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Boundary singularities of solutions of sublinear
elliptic equations.

Philippe GRILLOT

Abstract

Let £ be a domain of RV, N > 3, such that 0 € Q. In this
paper we study the behavior near 0 of any nonnegative solution
u € C2(Q)N C(Q\ {0}) of equation of the type —Au+a(z)u? =0
where 0 < ¢ < 1 and function a behaves like a power of |z}.

1 Introduction

In this article we study the boundary behavior of the nonnegative solu-
tions of sublinear elliptic equations of the type

-Au+a{z)u? =0 (1)

in a domain © of RN, N > 3, ¢ € (0,1), with a possible isolated
singularity at one point of the boundary. More precisely we assume that
0 € 89 is the singular point and a € C'(2) with :

a(z) = |z[° (1 + o(1)) (2)

[Va(z)| = O(fz|”"") 3)

near 0, where o is a given real. _
Our first question is the following : let u € C2(Q)NC(Q\ {0}) be a
nonnegative solution of (1) in € such that
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u=¢ on 9Q\{0} (4)

where ¢ is a given continuous function on 9Q; can we extend u as a
continuous function defined in whole Q? If not, the second point is to
describe the precise behavior of « near 0.

This boundary singularity problem for sublinear elliptic equation is
a new type of problem. In the superlinear case, the problem has been
studied by analystic methods by Gmira and Véron [9] and Sheu [12] in
the regular case, Fabbri and Véron [8] in the non regular case and by
probabilistic methods by Le Gall [10] and Dynkin and Kuznetsov [7].
Recall that the singularity is removable only in the case ¢ > N+1/(N —
1), when ¢ = 0.

When the singular point lies in 2, equation (1) has been studied in
the superlinear case ¢ > 1 in [6], [11] and {13] and in the sublinear case
g < 1in [1] and [2].

In the present work, we consider the case where Q is a ball, for
example

1 ) eN

Q = B(zo, 5) with zg= 5
where (ey,...,eN) is the canonical basis of RY. Qur results depend on
the relative positions of ¢, N and . The principal point is to obtain a

priori estimates near 0 for the solutions of (1). In that aim, we first use
two change of variables which lead us to a problem in the half space

RVt = {z € RN /25 > 0).
More precisely we introduce the following Kelvin transform:

. T
u(z) =y +en|Vu(y) with y+en= P (5}

where ey = (0,...,0,1) € RN. A straightforward computation implies
that v satisfies

—A (N=2)g~(N42), ( YTEN N oy _ g (g
v(y) + |y +enl TS (v) (6)

for all y € RN*. Remark that the singular point 0 is reduced to infinity
by this transform. Now we use the classical Kelvin transform :

v(y) = |2V Pw(2) with z= ik {7)
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If v satisfies (6) in RN, then w is solution of

—Aw+b(z)w? =0 (8)

in RN+ with the singularity at 0 and where b(z) = |z|(V -2~ (N+2)jy 4
en| (V=27 ~(N42)g (ﬁ,) Because of (2), we have

b(z) = |2[°(1 + o(1)) near 0. (9)

Once we are reduced to an equation in IRVN*, we make a new change
of variables which leads us to an equation in the infinite cylinder C =
R x Sf ~1 where Sf ~1 is the hemisphere of S¥~! contained in RN+ ;
defining

V(t,8) = |2}V 1w(z) = rN w(r, 6) (10)

where (r,6) are the spherical coordinate of z and t = —inr. Because of
(8), V satisfies :

Vat NVit (V= 1)V + BgnaiV = g(,0V7 in C )
Vit,)=0(t,.) on 8SY1=8gN-2 )

where g is some nonnegative function in C and ¥(¢, .) is some nonnegative
function on V=2 with maxgn—2 ¥(t,.) = O(e~W=1*) when ¢ tends to
+00.

In the first time, we give a priori estimate result. For this we intro-
duce the first eigenfunction ®, of the Laplacian in W, ‘2(Sf 1) where
Sf ~1 is the hemisphere of §¥~1! contained in RN+, The function &, is
normalized by ||®i}/oc = 1 and satisfies

—AsN-—lq’[ = (N - 1)(1’1 in S+ -1
(12)

®, =0 on SN2

Now the main point is to prove that any estimate of the mean value
V() = [S por V(6 O)21(0)a8 (13)

implies an analogous estimates on V. Then we are reduced to give
estimates on V, wich reduces the problem to the resolution of ordinary
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differential inequalities. In that way we get a priori estimates for all
nonnegative solution of (1) satisfying (4) for all continuous function ¢.
Our main result concerning the priori estimates is the following,.

Theorem 1. Assume ¢ is a continuous function on 0B. Let u €
C?(B)nC°(B\ {0}) be any nonnegative solution of (1) satisfying (4).

Then we have :

(i) If ¢ < min (1, 28142), then

u(z) = O(|z|'™") near 0. (14)

| (i) If ¢ > N2 then
u(@) = O(12125) near 0. (15)

(iii) If ¢ = D310 phen
ulz) = O(lz|'~MIn|z||T3) near 0. (16)

Our results show that two effects one fighting each other, the nonlin-
ear and the linear one, as it was the case in the interior problem [1], [2].
The nonlinear effect is governed by the possible existence of particular
solutions of (8) when b(z) = |z|?, given by :

2
w*(z) = C(N, q,0)|z|" where vzli:.

(17)

The linear effect is governed by the solution of Poisson equation :

~AP=90 in RNt
(18)

where dp is the Dirac mass at the origin. Recall that P is given by
P(z)=P(r,8) = Cnr1=Nd,(8).

In a second part we prove more precise convergence results by using
some techniques adapted to equations in an infinite cylinder, still used
in [11], [4], [3], [1].

Qur main result is then the following :
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Theorem 2. Assume ¢ is a nonnegative conlinuous function on 9B,
identically equal to 0 in a neighborhood of 0 in OB. Let u € C*B)n
CO(B\ {0}) be any nonnegative solution of (1) satisfying (4).

(i) Assume g < 1 < %Hi_@e_nce 2+ o > 0). Then, using Kelvin
transforms (5) and (7), there ezist | > 0 such that :

Ili'molrIN'lw(r, 6) = 1®,(8) uniformly on SY~'.  (19)
rj—
with (r,8) € R, x S ' is the spherical coordinates of z in RN,

Ifl =0, then u can be extended to a continuous function in B. In
that case @ if o+ 149 <0, then

u{z) = O(lz|") near 0 (20)

with v = 3—_‘_%_ Using Kelvin transforms (5) and (7), the limit set in
C*(S¥1) of r="w(r,.) as r goes to O is contained in the set of nonneg-
ative solutions of
Agnaiw+Y(Y=24Nw-w?=0 in S¥?
(21)
w=0 on SN2
o Ifo+ 14 ¢ >0, then there ezxists k > 0 such that

lim |r|"w(r,0) = k®,(0) wuniformly on S} 1. (22)

jrj=0

Moreover, if k = 0, then (20) holds and we have the same properly
as above,

(i) Assume g < DFeHL < 1 (hence 2+ 0 < 0). Then (19) holds and
if | =0, then u = 0 near the origin.

(iii) Assume NFZEL < g < 1. Then as in (i) we have (20) and the
inclusion property. Moreover, if a(z) = {z|? and limy 400 1YW (rn,.) =
0 for some sequence r, — 0, then u is identically equal to 0 near the
origin.

Our paper is organized as follows :

1. Introduction
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2. Preliminary results
3. A priori estimates

4. Convergence results.

2 Preliminary results

Let Cl the infinity cylinder defined by Ci = {1,400) x S} ~!. For all
function V defined on C!, we denote V the average of V defined on
[1,400) as in (13).

We start this section with some result which allows us to claim that
a nonnegative solution V of some elliptic equation in €I is bounded as
soon as its average V in [1, +oo[ is.

Proposition 1. Let (a;,az,b1,b2,¢;) € R x R* x R3. Assume that g
is a nonnegative bounded function on Cl. Let V € C*(CI)NC(CI) be any
nonnegative solution of

b .
Vﬁ-i—( +(12) Vit~ ( : +bg) V4aV+Agn V=gt HV? in Ci
(23)
satisfying
V=" on [1,400)x VN2 (24)
with W € C([1,400) x S¥=2) be a nonnegative function and
maxgn—2 ¥(t,.) = O(e™P) for some § > 0.
IfV is bounded on {1, +oo[, then V belongs to L>(CI).

This proposition ensues from the two following lemmas. They are
an adaptation of some result of [5] for a problem with the other sign in
the cylinder, of the type

Wi+ aaWy —IW + Agno s W+ W2 =0 in Cl
W=0 on [i,+o0c)x SN2

where ag, ! are constants, with I > 0, in the superlinear case Q> 1.

Lemma 1. Under the assumptions of propoesition 1, for all v €]1
there exists K = K(y,N,q) > 0 such that for allt > 2 :

t+1 IDVP
j: fs s pot - udbds < K (25)

11— q[
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where § = 2 — L, [DV|?2 = (V)2 + |Vgna1V|? and lygo denotes the
caracteristic funct:on of the set {(t,8) € CI/V(t,0) # 0}.

Proof. Since V can vanish, we consider the function U = V + ¢ for
£ € (0,1). Because of (23), U satisfies

b
Utt + ( +0.2) U¢+01U+A3N 1U+ ( L +62)U (26)
< g(t, U+ c1e + 7 (bT + 52)

in Cl. Now set U = W7, then W > &% in €l and from (26), W satisfies
in C!

We + (Etl + 02) W, + Agna W + %‘W

1 /b 1 \ LIL n . 1
o \?1 T 7;)"/_ (W2 + |VsnW1?)

=+

2 AT

where C) is a positive constant independant on ¢ and #. Multiplying
(27) by @, and integrating on Sf =1, the function W introduced in (13)
satisfies

We + (“—‘+a2)wt+(7-(w—1))w
+ Tt(b‘+b2)w+/ A(t,6)d0

__LN—z ‘I""é—;-dg < 7-/-;?_1 (W@l) d3+C’251 (28)

in (1,+00), where A(t,0) = T8 (W7 + [V WI*)81(8), j = v(¢- 1)+
1€ (0,1) and C; = (fsf“ ®,d6)[C1y~! + 7! max(0, max,s1 (b1t~ +
b3t!))]. Then from Jensen inequality and observing that —9®,/dv > 0
on SN2, we get :

Ci—

Wt (L oa) Wet [ A0.0)88 < T+ Cac
+
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—(%*(N—l))—W—%(bl+bz)W (29)

n [1,400). On the other hand, Jensen inequality, the fact that ®] <
tI>1 < 1 and that V is bounded imply that there exists D > 0 such that
forall t > 1: (W(1))* <U(t) < D(1+¢). Therefore W is bounded on
[1,+00). From (29) we deduce that there exists C3 > 0 such that

0 S / A(t, 9)40 S Cg - th — (gi + az) —W—g (30)
g1 t

+

for all ¢ > 1. Integrating twice (30) we obtain for all ¢ > 1 :

0< [H ([:ﬂ (/Sf_l Afr, o)da) dr) ds < Cy (31)

where Cy > 0 does not depend on ¢t. Remark that for all nonnegative
integrable function f, we have :

J U ) e [

1
2

-/l::l f('r)) ds > %.[t:-% f(r)dr.

Hence we deduce from (31) :
t+3
0 < f A(s,0)d8ds < C,. (32)
SN 1
Since V = W7 — ¢, (32) implies for alt t > 2 :

t+1 I
1] </ /SN ' V;&O ) Qldﬂds < 05 (33)

where 8 =2 — v~! and Cs > 0 does not depend on ¢. Letting € tend to
0 in (33) we obtain (25) using Fatou lemma.

Lemma 2. Under the assumptions of proposition 1, for any & > 0 small
enough there ezists a positive constants K, such that for allt > 2 :

t+1 "
_/; [s”-l (V{(5,0))7-7""déds < K. (34)
+
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Proof. Here we follow the ideas of the proof of [5] theorem 4.1. Let
T € (0,1) be fixed. From [5] lemma 4.1, there exists a unique solution £
of problem

—Aenaf=®77 in SV
{ SN.slio on SN-2' (35)

and there exists K > 0 such that K~1®, < £ < K&, on Sf‘l. Defining
Z(t) = fsf" V(t,0)£(8)d8, we deduce from (23) that

a1 1 b] 66 _
Zu+ (T-le)zt-i—z(T+52)Z+Ciz—fsn_2‘1’5;d9—~

[SN“‘ Vo[ do + -[‘Sf‘l gViede

-+
hence from (24) there exists A > 0 such that

j;N_l Ve de < Zy, + (‘:_1 +ﬂ'-2) Z + % (bl + 52) Z 41 Z + Ae™Pt
+

T
(36)
On the other hand, since [5}, there exist some constant g and v > 0 such
that the function n = &;(x — v®!~") is a supersolution of (35). Since V
is bounded:

0< Z(t) < j V(i v}T)dE < oo (37)
s¥-
Now integrating twice (36) between ¢t and ¢ 4 1 for all ¢ > 2 and using
(37) we obtain after integrate by part the term (a1/t + a2)Z; :

t+1 41
f Ve["do | dr|ds < D
£ P sy

+
where D > 0 does not depend on ¢. Then as in lemma. 1, we prove that
there exists K, > 0 such that for any t > 2 :

41 .
/: f s VT 04T S Ko (38)

Then from estimates (25} and (38) and using Holder and Sobolev in-
equalities, we deduce (34) as in [5], lemma 4.1.
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We now give the proof of proposition 1 where the condition ¢ < 1
highly occurs.

Proof of proposition 1. In this proof, for{ € IN*, C; denotes a positive
constant independant on t. Set f(¢,8) = g(t,8)VI—e,V — (—l + bg) V.

We know that g is bounded on C! and because of (34), Young inequality
implies that forall ¢ > 2 :

— < (.
”f”LNq_l-g([t—l t+1]x sy =1y ~ G (39)
"For all § > 1, define K(’) =[t-3 Ft+ ]xS SN-T, Because V satisfies
(23), Calderon-Zygmund theory ensures that for all ¢ >2:
Ilv”w"’-?ﬂ'—i’“‘(;{s’)) < (. (40)
Then, since N}Y-_l —£< %f—, Sobolev imbeddings imply :

with -- = N_—?('Nl'_'j N‘ Using Calderon-Zygmund theory with some

P> N:—l — g, we prove (40) with p; and K t(3) respectively replacing by
L — ¢ and K.
Therefore Sobolev imbeddings imply :

N
If pi> o then ”V”LW(K(S)) < Cs. (42)
N
If m= PX then “V"LP(K(S)) <Csy Vp2p. (43)

Applying another time Calderon-Zygmund theory with some p > py,
we obtain (40) with p and Kf‘i) respectively replacing NN-'T —cand K 52)
and we can use (42).

If p1<%, then < Cs (44)

”V”m(K(Q])
with p; such that - pz = pl - N’ Either p2 > 5 K and we are under the
condition of 42), or we use (39) with p; > p;. We construct in that way a

nondecreasing sequence (p,) such that pl;, = p..l_. — #. Thus there exists
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Prg > -’%’- and finally obtain the existence of some jo > 1 and C > 0 such
that |[V]],, (KUY < C. This achieves the proof.

We end this section with the following convergence lemmas which
will allow us to prove theorem 2.

Lemma 3. Let (A,a) € R* x Ry . Consider a nonnegative Holder
function f in Cl satisfying :

f(t,)=0(e") uniformly in SY¥-! (45)

for-large t. Let Y € C2(Cl) be any nonnegative bounded solution of
equation

Yo + AY; + (N - 1)Y + AgnaY = f(t,60)Y? (46)
in Cl and satisfying

Y{t,.)=0 on 8SY! (47)

forallt. ThenY; and Yy tends to 0 in L2(Sf ~1) whent tends to infinity
and there exists I > 0 such that

. _ . Ne—
t_]:_*rpooY(t,.)_lél uniformly on SY-L. (48)

Proof. Since Y is bounded on Cl, Calderon-Zygmund theory, Sobolev
imbedding and Schauder theory imply that there exists a constant C > 0
such that

“Y”cz,.eq(a) <C (49)
with 3 €]0, 1[. Now define on the one hand the limit set
—_ CZ(SN’—I)
rvy=Urey " (50)

t>1 7>t

As in [1], both ¥; and Y}, tend to 0 in L2(Sf"'1) when ¢ tends to
infinity. Then I'(Y) is a connected compact subset of the set E =
{weCHSY Y/ - Agnarw = (N - Nw in SY Lw>0 end w=
0 on 3SY '}={1®,/l € R*)}.
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On the other hand multiplying (46) by ®,, integrating on Sf ~1 and
using (45) and (49), we obtain

0< Y+ AY, < De™™ (51)

for all t > 1 with D > 0 and Y defined in (13). Because of (51), the
function G : ¢t = Y, + AY + 2e~°* is nonincreasing and lowerbounded
on [1,+0o(. Therefore there exists I € IR such that I=limy,400 G(t) =
lim¢_s 100 AY (2) because Y tends to 0 in L#(SY ).

_Finally, because of (49) and the fact that I'(Y) is included in E,
there exists | € R* and a sequence ({,) converging to infinity such that
Y (t,,.) tends to I®, in C? (Sf ~1} as n tends to infinity. Thus we obtain
I[=Alf st ¢3(8)dé. 1t would be the same for an other sequence and
(48) holds.

In the same way, we can prove the analogous lemma:

Lemma 4. Let (A, B,a) € B* x R x R}. Consider the Holder non-
negative function f in Cl satisfying :

|f(t,.) — 1| = O(e™*") uniformly on Sf'l. (52)

Let Y € C*(Cl) be any nonnegative bounded solution of equation
Yy + AY; + BY + Agnva Y = f(t,0)Y1 (53)

in Cl and satisfying (47) for all t. Then the limit set T(Y') = N5y U
otigN-1 - -
Y(r,.) G+™) i a  connected compact subset of the set {w €

CHSY 1) /Agn-w + Bw —w? =0 on Sy w20 and w =
0 on BSf*l}. :

3 A priori estimates

In this section, we consider a nonnegative solution of equation (1) and
give an a priori estimate near 0 of this solution.

Proof of theorem 1. Considering both changes of variables (5), (7)
and (10), the function V satisfies the equation (11) in the cylinder CI =
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[1,+00) x SN ! where g is a nonnegative function in CI, Holderian
because of (3) satisfying because of (2) :

g(t,) =0(e™®") wniformly on S¥! (54)
witha=N+14+0—¢(N-1). And

V=0>0
with ¥ € C(Cl) and satisfies forall ¢ > 1:

W(t,.) = O™ uniformly on 8SY. (55)

Now consider the function V defined in (13). Multiplying (11) by ®;
and integrating on SY~!, we obtain for all £ > 1:

= - 0d,
Vi+ NV, - j; s VBT G = /S o g(t, )Vt 0) &1 (o) do.
(56)
Since 2} is nonpositive on aSY~', (54), (56) and Jensen inequality
imply that there exists C > 0 such that for all £ > 1

Vtt + N_V-g S Cﬂhat-‘?q. (57)

We now distinguish three cases :

(la>0:

If V is not bounded, then it is nondecreasing on an interval [T, +00)
with 7' > 1. Actually if V is not nondecreasing, there exists a sequence
(t,.) of strict maxima, of V such that ¢, — +oo and V{t,) = +oo. Let s,
be a real such that V(s,} = maxiz,,j V(t), then we have V(t) < V(sn)
for all t € [T, s,). Integrate (57) on [T, s,}, we obtain

_VUT) + NV(s,) = NV(T) < CV(s) fT " e=otdy
(58)

C_Q(sn)e—aT

As V(tn) < V(ss), V(tn) — +oo and ¢ € (0, 1), we have a contradiction
when n tends to infinity in (58).

243
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Now we claim that V is bounded. Actually, if ¥ is not bounded,
Vis nondecreasing on [T, +-oo[ and then lim;_, oo V(t) = +oo. On the
other hand, because of (57), the function G : ¢t = V() + NV (1) —
Cf; e*“’—q(s)ds is nonincreasing on [T, +00). Therefore G is bounded
from above on [T, 4oc0) by a constant D € R. Morever V; > 0 on
[T, +o0) and we deduce

NVl'q(t) <DVt)+Ca e T for all t>T.

Then we obtain a contradiction as  goes to infinity and V is bounded
on [T',+00). Then the assumptions of proposition 1 are achieved, with
@y =0,a2=N,b1=b2=0,¢c;=N-1and =N —1in (24). Thus
proposition 1 apph% and V € L*°(Cl). Using changes of variables (10),
(7) and (5), we obtain (14).

(i)e <0

If V is bounded, then we obtain (14) as above and since o < 0, that
is ¢ > MF1Ee we have |2V << [a:|%i;§ near 0 which implies (15).

If V is not bounded, then there exist 1 < t; < ¢; such that 1 <
V(to) < V(t1). Let e € (t;,+00). We define

5. = min{s € [to, €]/ g)a,)](v =V(s)}.
0,

Then V() < V(s.) for all t € [tg, ). We claim that V;(s.) > 0. Actually,
if s, €]to, e, then V(s.) = 0. If s, = to, then ¢, €]to, €] implies V() <
V(se) = V(to) and this is false. If s, = e, then Vi(s.) < 0 would be a
contradiction with V(s.) = max, V.

Now integrate (57) on [tq, s}, we obtain since V(s.) > 0 :

NV(s) <C j ee""“T/’""(t)dt+NV(tg) + V(o)
to

< CV(s.) f Teotdt 4 Cy

to

where Cp > 0 only depends on tq. Therefore, because V(s.) > V(to) > 1,
we have

Vl_q(se) < -—%e“‘“e + Co. {59)
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—Cﬁe'“" + Cy is increasing, we deduce from

Since the function r — —-
5. < e, V(e) <V(s.), ¢ € (0,1) and (59) that (59) holds for e replacing
8.. Therefore there exist D > 0 such that for all ¢t > ¢, :

V() < De" T3t = D™V -1+35], (60)
Finally we introduce the function U defined on CI by

U, 0) = Ny (1, 0) (61)

and its average U defined in {13). Because of (60), U is bounded on
(t1,+00) and U satisfies (23) with a; = b1 = by =0,a, =2 - N — 2y
and ¢; = y(y+2— N) where y = 22 and § = ~3£2 > 0 in (24)
because o < 0. Moreover the assumptions of proposition 1 are achieved
and then U € L*(Cl). Using changes of variables (61), (10), (7) and
(5), we obtain (15).

(l)a=10:
If V is bounded, we use the fact that |z{'"V << |:c|“N|ln|a:||T'l"'E

near 0 and we obtain (16). If V is not bounded, then in the same way
as above, we prove the following inequality which is similar to (60) :

V() < DtT3, (62)
Finally, we use a function W defined on CI by :
W(t,6) = t=aV(t,0).
It satisfies (23) with a; = 2/(1—¢),e2 = N,b; = 2/(1-¢)(2/(1—q)-1),
b=N,c;=N—1and 8= (N ~1)/2 in (24) for example. Then the
assumptions of proposition 1 are achieved, we still obtain (16).

4 Convergence results

In this last section, we prove theorem 2. We distinguish two cases.

First case : we assume ¢ < min (N fll,l).
Consider the function V introduced in (10). Because of (11), V
satisfies (46) with A = N and f = g. Moreover V is bounded from

245
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theorem 1 on an set CI = [2,4-00) x $Y~! and theorem 2 assumptions
imply (47). Then lemma 3 ensures that (19) holds.

If I = 0, then we introduce V defined in (13). Lemma 3 and { = 0
imply limeoy4oo V(£) = limot00 V:(t) = 0. On the other hand, because
of (11) , the function V,+ NV is nondecreasing and then it is nonpositive
in [2,+00). Therefore the function ¢ — eV*V(t) is nonincreasing and
then

Vit)=0( ™) at infinity. (63)
(i) Assume 2+ > 0.
If o+ 1+ ¢ <0, then we introduce the function Y defined on €I by
Y(t,.)=eN-Dtv(e, ) (64)
and we will prove that Y (¢,.) = O{e™™) to obtain (20). Because of (11),
Y satisfies in Cl :
Yo+ (2—N)Yi+ Agva Y = h(t,0)Y? (65)
where from (2) there exists C > 0 such that :

h{t,8) ~ Ce~(2to)t (66)

near 400 and uniformly on Sy ~!'. The average Y of Y satisfies in
(2, +00) :

Y+ (2- NV~ (N-1)¥ = fs L h(t,0)Y(t,8)®,(6)d6.  (67)

We claim that Y is nonincreasing. Actually, if ¥ is not monotone,
there exists a sequence (t,) of strict maxima of Y which tends to +oo
and we have a contradiction from (66} and the fact Y (t,) > 0 when we
take (67) at large ¢,. Because of (63), Y(¢) tends to 0 at infinity and
since it is nonnegative, we deduce that Y is nonincreasing in an interval
[T, 400} with T > 2. Now, from (66), there exists K > 0 such that (67)
implies in [T, +o00)

Yu+(2- NV~ (N - 1)Y < Ke~ oy, (68)
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If we consider the function F defined by
2 g+l
Y: Y
E(t) =~ - N—1———K—(2+")‘ 69
(=%~ W-1 — (69)

then (68) ensures that E is nondecreasing in [T, +o0). Therefore there
exists | = lim; 100 E(t) € IR U {4+00}. Since limt4400 Y () = 0, we
saaml}

deduce from (69) that lim¢ e L—(—tal_z {. Moreover Y is bounded and

thus [ = 0. It implies that E is nonpositive and we get

-Y, <Y e"%l‘ [2[{ + (N - l)e("‘“‘*"’)‘}

(70)
< 7%—18- =2 i ¢

in [Tp, +00) with Tp > T and K > 0. Without loss of generality, we

can assume Y > 0 in [Ty, +o0) and (70) implies that the function
-1 2}( _Mg . . - . .

¢t =Y 5 + 51s€” 7 ' is nonincreasing in [To,+o0). Since
lim;oyp00 ¢(t) = 0, we deduce that ¢ is nonnegative and we obtain
Y(t) = O(e™") near +oo. Finally, using the function U defined by
U(t,8) = eY (t,0), its average and proposition 1, we obtain Y (t,.) =
O(e~") which implies (20).

On the other hand, the assumptions of lemma 4 are fulfilled and we
obtain the inclusion property of (i).

If 0 +1+ g >0, then we introduce the function Z defined on C! by
Z(t,8) = eN'V(t,8). Because of (63), Z is bounded and satisfies from
(11)

Ztt — NZt + (N - 1)Z+ AsN-lZ = h(t, G)Zq (71)

in Cl with h(t,68) ~ e~{"+t1+9¢ near +o0o0. Proposition 1 applies, Z is
bounded in €I and lemma 3 implies (22). If k = 0, then we proceed
asincasseoc+14+¢<0: e introduce the function E defined by

E@t)=1Z3(t) - ‘("“""?)‘-Z———(t) to prove that Z(t) = O(e~"***) near
+o0o which implies (20) beca.use of proposition 1. We end this case as
above.

(i) Assume 2 + o < 0. Then {1] ensures the result.

247
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Second case : we assume Eﬁ%}‘_l < ¢ < 1. From theorem 1, (20) holds
and the proof of the end is similar to the one of first case.

Now assume a(z) = |z|° and lim,co r;7w(ry,.) = 0 for some se-
quence r, — 0, it remains to prove that u = 0 near 0. The function U
defined as above satisfies in C!

Uy + AU + BU + AsN—lU = h(t, G)Uq (72)

where A=2—-N~2y<(, B=v(y+ N —2)>0and A is defined by

h(t, 8) = e}z + |z|’en|* (73)

with # = N4+2—(N—2)g > 0, (r, #) denotes the spherical coordinates of
z and { = ~Inr. We introduce the energy function E defined in [2, +00)
by

1 2 1 2 B 2 1 g+l )
E = Y — L v - -_— —_— — 0' 4
(t) [Sf'l (2 t 2| N 1U| + 2U q lU hld (7 )

We claim that F is nondecreasing. Actually, because of (72), we
have

1

Ustlp,dé.
si-tg+1l

E't) = —A [3 o U?do -

Denote by e~*¢(8) the first coordinate of 2 and remark that ¢ > 0 on
S¥=1. From (73), h(t,8) = ﬂe“ﬁ‘[8'2‘+2e'3‘¢5(0)+e"“]_g'l[e_e"q&(ﬂ)—i—
e~*] > 0 and then, E is nondecreasing. On the other hand, since there
exists a sequence r, — 0 such that lim, 4+ r;Yw{r,,.) = 0, we deduce
that 0 € T'(U) = N5y U, UL, Sy 1). Therefore, using the fact
that E is nondecreasing, we obtain as in [4] that [(U) = {0}. Thus, [1]
implies that u = 0 near 0.
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