates near 0 for the solutions of (1). In that aim, we first use two change of variables which lead us to a problem in the half space

$$I\!\!R^{N+} = \{ x \in I\!\!R^N / x_N > 0 \}.$$

More precisely we introduce the following Kelvin transform:

$$u(x) = |y + e_N|^{N-2}v(y)$$
 with $y + e_N = \frac{x}{|x|^2}$ (5)

where $e_N = (0, ..., 0, 1) \in \mathbb{R}^N$. A straightforward computation implies that v satisfies

$$-\Delta v(y) + |y + e_N|^{(N-2)q - (N+2)} a \left(\frac{y + e_N}{|y + e_N|^2} \right) v^q(y) = 0$$
 (6)

for all $y \in \mathbb{R}^{N+}$. Remark that the singular point 0 is reduced to infinity by this transform. Now we use the classical Kelvin transform:

$$v(y) = |z|^{N-2}w(z) \quad with \quad z = \frac{y}{|y|^2}.$$
 (7)

If v satisfies (6) in \mathbb{R}^{N+} , then w is solution of

$$-\Delta w + b(z)w^q = 0 (8)$$

in \mathbb{R}^{N+} with the singularity at 0 and where $b(z)=|z|^{(N-2)q-(N+2)}|y+e_N|^{(N-2)q-(N+2)}a\left(\frac{y+e_N}{|y+e_N|^2}\right)$. Because of (2), we have

$$b(z) = |z|^{\sigma} (1 + o(1))$$
 near 0. (9)

Once we are reduced to an equation in $I\!\!R^{N+}$, we make a new change of variables which leads us to an equation in the infinite cylinder $\mathcal{C}=I\!\!R\times S_+^{N-1}$ where S_+^{N-1} is the hemisphere of S^{N-1} contained in $I\!\!R^{N+}$: defining

$$V(t,\theta) = |z|^{N-1} w(z) = r^{N-1} w(r,\theta)$$
 (10)

where (r, θ) are the spherical coordinate of z and t = -lnr. Because of (8), V satisfies:

$$\begin{cases} V_{tt} + NV_t + (N-1)V + \Delta_{S^{N-1}}V = g(t,\theta)V^q & in \ C \\ V(t,.) = \Psi(t,.) & on \ \partial S_+^{N-1} = S^{N-2} \end{cases}$$
(11)

where g is some nonnegative function in \mathcal{C} and $\Psi(t,.)$ is some nonnegative function on S^{N-2} with $\max_{S^{N-2}} \Psi(t,.) = O(e^{-(N-1)t})$ when t tends to $+\infty$.

In the first time, we give a priori estimate result. For this we introduce the first eigenfunction Φ_1 of the Laplacian in $W_0^{1,2}(S_+^{N-1})$ where S_+^{N-1} is the hemisphere of S_-^{N-1} contained in $I\!\!R^{N+}$. The function Φ_1 is normalized by $\|\Phi_1\|_{\infty}=1$ and satisfies

$$\begin{cases}
-\Delta_{S^{N-1}}\Phi_{1} = (N-1)\Phi_{1} & in \quad S_{+}^{N-1} \\
\Phi_{1} = 0 & on \quad S^{N-2}.
\end{cases}$$
(12)

Now the main point is to prove that any estimate of the mean value

$$\overline{V}(t) = \int_{S_{+}^{N-1}} V(t,\theta) \Phi_{1}(\theta) d\theta$$
 (13)

implies an analogous estimates on V. Then we are reduced to give estimates on \overline{V} , wich reduces the problem to the resolution of ordinary

differential inequalities. In that way we get a priori estimates for all nonnegative solution of (1) satisfying (4) for all continuous function ϕ . Our main result concerning the priori estimates is the following.

Theorem 1. Assume ϕ is a continuous function on ∂B . Let $u \in C^2(B) \cap C^0(\overline{B} \setminus \{0\})$ be any nonnegative solution of (1) satisfying (4). Then we have:

(i) If
$$q < \min\left(1, \frac{N+1+\sigma}{N-1}\right)$$
, then

$$u(x) = O(|x|^{1-N})$$
 near 0. (14)

(ii) If $q > \frac{N+1+\sigma}{N-1}$, then

$$u(x) = O(|x|^{\frac{2+\sigma}{1-q}})$$
 near 0. (15)

(iii) If $q = \frac{N+1+\sigma}{N-1}$, then

$$u(x) = O(|x|^{1-N}|\ln|x||^{\frac{1}{1-q}}) \quad near \quad 0.$$
 (16)

Our results show that two effects one fighting each other, the nonlinear and the linear one, as it was the case in the interior problem [1], [2]. The nonlinear effect is governed by the possible existence of particular solutions of (8) when $b(z) = |z|^{\sigma}$, given by:

$$w^*(z) = C(N, q, \sigma)|z|^{\gamma} \quad where \quad \gamma = \frac{2+\sigma}{1-q}.$$
 (17)

The linear effect is governed by the solution of Poisson equation:

$$\begin{cases}
-\Delta P = 0 & \text{in } \mathbb{R}^{N+} \\
P(0) = \delta_0
\end{cases}$$
(18)

where δ_0 is the Dirac mass at the origin. Recall that P is given by $P(z)=P(r,\theta)=C_Nr^{1-N}\Phi_1(\theta)$.

In a second part we prove more precise convergence results by using some techniques adapted to equations in an infinite cylinder, still used in [11], [4], [3], [1].

Our main result is then the following:

Theorem 2. Assume ϕ is a nonnegative continuous function on ∂B , identically equal to 0 in a neighborhood of 0 in ∂B . Let $u \in C^2(B) \cap C^0(\overline{B} \setminus \{0\})$ be any nonnegative solution of (1) satisfying (4).

(i) Assume $q < 1 < \frac{N+1+\sigma}{N-1}$ (hence $2+\sigma > 0$). Then, using Kelvin transforms (5) and (7), there exist $l \ge 0$ such that:

$$\lim_{|r|\to 0} |r|^{N-1} w(r,\theta) = l\Phi_1(\theta) \quad uniformly \quad on \quad S_+^{N-1}. \tag{19}$$

with $(r,\theta) \in \mathbb{R}_+^* \times S_+^{N-1}$ is the spherical coordinates of z in \mathbb{R}^{N+} . If l=0, then u can be extended to a continuous function in \overline{B} . In that case \bullet if $\sigma+1+q<0$, then

$$u(x) = O(|x|^{\gamma}) \quad near \quad 0 \tag{20}$$

with $\gamma = \frac{2+\sigma}{1-q}$. Using Kelvin transforms (5) and (7), the limit set in $C^2(S_+^{N-1})$ of $r^{-\gamma}w(r,.)$ as r goes to 0 is contained in the set of nonnegative solutions of

$$\begin{cases} \Delta_{S^{N-1}}\omega + \gamma(\gamma - 2 + N)\omega - \omega^q = 0 & in \quad S_+^{N-1} \\ \omega = 0 & on \quad S^{N-2}. \end{cases}$$
 (21)

• If $\sigma + 1 + q > 0$, then there exists $k \geq 0$ such that

$$\lim_{|r|\to 0} |r|^{-1} w(r,\theta) = k\Phi_1(\theta) \quad uniformly \quad on \quad S_+^{N-1}. \tag{22}$$

Moreover, if k = 0, then (20) holds and we have the same property as above.

- (ii) Assume $q < \frac{N+\sigma+1}{N-1} \le 1$ (hence $2+\sigma \le 0$). Then (19) holds and if l=0, then $u\equiv 0$ near the origin.
- (iii) Assume $\frac{N+\sigma+1}{N-1} < q < 1$. Then as in (i) we have (20) and the inclusion property. Moreover, if $a(x) = |x|^{\sigma}$ and $\lim_{n \to +\infty} r_n^{-\gamma} w(r_n, .) = 0$ for some sequence $r_n \to 0$, then u is identically equal to 0 near the origin.

Our paper is organized as follows:

1. Introduction

- 2. Preliminary results
- 3. A priori estimates
- 4. Convergence results.

2 Preliminary results

Let Cl the infinity cylinder defined by $Cl = [1, +\infty) \times S_+^{N-1}$. For all function V defined on Cl, we denote \overline{V} the average of V defined on $[1, +\infty)$ as in (13).

We start this section with some result which allows us to claim that a nonnegative solution V of some elliptic equation in Cl is bounded as soon as its average \overline{V} in $[1, +\infty[$ is.

Proposition 1. Let $(a_1, a_2, b_1, b_2, c_1) \in \mathbb{R} \times \mathbb{R}^* \times \mathbb{R}^3$. Assume that g is a nonnegative bounded function on Cl. Let $V \in C^2(Cl) \cap C(\overline{Cl})$ be any nonnegative solution of

$$V_{tt} + \left(\frac{a_1}{t} + a_2\right)V_t + \frac{1}{t}\left(\frac{b_1}{t} + b_2\right)V + c_1V + \Delta_{S^{N-1}}V = g(t,\theta)V^q \quad in \quad Cl$$
(23)

satisfying

$$V = \Psi \quad on \quad [1, +\infty) \times S^{N-2} \tag{24}$$

with $\Psi \in C([1,+\infty) \times S^{N-2})$ be a nonnegative function and $\max_{S^{N-2}} \Psi(t,.) = O(e^{-\beta t})$ for some $\beta > 0$.

If \overline{V} is bounded on $[1, +\infty[$, then V belongs to $L^{\infty}(Cl)$.

This proposition ensues from the two following lemmas. They are an adaptation of some result of [5] for a problem with the other sign in the cylinder, of the type

$$\begin{cases} W_{tt} + a_0 W_t - lW + \Delta_{S^{N-1}} W + W^Q = 0 & in \quad Cl \\ W = 0 & on \quad [1, +\infty) \times S^{N-2} \end{cases}$$

where a_0 , l are constants, with l > 0, in the superlinear case Q > 1.

Lemma 1. Under the assumptions of proposition 1, for all $\gamma \in]1, \frac{1}{1-q}[$, there exists $K = K(\gamma, N, q) > 0$ such that for all $t \geq 2$:

$$\int_{t}^{t+1} \int_{S_{+}^{N-1}} 1_{V \neq 0} \frac{|DV|^{2}}{V^{\beta}} \Phi_{1} d\theta ds \leq K$$
 (25)

where $\beta=2-\frac{1}{\gamma}$, $|DV|^2=(V_t)^2+|\nabla_{S^{N-1}}V|^2$ and $1_{V\neq 0}$ denotes the caracteristic function of the set $\{(t,\theta)\in \mathcal{C}l/V(t,\theta)\neq 0\}$.

Proof. Since V can vanish, we consider the function $U = V + \varepsilon$ for $\varepsilon \in (0,1)$. Because of (23), U satisfies

$$U_{tt} + \left(\frac{a_1}{t} + a_2\right) U_t + c_1 U + \Delta_{S^{N-1}} U + \frac{1}{t} \left(\frac{b_1}{t} + b_2\right) U \qquad (26)$$

$$\leq g(t, \theta) U^q + c_1 \varepsilon + \frac{\varepsilon}{t} \left(\frac{b_1}{t} + b_2\right)$$

in $\mathcal{C}l$. Now set $U=W^{\gamma}$, then $W\geq \varepsilon^{\frac{1}{\gamma}}$ in $\mathcal{C}l$ and from (26), W satisfies in $\mathcal{C}l$

$$W_{tt} + \left(\frac{a_1}{t} + a_2\right) W_t + \Delta_{S^{N-1}} W + \frac{c_1}{\gamma} W$$

$$+ \frac{1}{t\gamma} \left(\frac{b_1}{t} + b_2\right) W + \frac{\gamma - 1}{W} (W_t^2 + |\nabla_{S^{N-1}} W|^2)$$

$$\leq \frac{C_1}{\gamma} W^{\gamma(q-1)+1} + \frac{c_1}{\gamma} \varepsilon^{\frac{1}{\gamma}} + \frac{\varepsilon^{\frac{1}{\gamma}}}{\gamma t} \left(\frac{b_1}{t} + b_2\right)$$
(27)

where C_1 is a positive constant independent on t and θ . Multiplying (27) by Φ_1 and integrating on S_+^{N-1} , the function \overline{W} introduced in (13) satisfies

$$\overline{W}_{tt} + \left(\frac{a_1}{t} + a_2\right) \overline{W}_t + \left(\frac{c_1}{\gamma} - (N - 1)\right) \overline{W}$$

$$+ \frac{1}{\gamma t} \left(\frac{b_1}{t} + b_2\right) \overline{W} + \int_{S_+^{N-1}} A(t, \theta) d\theta$$

$$- \int_{S^{N-2}} \Psi \frac{\partial \Phi_1}{\partial \nu} d\theta \le \frac{C_1}{\gamma} \int_{S_+^{N-1}} (W \Phi_1)^j d\theta + C_2 \varepsilon^{\frac{1}{\gamma}}$$
(28)

in $[1, +\infty)$, where $A(t, \theta) = \frac{\gamma - 1}{W} (W_t^2 + |\nabla_{S^{N-1}} W|^2) \Phi_1(\theta), j = \gamma(q-1) + 1 \in (0, 1)$ and $C_2 = (\int_{S_+^{N-1}} \Phi_1 d\theta) [C_1 \gamma^{-1} + \gamma^{-1} \max(0, \max_{t \geq 1} (b_1 t^{-2} + b_2 t^{-1}))]$. Then from Jensen inequality and observing that $-\partial \Phi_1 / \partial \nu \geq 0$ on S^{N-2} , we get :

$$\overline{W}_{tt} + \left(\frac{a_1}{t} + a_2\right) \overline{W}_t + \int_{S_+^{N-1}} A(t, \theta) d\theta \le \frac{C_1}{\gamma} \overline{W}^j + C_2 \varepsilon^{\frac{1}{\gamma}}$$

$$-\left(\frac{c_1}{\gamma}-(N-1)\right)\overline{W}-\frac{1}{t\gamma}\left(\frac{b_1}{t}+b_2\right)\overline{W} \tag{29}$$

in $[1, +\infty)$. On the other hand, Jensen inequality, the fact that $\Phi_1^{\gamma} \leq \Phi_1 \leq 1$ and that \overline{V} is bounded imply that there exists D > 0 such that for all $t \geq 1$: $(\overline{W}(t))^{\gamma} \leq \overline{U}(t) \leq D(1+\varepsilon)$. Therefore \overline{W} is bounded on $[1, +\infty)$. From (29) we deduce that there exists $C_3 > 0$ such that

$$0 \le \int_{S_{\perp}^{N-1}} A(t,\theta) d\theta \le C_3 - \overline{W}_{tt} - \left(\frac{a_1}{t} + a_2\right) \overline{W}_t \tag{30}$$

for all $t \ge 1$. Integrating twice (30) we obtain for all $t \ge 1$:

$$0 \le \int_{t}^{t+1} \left(\int_{s}^{s+1} \left(\int_{S_{+}^{N-1}} A(\tau, \theta) d\theta \right) d\tau \right) ds \le C_{4}$$
 (31)

where $C_4 > 0$ does not depend on t. Remark that for all nonnegative integrable function f, we have :

$$\int_{t}^{t+1} \left(\int_{s}^{s+1} f(\tau) \right) ds \ge \int_{t+\frac{1}{2}}^{t+1} \left(\int_{t+1}^{s+1} f(\tau) \right) ds \ge \frac{1}{2} \int_{t+1}^{t+\frac{3}{2}} f(\tau) d\tau.$$

Hence we deduce from (31):

$$0 \le \frac{1}{2} \int_{t+1}^{t+\frac{3}{2}} \int_{S_{1}^{N-1}} A(s,\theta) d\theta ds \le C_{4}. \tag{32}$$

Since $V = W^{\gamma} - \varepsilon$, (32) implies for all $t \geq 2$:

$$0 \le \int_{t}^{t+1} \int_{S_{1}^{N-1}} 1_{V \ne 0} \frac{|DV|^{2}}{(V+\varepsilon)^{\beta}} \Phi_{1} d\theta ds \le C_{5}$$
 (33)

where $\beta = 2 - \gamma^{-1}$ and $C_5 > 0$ does not depend on t. Letting ε tend to 0 in (33) we obtain (25) using Fatou lemma.

Lemma 2. Under the assumptions of proposition 1, for any $\varepsilon > 0$ small enough there exists a positive constants K_1 such that for all $t \geq 2$:

$$\int_{t}^{t+1} \int_{S_{+}^{N-1}} (V(s,\theta))^{\frac{N}{N-1} - \varepsilon} d\theta ds \le K_{1}.$$

$$(34)$$

Proof. Here we follow the ideas of the proof of [5] theorem 4.1. Let $\tau \in (0,1)$ be fixed. From [5] lemma 4.1, there exists a unique solution ξ of problem

$$\begin{cases} -\Delta_{S^{N-1}}\xi = \Phi_1^{-\tau} & \text{in } S_+^{N-1} \\ \xi = 0 & \text{on } S^{N-2} \end{cases}$$
 (35)

and there exists $K \geq 0$ such that $K^{-1}\Phi_1 \leq \xi \leq K\Phi_1$ on S^{N-1}_+ . Defining $Z(t) = \int_{S^{N-1}_+} V(t,\theta)\xi(\theta)d\theta$, we deduce from (23) that

$$Z_{tt} + \left(\frac{a_1}{t} + a_2\right) Z_t + \frac{1}{t} \left(\frac{b_1}{t} + b_2\right) Z + c_1 Z - \int_{S^{N-2}} \Psi \frac{\partial \xi}{\partial \nu} d\theta = \int_{S^{N-1}_+} V \Phi_1^{-\tau} d\theta + \int_{S^{N-1}_+} g V^q \xi d\theta$$

hence from (24) there exists $A \geq 0$ such that

$$\int_{S_{+}^{N-1}} V \Phi_{1}^{-\tau} d\theta \leq Z_{tt} + \left(\frac{a_{1}}{t} + a_{2}\right) Z_{t} + \frac{1}{t} \left(\frac{b_{1}}{t} + b_{2}\right) Z + c_{1} Z + A e^{-\beta t}.$$
(36)

On the other hand, since [5], there exist some constant μ and $\nu > 0$ such that the function $\eta = \Phi_1(\mu - \nu \Phi_1^{1-\tau})$ is a supersolution of (35). Since \overline{V} is bounded:

$$0 \le Z(t) \le \int_{S_1^{N-1}} V \Phi_1(\mu - \nu \Phi_1^{1-\tau}) d\theta < \infty \tag{37}$$

Now integrating twice (36) between t and t+1 for all $t \geq 2$ and using (37) we obtain after integrate by part the term $(a_1/t + a_2)Z_t$:

$$\int_t^{t+1} \left(\int_s^{s+1} \left(\int_{S_+^{N-1}} V \Phi_1^{-\tau} d\theta \right) d\tau \right) ds \leq D$$

where D > 0 does not depend on t. Then as in lemma 1, we prove that there exists $K_{\tau} > 0$ such that for any $t \geq 2$:

$$\int_{t}^{t+1} \int_{S_{1}^{N-1}} u \Phi_{1}^{-\tau} d\theta d\tau \le K_{\tau}. \tag{38}$$

Then from estimates (25) and (38) and using Holder and Sobolev inequalities, we deduce (34) as in [5], lemma 4.1.

We now give the proof of proposition 1 where the condition q < 1highly occurs.

Proof of proposition 1. In this proof, for $l \in \mathbb{N}^*$, C_i denotes a positive constant independent on t. Set $f(t,\theta) = g(t,\theta)V^q - c_1V - \frac{1}{t}\left(\frac{b_1}{t} + b_2\right)V$. We know that g is bounded on Cl and because of (34), Young inequality implies that for all $t \geq 2$:

$$||f||_{L^{\frac{N}{N-1}-\epsilon}([t-1,t+1]\times\overline{S_{1}^{N-1}})} \le C_{1}.$$
(39)

For all $j \ge 1$, define $K_t^{(j)} = [t - \frac{1}{i}, t + \frac{1}{i}] \times \overline{S_+^{N-1}}$. Because V satisfies (23), Calderon-Zygmund theory ensures that for all $t \ge 2$:

$$||V||_{W^{2,\frac{N}{N-1}-\epsilon}(K^{(2)})} \le C_2.$$
 (40)

Then, since $\frac{N}{N-1} - \varepsilon < \frac{N}{2}$, Sobolev imbeddings imply:

$$||V||_{L^{p_1}(K_*^{(2)})} \le C_2' \tag{41}$$

with $\frac{1}{p_1} = \frac{N-1}{N-\varepsilon(N-1)} - \frac{2}{N}$. Using Calderon-Zygmund theory with some $p_1 > \frac{N}{N-1} - \varepsilon$, we prove (40) with p_1 and $K_t^{(3)}$ respectively replacing by $\frac{N}{N-1} - \varepsilon$ and $K_t^{(2)}$. Therefore Sobolev imbeddings imply :

If
$$p_1 > \frac{N}{2}$$
, then $||V||_{L^{\infty}(K_t^{(3)})} \le C_3$. (42)

If
$$p_1 = \frac{N}{2}$$
, then $||V||_{L^p(K_t^{(3)})} \le C_4 \quad \forall p \ge p_1$. (43)

Applying another time Calderon-Zygmund theory with some $p>p_1$, we obtain (40) with p and $K_t^{(4)}$ respectively replacing $\frac{N}{N-1}-\varepsilon$ and $K_t^{(2)}$ and we can use (42).

If
$$p_1 < \frac{N}{2}$$
, then $||V||_{L^{p_2}(K_t^{(2)})} \le C_5$ (44)

with p_2 such that $\frac{1}{p_2} = \frac{1}{p_1} - \frac{2}{N}$. Either $p_2 > \frac{N}{2}$ and we are under the condition of 42), or we use (39) with $p_2 > p_1$. We construct in that way a nondecreasing sequence (p_n) such that $\frac{1}{p_n} = \frac{1}{p_{n-1}} - \frac{2}{N}$. Thus there exists

 $p_{n_0} > \frac{N}{2}$ and finally obtain the existence of some $j_0 \ge 1$ and C > 0 such that $||V||_{L^{\infty}(K_*^{(j_0)})} \le C$. This achieves the proof.

We end this section with the following convergence lemmas which will allow us to prove theorem 2.

Lemma 3. Let $(A, \alpha) \in \mathbb{R}^* \times \mathbb{R}_+^*$. Consider a nonnegative Holder function f in Cl satisfying:

$$f(t,.) = O(e^{-\alpha t}) \quad uniformly \quad in \quad S_{+}^{N-1}$$
 (45)

for large t. Let $Y \in C^2(\overline{\mathcal{C}l})$ be any nonnegative bounded solution of equation

$$Y_{tt} + AY_t + (N-1)Y + \Delta_{S^{N-1}}Y = f(t,\theta)Y^q$$
 (46)

in Cl and satisfying

$$Y(t,.) = 0 \quad on \quad \partial S_{+}^{N-1} \tag{47}$$

for all t. Then Y_t and Y_{tt} tends to 0 in $L^2(S^{N-1}_+)$ when t tends to infinity and there exists $l \ge 0$ such that

$$\lim_{t \to +\infty} Y(t,.) = l\Phi_1 \quad uniformly \quad on \quad S_+^{N-1}. \tag{48}$$

Proof. Since Y is bounded on $\overline{\mathcal{C}l}$, Calderon-Zygmund theory, Sobolev imbedding and Schauder theory imply that there exists a constant C>0 such that

$$||Y||_{C^{2,\beta q}(\overline{Cl})} \le C \tag{49}$$

with $\beta \in]0,1[$. Now define on the one hand the limit set

$$\Gamma(Y) = \bigcap_{t \ge 1} \overline{\bigcup_{\tau \ge t} Y(\tau, .)}^{C^2(S_+^{N-1})}.$$
 (50)

As in [1], both Y_t and Y_{tt} tend to 0 in $L^2(S_+^{N-1})$ when t tends to infinity. Then $\Gamma(Y)$ is a connected compact subset of the set $E = \{\omega \in C^2(S_+^{N-1})/-\Delta_{S^{N-1}}\omega = (N-1)\omega \ \ in \ \ S_+^{N-1}, \omega \geq 0 \ \ and \ \ \omega = 0 \ \ on \ \ \partial S_+^{N-1}\} = \{l\Phi_1/l \in I\!\!R^+\}.$

On the other hand multiplying (46) by Φ_1 , integrating on S_+^{N-1} and using (45) and (49), we obtain

$$0 \le \overline{Y}_{tt} + A\overline{Y}_t \le De^{-\alpha t} \tag{51}$$

for all $t \geq 1$ with D > 0 and \overline{Y} defined in (13). Because of (51), the function $G: t \mapsto \overline{Y}_t + A\overline{Y} + \frac{D}{\alpha}e^{-\alpha t}$ is nonincreasing and lowerbounded on $[1, +\infty($. Therefore there exists $\tilde{l} \in I\!\!R$ such that $\tilde{l} = \lim_{t \to +\infty} G(t) = \lim_{t \to +\infty} A\overline{Y}(t)$ because \overline{Y}_t tends to 0 in $L^2(S_+^{N-1})$.

Finally, because of (49) and the fact that $\Gamma(Y)$ is included in E, there exists $l \in \mathbb{R}^+$ and a sequence (t_n) converging to infinity such that $Y(t_n, \cdot)$ tends to $l\Phi_1$ in $C^2(S_+^{N-1})$ as n tends to infinity. Thus we obtain $\tilde{l} = Al \int_{S_+^{N-1}} \phi_1^2(\theta) d\theta$. It would be the same for an other sequence and (48) holds.

In the same way, we can prove the analogous lemma:

Lemma 4. Let $(A, B, \alpha) \in \mathbb{R}^* \times \mathbb{R} \times \mathbb{R}^*$. Consider the Holder nonnegative function f in Cl satisfying:

$$|f(t,.)-1| = O(e^{-\alpha t})$$
 uniformly on S_{+}^{N-1} . (52)

Let $Y \in C^2(\overline{Cl})$ be any nonnegative bounded solution of equation

$$Y_{tt} + AY_t + BY + \Delta_{SN-1}Y = f(t,\theta)Y^q \tag{53}$$

in Cl and satisfying (47) for all t. Then the limit set $\Gamma(Y) = \bigcap_{t \geq 1} \overline{\bigcup_{\tau \geq t}} \overline{Y(\tau,.)}^{C^2(S_+^{N-1})}$ is a connected compact subset of the set $\{\omega \in C^2(S_+^{N-1})/\Delta_{S^{N-1}}\omega + B\omega - \omega^q = 0 \text{ on } S_+^{N-1}, \omega \geq 0 \text{ and } \omega = 0 \text{ on } \partial S_+^{N-1}\}.$

3 A priori estimates

In this section, we consider a nonnegative solution of equation (1) and give an a priori estimate near 0 of this solution.

Proof of theorem 1. Considering both changes of variables (5), (7) and (10), the function V satisfies the equation (11) in the cylinder Cl = 0

 $[1, +\infty) \times S_+^{N-1}$, where g is a nonnegative function in $\mathcal{C}l$, Holderian because of (3), satisfying because of (2):

$$g(t,.) = O(e^{-\alpha t})$$
 uniformly on S_{+}^{N-1} (54)

with $\alpha = N + 1 + \sigma - q(N - 1)$. And

$$V = \Psi > 0$$

with $\Psi \in C(\mathcal{C}l)$ and satisfies for all $t \geq 1$:

$$\Psi(t,.) = O(e^{(1-N)t}) \quad uniformly \quad on \quad \partial S_+^{N-1}. \tag{55}$$

Now consider the function \overline{V} defined in (13). Multiplying (11) by Φ_1 and integrating on S_+^{N-1} , we obtain for all $t \geq 1$:

$$\overline{V}_{tt} + N\overline{V}_t - \int_{\partial S_+^{N-1}} V(t,\tau) \frac{\partial \Phi_1}{\partial \nu}(\tau) d\tau = \int_{S_+^{N-1}} g(t,\sigma) V^q(t,\sigma) \Phi_1(\sigma) d\sigma.$$
(56)

Since $\frac{\partial \Phi_1}{\partial \nu}$ is nonpositive on ∂S_+^{N-1} , (54), (56) and Jensen inequality imply that there exists C > 0 such that for all $t \ge 1$

$$\overline{V}_{tt} + N\overline{V}_t < Ce^{-\alpha t}\overline{V}^q. \tag{57}$$

We now distinguish three cases:

 $(i)\alpha > 0$:

If \overline{V} is not bounded, then it is nondecreasing on an interval $[T, +\infty)$ with T > 1. Actually if \overline{V} is not nondecreasing, there exists a sequence (t_n) of strict maxima of \overline{V} such that $t_n \to +\infty$ and $\overline{V}(t_n) \to +\infty$. Let s_n be a real such that $\overline{V}(s_n) = \max_{\{T,t_n\}} \overline{V}(t)$, then we have $\overline{V}(t) \leq \overline{V}(s_n)$ for all $t \in [T, s_n]$. Integrate (57) on $[T, s_n]$, we obtain

$$-\overline{V}_{t}(T) + N\overline{V}(s_{n}) - N\overline{V}(T) \leq C\overline{V}^{q}(s_{n}) \int_{T}^{s_{n}} e^{-\alpha t} dt$$

$$\leq \frac{C}{\alpha} \overline{V}^{q}(s_{n}) e^{-\alpha T}.$$
(58)

As $\overline{V}(t_n) \leq \overline{V}(s_n)$, $\overline{V}(t_n) \to +\infty$ and $q \in (0,1)$, we have a contradiction when n tends to infinity in (58).

Now we claim that \overline{V} is bounded. Actually, if \overline{V} is not bounded, \overline{V} is nondecreasing on $[T,+\infty[$ and then $\lim_{t\to+\infty}\overline{V}(t)=+\infty.$ On the other hand, because of (57), the function $G:t\mapsto \overline{V}_t(t)+N\overline{V}(t)-C\int_2^t e^{-\alpha s}\overline{V}^q(s)ds$ is nonincreasing on $[T,+\infty)$. Therefore G is bounded from above on $[T,+\infty)$ by a constant $D\in \mathbb{R}$. Morever $\overline{V}_t\geq 0$ on $[T,+\infty)$ and we deduce

$$N\overline{V}^{1-q}(t) \le D\overline{V}^{-q}(t) + C\alpha^{-1}e^{-\alpha T}$$
 for all $t \ge T$.

Then we obtain a contradiction as t goes to infinity and \overline{V} is bounded on $[T, +\infty)$. Then the assumptions of proposition 1 are achieved, with $a_1 = 0$, $a_2 = N$, $b_1 = b_2 = 0$, $c_1 = N - 1$ and $\beta = N - 1$ in (24). Thus proposition 1 applies and $V \in L^{\infty}(\mathcal{C}l)$. Using changes of variables (10), (7) and (5), we obtain (14).

 $(ii)\alpha < 0$:

If \overline{V} is bounded, then we obtain (14) as above and since $\alpha < 0$, that is $q > \frac{N+1+\sigma}{N-1}$, we have $|x|^{1-N} << |x|^{\frac{2+\sigma}{1-q}}$ near 0 which implies (15).

If \overline{V} is not bounded, then there exist $1 < t_0 < t_1$ such that $1 < \overline{V}(t_0) < \overline{V}(t_1)$. Let $e \in (t_1, +\infty)$. We define

$$s_e = \min\{s \in [t_0, e] / \max_{[t_0, e]} \overline{V} = \overline{V}(s)\}.$$

Then $\overline{V}(t) \leq \overline{V}(s_e)$ for all $t \in [t_0, e]$. We claim that $\overline{V}_t(s_e) \geq 0$. Actually, if $s_e \in]t_0, e[$, then $\overline{V}_t(s_e) = 0$. If $s_e = t_0$, then $t_1 \in]t_0, e[$ implies $\overline{V}(t_1) \leq \overline{V}(s_e) = \overline{V}(t_0)$ and this is false. If $s_e = e$, then $\overline{V}_t(s_e) < 0$ would be a contradiction with $\overline{V}(s_e) = \max_{[t_0, e]} \overline{V}$.

Now integrate (57) on $[t_0, s_e]$, we obtain since $\overline{V}_t(s_e) \geq 0$:

$$N\overline{V}(s_e) \leq C \int_{t_0}^{s_e} e^{-\alpha t} \overline{V}^q(t) dt + N\overline{V}(t_0) + \overline{V}_t(t_0)$$

$$\leq C \overline{V}^q(s_e) \int_{t_0}^{s_e} e^{-\alpha t} dt + C_0$$

where $C_0 > 0$ only depends on t_0 . Therefore, because $\overline{V}(s_e) \ge \overline{V}(t_0) > 1$, we have

$$\overline{V}^{1-q}(s_e) \le -\frac{C}{\alpha N} e^{-\alpha s_e} + C_0. \tag{59}$$

Since the function $r \mapsto -\frac{C}{\alpha N}e^{-\alpha r} + C_0$ is increasing, we deduce from $s_e \leq e$, $\overline{V}(e) \leq \overline{V}(s_e)$, $q \in (0,1)$ and (59) that (59) holds for e replacing s_e . Therefore there exist D > 0 such that for all $t > t_1$:

$$\overline{V}(t) \le De^{-\frac{\alpha}{1-q}t} = De^{-[N-1+\frac{2+\sigma}{1-q}]t}.$$
 (60)

Finally we introduce the function U defined on Cl by

$$U(t,\theta) = e^{\left[N - 1 + \frac{2 + \sigma}{1 - q}\right]t} V(t,\theta) \tag{61}$$

and its average \overline{U} defined in (13). Because of (60), \overline{U} is bounded on $(t_1, +\infty)$ and U satisfies (23) with $a_1 = b_1 = b_2 = 0$, $a_2 = 2 - N - 2\gamma$ and $c_1 = \gamma(\gamma + 2 - N)$ where $\gamma = \frac{2+\sigma}{1-q}$ and $\beta = -\frac{2+\sigma}{1-q} > 0$ in (24) because $\alpha < 0$. Moreover the assumptions of proposition 1 are achieved and then $U \in L^{\infty}(\mathcal{C}l)$. Using changes of variables (61), (10), (7) and (5), we obtain (15).

$$(iii)\alpha = 0$$
:

If \overline{V} is bounded, we use the fact that $|x|^{1-N} << |x|^{1-N} |ln|x||^{\frac{1}{1-q}}$ near 0 and we obtain (16). If \overline{V} is not bounded, then in the same way as above, we prove the following inequality which is similar to (60):

$$\overline{V}(t) \le Dt^{\frac{1}{1-q}}. (62)$$

Finally, we use a function W defined on Cl by:

$$W(t,\theta) = t^{\frac{1}{1-q}}V(t,\theta).$$

It satisfies (23) with $a_1=2/(1-q)$, $a_2=N$, $b_1=2/(1-q)(2/(1-q)-1)$, $b_2=N$, $c_1=N-1$ and $\beta=(N-1)/2$ in (24) for example. Then the assumptions of proposition 1 are achieved, we still obtain (16).

4 Convergence results

In this last section, we prove theorem 2. We distinguish two cases.

First case : we assume $q \leq \min\left(\frac{N+\sigma+1}{N-1}, 1\right)$.

Consider the function V introduced in (10). Because of (11), V satisfies (46) with A = N and f = g. Moreover V is bounded from

theorem 1 on an set $Cl = [2, +\infty) \times S_+^{N-1}$ and theorem 2 assumptions imply (47). Then lemma 3 ensures that (19) holds.

If l=0, then we introduce \overline{V} defined in (13). Lemma 3 and l=0 imply $\lim_{t\to +\infty} \overline{V}(t) = \lim_{t\to +\infty} \overline{V}_t(t) = 0$. On the other hand, because of (11), the function $\overline{V}_t + N\overline{V}$ is nondecreasing and then it is nonpositive in $[2, +\infty)$. Therefore the function $t\mapsto e^{Nt}\overline{V}(t)$ is nonincreasing and then

$$\overline{V}(t) = O(e^{-Nt})$$
 at infinity. (63)

(i) Assume $2 + \sigma > 0$.

If $\sigma + 1 + q \leq 0$, then we introduce the function Y defined on Cl by

$$Y(t,.) = e^{(N-1)t}V(t,.)$$
(64)

and we will prove that $Y(t,.) = O(e^{-\gamma t})$ to obtain (20). Because of (11), Y satisfies in Cl:

$$Y_{tt} + (2 - N)Y_t + \Delta_{S^{N-1}}Y = h(t, \theta)Y^q$$
 (65)

where from (2) there exists C > 0 such that :

$$h(t,\theta) \sim Ce^{-(2+\sigma)t} \tag{66}$$

near $+\infty$ and uniformly on $S^{N-1}_+.$ The average \overline{Y} of Y satisfies in $[2,+\infty)$:

$$\overline{Y}_{tt} + (2 - N)\overline{Y}_t - (N - 1)\overline{Y} = \int_{S_+^{N - 1}} h(t, \theta) Y^q(t, \theta) \Phi_1(\theta) d\theta.$$
 (67)

We claim that \overline{Y} is nonincreasing. Actually, if \overline{Y} is not monotone, there exists a sequence (t_n) of strict maxima of \overline{Y} which tends to $+\infty$ and we have a contradiction from (66) and the fact $\overline{Y}(t_n) > 0$ when we take (67) at large t_n . Because of (63), $\overline{Y}(t)$ tends to 0 at infinity and since it is nonnegative, we deduce that \overline{Y} is nonincreasing in an interval $[T, +\infty)$ with $T \geq 2$. Now, from (66), there exists K > 0 such that (67) implies in $[T, +\infty)$

$$\overline{Y}_{tt} + (2 - N)\overline{Y}_t - (N - 1)\overline{Y} \le Ke^{-(2 + \sigma)t}\overline{Y}^q.$$
 (68)

If we consider the function E defined by

$$E(t) = \frac{\overline{Y}_t^2}{2} - (N - 1)\frac{\overline{Y}^2}{2} - Ke^{-(2+\sigma)t}\frac{\overline{Y}^{q+1}}{q+1}$$
 (69)

then (68) ensures that E is nondecreasing in $[T,+\infty)$. Therefore there exists $\tilde{l} = \lim_{t \to +\infty} E(t) \in I\!\!R \cup \{+\infty\}$. Since $\lim_{t \to +\infty} \overline{Y}(t) = 0$, we deduce from (69) that $\lim_{t \to +\infty} \frac{\overline{Y}_t^2(t)}{2} = \tilde{l}$. Moreover \overline{Y} is bounded and thus $\tilde{l} = 0$. It implies that E is nonpositive and we get

$$-\overline{Y}_{t} \leq \overline{Y}^{\frac{q+1}{2}} e^{-\frac{(2+\sigma)}{2}t} \left[2K + (N-1)e^{(\sigma+1+q)t} \right]$$

$$\leq \overline{Y}^{\frac{q+1}{2}} e^{-\frac{(2+\sigma)}{2}t} \tilde{K}$$
(70)

in $[T_0,+\infty)$ with $T_0\geq T$ and $\tilde K>0$. Without loss of generality, we can assume $\overline Y>0$ in $[T_0,+\infty)$ and (70) implies that the function $\phi:t\mapsto -\overline Y^{-\frac{1-q}{2}}+\frac{2\tilde K}{2+\sigma}e^{-\frac{(2+\sigma)}{2}t}$ is nonincreasing in $[T_0,+\infty)$. Since $\lim_{t\to+\infty}\phi(t)=0$, we deduce that ϕ is nonnegative and we obtain $\overline Y(t)=O(e^{-\gamma t})$ near $+\infty$. Finally, using the function U defined by $U(t,\theta)=e^{\gamma t}Y(t,\theta)$, its average and proposition 1, we obtain $Y(t,\cdot)=O(e^{-\gamma t})$ which implies (20).

On the other hand, the assumptions of lemma 4 are fulfilled and we obtain the inclusion property of (i).

If $\sigma+1+q>0$, then we introduce the function Z defined on Cl by $Z(t,\theta)=e^{Nt}V(t,\theta)$. Because of (63), \overline{Z} is bounded and satisfies from (11)

$$Z_{tt} - NZ_t + (N-1)Z + \Delta_{S^{N-1}}Z = h(t,\theta)Z^q$$
 (71)

in Cl with $h(t,\theta) \sim e^{-(\sigma+1+q)t}$ near $+\infty$. Proposition 1 applies, Z is bounded in Cl and lemma 3 implies (22). If k=0, then we proceed as in case $\sigma+1+q<0$: we introduce the function E defined by $E(t)=\frac{1}{2}\overline{Z}_t^2(t)-e^{-(\sigma+1+q)t}\frac{\overline{Z}_t^{q+1}}{q+1}(t)$ to prove that $\overline{Z}(t)=O(e^{-\gamma t+t})$ near $+\infty$ which implies (20) because of proposition 1. We end this case as above.

(ii) Assume $2 + \sigma \le 0$. Then [1] ensures the result.

Second case: we assume $\frac{N+\sigma+1}{N-1} < q < 1$. From theorem 1, (20) holds and the proof of the end is similar to the one of first case.

Now assume $a(x) = |x|^{\sigma}$ and $\lim_{n\to\infty} r_n^{-\gamma} w(r_n, .) = 0$ for some sequence $r_n \to 0$, it remains to prove that $u \equiv 0$ near 0. The function U defined as above satisfies in Cl

$$U_{tt} + AU_t + BU + \Delta_{S^{N-1}}U = h(t, \theta)U^q$$
(72)

where $A = 2 - N - 2\gamma < 0$, $B = \gamma(\gamma + N - 2) > 0$ and h is defined by

$$h(t,\theta) = e^{-\beta t} |z + |z|^2 e_N|^{-\beta}$$
(73)

with $\beta = N+2-(N-2)q > 0$, (r,θ) denotes the spherical coordinates of z and t = -lnr. We introduce the energy function E defined in $[2, +\infty)$ by

$$E(t) = \int_{S_{+}^{N-1}} \left(\frac{1}{2} U_{t}^{2} - \frac{1}{2} |\nabla_{S^{N-1}} U|^{2} + \frac{B}{2} U^{2} - \frac{1}{q+1} U^{q+1} h \right) d\theta.$$
 (74)

We claim that E is nondecreasing. Actually, because of (72), we have

$$E'(t) = -A \int_{S_+^{N-1}} U_t^2 d\theta - \int_{S_+^{N-1}} \frac{1}{q+1} U^{q+1} h_t d\theta.$$

Denote by $e^{-t}\phi(\theta)$ the first coordinate of z and remark that $\phi \geq 0$ on S_+^{N-1} . From (73), $h_t(t,\theta) = \beta e^{-\beta t}[e^{-2t} + 2e^{-3t}\phi(\theta) + e^{-4t}]^{-\frac{\beta}{2}-1}[e^{-3t}\phi(\theta) + e^{-4t}] > 0$ and then, E is nondecreasing. On the other hand, since there exists a sequence $r_n \to 0$ such that $\lim_{n \to +\infty} r_n^{-\gamma} w(r_n, \cdot) = 0$, we deduce that $0 \in \Gamma(U) = \bigcap_{t \geq 2} \overline{\bigcup_{\tau \geq t} U(\tau, \cdot)}^{C^2(S_+^{N-1})}$. Therefore, using the fact that E is nondecreasing, we obtain as in [4] that $\Gamma(U) = \{0\}$. Thus, [1] implies that $u \equiv 0$ near 0.

Aknowledgement- The author thanks M.-F. Bidaut-Véron for his suggestions during the preparation of this paper.

References

- [1] M.-F. BIDAUT-VERON and P. GRILLOT, Asymptotic behaviour of the solutions of sublinear elliptic equations with a potential, Applicable Anal., (to appear).
- [2] M.-F. BIDAUT-VERON, V. GALAKTIONOV, P. GRILLOT and L. VERON, Singularities for a semilinear equation with a non-Lipschitz linearity in \mathbb{R}^2 , J. Diff. Equ., (to appear).
- [3] M.-F. BIDAUT-VERON and T. RAOUX, Asymptotics of solutions of some nonlinear elliptic systems, Comm. Part. Diff. Eq.,21 (1996),1035-1086.
- [4] M.-F. BIDAUT-VERON and L. VERON, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math. 106, 489-539 (1991).
- [5] M. BOUHAR and L. VERON, Integral representation of solutions of semilinear elliptic equations in cylinders and applications, Nonlinear Anal.23, 275-296 (1994).
- [6] H. BREZIS and L. VERON, Remolvable singularities of some nonlinear equations, Arch. Rat. Mech. Anal. 75, 1-6 (1980).
- [7] E. B. DYNKIN and S. E. KUZNETSOV, Superdiffusion and removable singularities for quasilinear P. D. E, Comm. Pure Appl. Math. 49, 125-176 (1995).
- [8] J. FABBRI and L. VERON, Singular boundary value problems for nonlinear elliptic equations in non smooth domains, Adv. in Diff. Equ. (to appear).
- [9] A. GMIRA and L. VERON, Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math. J. 64, 271-324 (1991).
- [10] J. F. LE GALL, The brownian snake and solutions of $\Delta u = u^2$ in a domain, Prob. Theory Rel. Fields 102, 393-432 (1995).
- [11] L. VERON, Singular solutions of some nonlinear elliptic equations, Nonlin. Anal. 5, 225-242 (1981).

- [12] Y. C. SHEU, Remolvable singularities for solutions of some nonlinear differential equations, Duke Math. J. 74, 701-711 (1994).
- [13] C. YARUR, Singularidades de ecuaciones de Schrodinger estacionarias, Thesis doctoral, Univ. Complutense, Madrid (1984).

Laboratoire de Mathématiques et Physique Théorique CNRS UPRES-A 6083 Faculté des Sciences Parc de Grandmont 37200 TOURS FRANCE

Recibido: 11 de Noviembre de 1998