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Strict uniformization of real al~ebraic curves
and global real analytic coordrnates on real

Teichmhller spaces.
.1. HUISMAN

Abstract
Wc construct aglobal system of reah anaíytic coordinates on the

real Teiclimijíler apace of a compact reah algehraic curve X, using
so-called strict uniformization of the real algebraic curve X. A
global coordinate system la tben obtained via real quasiconformal
deformatione of dic Kleinian subgroup of PGL2(R) obtained 88 a
group of covering tranaformationa of a strict uniformization of X.

1 Introduction
The object of thia paper la to construct a global syatem of real analytic
coordinates on the real Teichm6ller apare of a compact real algebraic
curve.

In the litterature one can find aeveral global systems of complex an-
alytic coordinatea on the complex Teichmiiller apare T(X) of a compact
complex algebraic curve X [3, 5, 8, 9, 13]. If the complex algebraic curve
X can be defined be polynomial equations with coefilcienta in E?, then
the Galois group E of «~ over .1? acta naturally on T(X). Some of the
fore-mentioned coardinate systems then, are equivariant with respect to
the E—artion on T(X) [3, 5, 8, 9] and hence, induce global syatema of
real analytic coordinates on the real Teichmiiller apare lA(X)E of the real
algebraic curve X. These coordinate ayatema are reiatively complicated.
For example, it seema not feasibie to determine explicitly their image-
which would have ita intereat in questiona concerning moduli apares of
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real algebraic curves.
One can hope to find a more simple coordinate aystem on lA(X)E

by constructing a global system of real analytic coordinates on
which does not necessarily extend to aglobal system of complex analytic
coordinatea on T(X). Thia is indeed the case, 88 we will ahow in the
preaent paper.

The idea of construction ja roughiy the following. Given a compact
real algebraic curve X of genus y =2, there is a uniformization p: (2 —> X

of X by an open subset (2 of the Riemann aphere F’ (<1) having the
following properties.

1. The map p is a holomorphic covering map.

2. The set (2 la stabie for the action of the Galois group E of Cover
iR and the map p is equivariant with reapect to the action of E.

3. The inverse image p1(XS) of the aet of real pointa XS of X is
equal to (2flP’ (iR)

In fact, p is universal among alí uniformizationa of X having the aboye
properties. Such a uniformization will be calied a sirid uviiformizatiovi
of X. Such a uniformization of a real algebraic curve seema to have been
considered for the first time ní

Koebe, P.: Uber die Uniformiaierung reeller algebraischer Kurven. Nachr
Akad. Wias. Gattingen (1907), 177-190.

Let G be the groupof automorphisms of the coveringp of X which are
equivariant with respect to the action of E on (2. Then, Gturna out tobe
a Kleinian aubgroup of PGL2(R) and ita quasiconformal deformationa
in PGL2(R) turn out to parametrize the real Teichmiiller apare of X.

The group Cia what we will cali the strict fundamental group of X
and has a particularly easy presentation. If X doca have real pointa,
.then G is a free group on y generatora. 1? X does not have real pointa,
then (2 ia a group on y + 1 generatora aatiafying a simple relation. In
both cases, one can eas¡ly construct a global ayatem of real analytic
coordinates on the real quasiconformal deformation apare of (2. That
coordinate syatem will then give riae to a global ayatern of real analytic
coordinates on the real Teichmúller apare of X. The image of the latter
coordinate system wilI be atudied in a forthcoming paper [10].
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The paper is organized as fo¡lowa. Section 2 introduces briefly the
equivariant theory of topological covering mapa and introduces the strict
fundamental group of a tranaformation apare. Section 3 relates so-calía!
atrict equivariant coveringa of a tranaformation apace to ordinary cover-
inga of ita quotient. Section 4 determines the atrict fundamental group
of a compart real algebraic curve. Section 5 recalla what uniformization
of a real algebraic curve by the double half-plane la. That is then uaed in
Section 6 to prove atrict uniformization of compact real algebraic curves.
AII this is then used in Section 7 to conatruct a global system of real
analytic coordinates on the real Teichmiiller apare of a real algebraic
curve.

Convention. A Riemann aurface is not necessariiy connected nor com-
pact.

2 The universal strict equivariant covering
Let E be any group. A E-space ja a topological apace X endowed with
an action of E such that every element of E acta continuoualy on X. A
subaet U of X la said to be siable if a • u E U for ah u E U and alí
a E E. A E-apare X is said to be.equivaria»tly co»»ected if O and X are
the only open and cloaed atable subsets of X. If X la locally connected,
then X is equivariantly connected if and only if E acta tranaitively on
the set of connected components of X.

A continuoua map f: Y —> X of E-apares ia aaid to be equivaria»t
if f(a . y) = a - f(y) for ahí y E Y and ahí a E E. An equivariavil base
poivil of a E-apare X ia an equivariant map b:E —> X. Let X and Y

be E—apacea and let 6 and c be equivariant base pointa of X and Y,
respectively. An equivariant map f: Y —* X is said to be equivariavit
base poi»t-preservivig if fo c = b. Wc denote thia by f: (Y, c) —> (X, b).

An equ¿varia»t coverivigof a E-apare X is an equivariant map p:Y —>

X of E-apares which ia a covering map. Recalí that a morphiam froní
a cover¡ng p: Y —* X into a covering q: Z —> X ia a continuous map
f: Y —> Z auch that q o 1 = p. A rnorphisrn of equivariavil coveriviys is
a morphism of coveringa tbat is equivariant.

An equivariant covering p: (X, 6) —> (X, 6), where b and b are equivari-
ant base pointa, is said to be a universal equivar¿a»t coverirty of X if, for
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every covering q: (Y, c) —> (X, b), there la a unique morphism of equivari-
ant coveringa f: (X, 6) —4 (Y, c) such that q of = p.

Let X be a E-apare, and let b be an equivariant base point of X.
Suppose that X has a universal equivariant covering p: (1?, b) —* (X, b).

By the universal property of such a covering, the group Aut(Ñ/X) 18
uniqueiy determina! by X, up to unique isomorphiam.

Definition 2.1. The yroup Aut(Ñ/X) of autornorphLsrns of ihe equivari-
avil cover¿vig $7 of X ¿a called the equivariant fundamental group of X,
avid la devioted by iri(X,E;b), or sirnply by ir1 (X, E).

The following propoaition givea a criterion for auniversal equívariant
covering to exiat. For a proof, one is referred to [8].

Proposition 2.2. Let X be a locally avid eqtdvariavitly coviviected E-
apoce. Leí b be a» equivarioní base poivil of X. Leí >4, be ihe coviviected
compoviení of X covitaiviiny b~ for oil a E E. lAhe», ihe followiviy condi-
hoya are equivolení.

1. TIte E-apoce X has a universal equivariavil coverivig.

2. The topological spoce X~ has a uvilversal coverivig for alt a E E.

Moreover, :f oye of ihese conditiovis 18 satiafied, a uvilversal equ:von-
ant coverivig p: (1, b) —> (X, 6) is Galola; i.e., tIte rnap p induces o
homeornorphLsrn

Ñ~rí(X, E) ~ X.

An equivariant map f: Y —* X of E-apares la said to be atrict if
f maps any E-orbit in Y bijectiveiy onto a E-orbit in X. The map
f is a siricí equivaria»t coverivig if f is an equivariant covering map
that la atrict. A rnorphLsrn of atricí equivariavil coveriviga is a morphiam
of equivaria»t coveringa. Note that such a morphiam ia automaticalhy
strict.

A strict equivariant covering p: (1, b) —> (X, 6), where b and b are
equivariant base pointa, la said to be uvilversol strict equivariavil coverivig
of X if, for every atrict covering q: (Y, c) —> (X, b), there la a unique
morphlam of atrict equivariant coveringa f: (X, 6) —> (Y, c) such that
q of = p.
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Let X be a E-apare, a»d let b be an equivariant base point of X.
Suppoae that X has a univeraal atrict equivariant covering p: (X, b) —>

(X, b). By the universal property of auch acovering, the group Aut(XI/X)
la uniquely determined by X, up to unique iaomorphlam.
Definition 2.3. TIte group Aut(Ñ/X) of autornorphiarna of tIte atricí
equivariavil coverir¿g X of X Ls ca¡Lcd tIte strict fundamental gróup of
X, a»d mill be de»oted by aí(X, E; b), or simply by aí(X, E).

We wihi deduce from the foliowing iemma a criterion for a universal
atrict equivariant covering to exist.

Lemma 2.4. Leí X avid Y be loca¡ly covi»ected E-spacea. Leí p: Y A X
be a» equ¿variovit coveriviy. TIte», diere ¿8 a atr¿ct equivariavil coveri»g
¡3: Y —> X, a»d a rnorphisrn of equ¿vario»t coveringa f:Y —> Y haviviy
tIte followiviy irniversal property. For aviy atricí equivariavil coveri»y
q: .3—> X, avid a»y rnorphiarn of equivariavil coveriviga g:Y —4 Z, ihere
¿a a trnique rnorphism of atricí equivariavit coveriviys j: Y —> .3 rnaleiny
tIte followúig diayram comrnutative.

y —4 Z

ti.

Proa?. Let 3 be the aubset of the fiber product Y xx Y conaiating of
alí paira (z, y) such that z and y behong to the same E-orbit in Y. Let
R be the amaliest open a»d cloaed subset of Y Xx Y containing 3 and
which is an equivalence relation on Y. Observe that auch a subaet exista
aince Y xx Y ia locally connected. Let Y be the quotient Y/R. Let 1
be the quotient map from Y onto Y. Since the equivalence relation R
is contained in Y xx Y, the map p factorizea through f, i.e., there ¡a a
continuoua map ¡3 from Y onto X auch that ¡3 o f = p. Since R la an
open and closed aubaet of Y Xx Y, the map ¡3 la a covering map.

Conaider the natural action of E on Y Xx Y. Obvioualy, a• 3 = 3
for ahí a E E. Hence, a•R alan la an equivalence relation on Y, open and
closed in Y Xx Y and containing the aubaet 3. Since R ia the amahlest
equivalence relation having thla property, one has a•R cE R for alía E E.
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It follows that the action of E on Y induces an artion of E on Y and
the mapa f and ¡3 are equivariant.

Since the equivalent relation R on Y containa the set S, the equivar¡-
ant covering map ¡3 la strict. We ahow that this strict equivariant cover-
ing of X satiaflea the required universal property.

Let q: Z —* X be a atrict equivariant covering of X and iet g: Y —>Z
be a morphism of equivariant coveringa of X. Conaider the equivalence
relation R’ = Y xzY on Y. Since qoy = p, the set R’ la asubset of
Y Xx Y. Since the covering q ja atrict S cE R’ Moreover, 1?’ ja open and
closed in Y Xx Y since the map y la a covering map of.3. It followa that
R la contained in R’ and, hence, that there is a unique continuous rnap
4 from Y into .3 auch that 4 o f = y. It ja clear that 4 is equivariant.
Proposition 2.5. Leí X be a locaily avid equivarianuly coviviected E-
apoce, avid leí b be mi equivariovit base poivil of X. Leí X0 be the con-
viected componevil of X containing b0 for aH a E E. Suppose thai ihe
topological apoce Xa has a uvilversal coveri»gfor aH a E E. Then, ihe E-
apoce X has a ur¡iveraal siricí equivariavil coverivig ¡3: (1, b) —* (X, b).
Moreover, ihia universal atr¿ct equivoriavil covering la Galois; i.c., ¡3 ¿vi--
duces a homeornorphLsrn

it/aj (X, E) ~ X.

Proal’. By Proposition 2.2 there is a universal equivariant covering
p: (X, b) —> (X, b) of X. It foiiows readily from Lemma 2.4 that the
induced atrict equivariant covering

¡3:(X,b) —> (X,b)
ja universal. It afro follows froro Leníma 2.4 that the the action of
irí(X, E) on it induces an action of irí(X, E) on 1. Sínce the latter
action la one acting by automorphiams of the strict equivariant covering
¡3, one has induced surjective maps of the quotienta

it/ir1 (X, E) —* it/ir1 (X, E) —> Ñ/ai(X, E) —* X.

According to Propoaition 2.2, the composition of these rnaps isa horneo-
morphisrn. It follows that earh of the aboye maps is a horneomorphiam.
In particular, ¡3 induces a homeornorphisrn froní it/aí (X, E) onto X.

u
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3 Universal coverings and universal strict
equivariant coverings

It wili be uaeful to relate atrict coveringa of a E-space X to ordinary
coveringa of the quotient apare X/E. Firat, we need to introduce sorne
notation.

Let X be a E-apare. Denote by SCavx the category of atrict equivari-
ant coveringa of X and denote by Cavx1r the category of coveringa of
the topological apare X/E. One has a functor

F: Covxir —> SCovx.

Indeed, let ir: X —* X/E be the quotient map. If f: Y —> X/E la a
covering, the fiber product Y X ia a topological apare on which
E acta diagonaíly. The projection on the second factor froní Y Xx/s X
onto X ha an equivariant covering of X. We denote thia rnap by Ix. It
la trivial to check that fx is a atrict covering of X. Define the functor
E on objecta as F(f) = fx. It ia clear what the functor F ahould be on
rnorphiama.

Recalí that an action of a group E on a topological apare X is said
to be diaconti»uous if for ahí z E X, there ia an open neighborhood U
of z auch that

1. (a. U) ~ U for ahí a E E~, and

2. (a.U)flU=Qiforall o’ E E\EX,

where E~, denotes the atabilizer of z.
Proposition 3.1. Leí X be a locally coviviected E-apoce. Suppose thai
E acis dLscoviti»uously o» X. The vi, ihe fuvictor E: Covxir —4 SCavx
rs ay equivalevice of categories.

Proof. We define a funetor

O: SCo~< —> Covx1r

as followa. Let 9: .3—> X be a strict covering of X. One has an induced
map f: .3/E —> X/E and one needa to ahow that f la a covering of X/S.
It will then follow that (2(y) = f defines a functor frorn SCavx into
covxIr.
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Let z be any elernent of X. Let U be an open neighborhood of such
that (a. U) C U for aH a E E~, and (a. U) fl U = 0 for ah a E E\E~.
Since y is a covering, the inverse image y’ (U) of U is a diajoint union
U~6¡ V1 of open subseta Vj of .3. Moreover, the restriction of y to each
y1 ia a horneornorphism onto U.

Since U is atable for the action of S~, the inverae image yt’ (U) ja
alan atable for the action of E~. The topological apare X being locahiy
connected, we rnay assurne U to be connected. Then, each Vj ja con-
nected. Let yí be the inverae image of z in Vi. Since the covering y is
atrict, yj ja a fixed point of £,. By connectedneaa of 14, the open aubset
Vi of.3 is E~-stable.

Since (a. U) n U = 0 for ahí a E E\E~, the quotient U/EX la an open
neighborhood of lr(z) in X/E. Similarly, g’(U)/E~ can be considered
as an open subaet of .3/E. The inverse image of U/El by f is equal to
thia open subaet of .3/E. The quotient g’(U)/E~ ja equal to the disjoint
union of the quotienta Vi/El, each of which ia mapped homeomorphically
by f onto U/EX. Therefore, f ia a covering rnap.

It is easy to check that the functora F and (2 are quasi-inveraes of
earh other.

u
Corollary 3.2. Leí X be a locally avid equivariantly coviviected E-apoce.
Suppose ihat E acta discovitiviuoualy ovi X. Let 6 be ay equivariavil base
¡mini of X. Leí

¡3: (13)—> (X,b)

be a atrict equivarianí cover¿ny of X. Denote by

p: (it/E, 6) —> (X/E, 6)

ihe induced ordi»ary cover¿vig of ihe quotievil spoce X/E, where b avid 6
denote tIte induced ordiviary base poi»is of it/E avid X/E, reapectively.
TIte», ¡3 Ls a universal siricí equivariavil coverivig if a»d ovily if p Ls a
universal coveri»g. lvi particular, tIte following coviditiovis are equivale»t.

1. TIte E-apoce X has a uvilversal siricí equivarianí covering.

2. TIte quotievil apoce X/E has a universal covering.
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Moreover, if oye of ihese condit¿o,ts Ls aatLsfied tIte» oye Itas a» iaomor-
pItLsm

of fundamental yroups.

Remark 3.3. Observe that Propositions 2.2 and 2.5 and Coroiiary
3.2 show the following atatement. Let X be a locally and equivariantly
connected E-apace. Suppoae that E acta diacontinuoualy on X. If al
connected componenta of X admit a universal covering, then the quo-
tient X/E admita a universal covering.

4 The strict fundamental graup of real alge-
braic curves

Let E be the Galois group of Cover iR, i.e., E = {1,a}, where a is
complex conjugation. Let X be a Riemann surfare. A real atrncture on
X is ay artion of E on X such that a arta antiholomorphicaliy. We will
also aay that auch a Riemann sudare la defined over E?. We denote by
XE the subset of fixed pointa for the artion on X by E. The pointa of

are calla! real pointa of X.
Recail that a Riemann surface X ja of finute type if X la biholomor-

phic to the complement of a finite set in a compact Riemann surfare. A
Riemann surface of finite type is eaaentially a compiex algebraic curve.
Similarly, a Riemann surfare X defined over 1? which ¡a of finite type ia
eaaentially a real algebraic curve. Therefore, in what follows, by a com-
plex algebraic curve (resp. a real algebraic curve) we mean a Riemann
aurfare of finite type (resp. a Riemann aurface of finite type defined
over .1?).

Let X be a compact connected real algebraic curve. Let y = g(X)
be the genus of X. The number of connected componenta of XE will
be denoted by a = s(X). The real algebraic curve la said to be dividi»g
il’ X\XS is not connected. It la well known that a y + lmod2 and
1 < a <y + 1 if X la dividing, and that O < a < y if X la nondividing.
Proposition 4.1. Leí X be a compací cor¡»ecied real algebrale curve.
Leí g = y(X) avid s = s(X). TIten, tIte siricí equ¿variovii fundarnen-
tol group o’í(X,E) ¿a Lsornorphic lo tIte yroup yenerated by e¡ernertte
Y1,..~, 7g~fl subject to tIte followi»y relaiiovi.
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1. IfX Ls dividí»9 tIten

-y, . [Ys+í, 7s+2] ... [y2, Yg+1] = 1.

2. If X ¿a »o»dividñig thevi

1» porticular, ihe group a1 (X, E) ¿a a free yroup o» y gevieratora if XE !=
0. The group ai(X, E) ¿a isornorphic to tIte yroup

IfXS=«t

Pmo?. Since the Euler characteristic x(Xs) of the set of fixed pointa
XE of X ¡a equal to 0, one has x(X/E) = lx(X) = 1 — y. Let S be
a connected cornpact surface auch that X/E is homeornorphic to the
complement of the union of a diajoint open diacs in S. Then, x(S) =

1— y + a.
If X ¡a dividing then X/E ja orientabie. The sarne then holda for

S. It foilows that 8 ja an orientable aurfare of genus 1(9 — 8 + 1).
Then, the group aí(X, E), being iaomorphic to the fundamental group
of X/E by Corollary 3.2, la generated by elernenta 71,..., i’g+í, subject
to relation 1.

If X ¡a nondividing then X/S ja nonorientable, and so ¡a 8. It foiiowa
that 8 ¡a the connected aum ofg+1—s real projective planes. In thia case,
the group a1 (X, E) is then generated by elernenta n, , ~ subject
to relation 2.

u

5 Uniformization of real algebraic curves

For the convenience of the reader we recalí some facta on ordinary uni-
formization of real algebraic curves before diacussing their strict uní-
formization. For proofs, the reader ja refered to [8].

We will calI a connected Riemann surface hyperbolic if it is univer-
aaliy covered, in the hoiomorphic sense, by the upper half-plane liii. An
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equivariantly connected Riemann aurface defined over fi will be said to
be Ityperbolic if each of ita connected componenta ja a hyperbohic Rie-
mann aurfare.

We denote the upper (resp. lower) half-plane by U (resp. L), avid
we denote by 13 the double haíf-plane U U L. The uniformization of
Riernann aurfaces over fi is then rnerely a consequence of the clasaical
uniformization of Riernann surfaces ([6], Theorern IV.4.1).

Theorem (Uniformfration of Riemann surfaces over fi).
Leí X be a Ityperbolic equivaria»uly covi»ected Riemavin aurface defi»ed
over fi. TIte», ihere Ls a trniveraal equivariavil holomorphic covering
p: 13 —> X of X by tIte double half-pla»e U.

A universal equivariant holornorphic covering p: Di —* X wiii be
calla! a uviiform¿zatiovi of tIte Riemavin surface X over fi. In case X
la a real aigebraic curve, a uniformization of X as a Riemann aurface
defined over fi will be calla! a uniformizatio» of X os o real algebraic
curve.

If p: 13 —* X la a uniformization of a Riemann aurfare X over fi,
then the group G of automorphiams of p acta holomorphicaily on 13, i.e.,
o ia a aubgroup of the group Auts(13) of equivariant automorphiams
of 13. The group Auts(13) is nothing but the group PGL2(fi) acting
on 13 by Móbius tranaformationa. Hence, the group O ¡a a aubgroup of
PGL2(fi). Since O arta discontinuoualy on 13, the group O is Kleinian.
(We refer to [14] for definitiona and facta concerning Kleinian groupa.)

We will say that a Kleinian aubgroup O of PGL2 (fi) la of tIte firsí
lei»d if ita region of diacontinuity la equal to 13. Otherwise, O is said
to be of tIte secovid lei»d. In that case, the domain of diacontinuity of O
containa 13 as a proper subset, and the iimit set of O ¡a a nowhere dense
aubset of F

1(fi). Note that the definition of the kind of a Kleinian aub-
group of PGL

2(fi) extenda the clasaical definition in case O is contained
in PSL2(fi), i.e., in case O is FNjchsian.

Proposition 5.1. Leí X be a hyperbolic equivario»tly co»»ected Ríe-
man» surface defivied over fi. Let p: 13 .-+ X be a u»iveraa¡ equivarioní
Itolomorphic coveririg of X. Leí O be tIte yroup of automorphiama of tIte
coveri»g p. Then,

1. tIte group G ¿a iaoraorphic lo tIte equivariavil fu»dameviial group
rí(X,E) of X;
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2. ihe yroup (2 ¿a a Kleiviian subgroup of PGL2 (fi), act¿»y dLsco»t¿»-
uously o» 13;

8. ihe quot¿evit R¿ernanvi aurface 13/G ¿a equ¿var¿avitly iaomorphic lo

x.
Moreover, tIte following equivalevicea hoid.

.4. TIte yroup (2 ¿a of tIte aeco»d leivid if avid o»ly if tIte Riema»vi
aurface X Itas a no»empty ideal bouvidary.

5. TIte yroup (2 Ls Fuchala» if avid ovily ji X ¿a viol covinected.

6. TIte group (2 covitaivis parabol¿c elemevita ¿fand ovily ¿IX Itas punc-
turca.

7. TIte yroup & covitaina ellipiic elemevita ¿j< and only if X Itas real
poinís.

6 Strict uniformization of real algebraic curves

In thia section we ahow that, with a few exceptiona, a real algebraic curve
can be uniformized by ay open aubset of the Riemann sphere auch that
thia uniformization ¡a, in fact, a universal atrict equivariant covering of
the real algebraic curve.

Theorem (Strict uniformization of real algebraic curves)
Leí X be a compací covinected real alyebraic curve of genus y. Suppose
thai XZ la vio»empiy ji y = O or 1. TIte», ihere ¿a a E-atable ope»
subsel (2 ofF’ ((3 covitaivii»g tIte double half-plavie ID, such tItal ihere la
o uvilversal atrid equivariavil holomorphic coveriny ¡5: (2 —* X of X by
(2.

Proof. Let Y be the cornplement of X~ in X. Then, Y la an equivari-
antly connected Riernann aurfare defined over fi. Obaerve that Y ¡a
hyperbolic. Indeed, if X~ ¡a nonempty then every connected component
of Y has a nonempty ideal boundary, hence Y ¡a hyperbolic. If XE ¡a
empty, then by hypothesia, X ja of genus greater than or equal to 2.
Then, since X = Y and X ¡a hyperboiic, Y ¡a hyperbolic too.
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Applying to Y uniformization of Riemann aurfarea over fi, there is
a universal equivariant holomorphic covering p:13 —> Y of Y by the
double half-plane 13.

Let (2be the group of equivariant autornorphlarns of p. Then, G ja
a Kleinian aubgroup of PGL2(fi). Let (2 be ita region of diacontinuity.
Then, (lis atable for the action of E. We ahow that O arta freely. on (2.
That will ahlowa us to extend p to a map ¡3 froní (linto X. Then, we
will ahow that ¡3 ia a universal strict equivariant holomorphic covering
of X.

Suppose that O arta not freely on (2. Let z E (2 have a nontrivial
atabihizer G~. Let -y e O,, be nontrivial. Then, y ja an eiliptic Móbius
tranaformation. But Y doea not have real pointa. According to Propoai-
tion 5.1, 0 does not contain eliptic elementa. Contradiction, i.e., O acta
freely on (2.

Let pi be the restriction of p to U, and P2 the restriction of p to
L. Since p la equivariant, p2(z) = a(pi(o}z))) for ahí z E L. Since p’ la
conformal and O arta freely on all of (2, the map Pi extenda uniquely to
acontinuoua map ih froní (2flU into X (cf. [2],Satz IV.8.41). Sirnilarly,
P2 extenda uniquely to a continuoua rnap ¡32 from (2fl~ into X. Then, by
uniqueness of¡32, one has k(z) = a.¡31(a(z)) for ahí z E (2flL. In partic-
ular, ¡3~ and ¡32 coincide on (2fl ~ (fi). Hence, they induce a continuoua
map ¡3: (2 —> X whoae restriction to 13 ¡a equal to p. By the so-calied
analytic definition of quasiconformal mapp¡nga ([12], Theorem IV.2.3),
¡3 la quasiconformal. Since ita restriction to 13 ¡a holomorphic and (2\13
¡a of measure 0, ¡3 is holomorphic on ahí of (2.

It la clear that the elementa of O art as equivariant automorphiama
of the map ¡3. Hence, ¡3 induces a holornorphic map f frorn the Riemann
aurface (2/O into X. Ita reatriction to the open aubaet 13/O is a» iso-
morphiarn onto ita image Y. Therefore, f ¡a ay open embedding of (2/O
into X.

Since Y has no punctures, the group O ja ioxodromic by Proposition
5.1. Therefore, the quotient (2/O ¡a compact. It followa that 1 ia an
isomorphism onto X, i.e., the map ¡3: (2 -4 X la surjective. Since (2/E la
aimply connected, the induced map (2/E —> X/E ¡a a universal covering
of X/E. By Corollary 3.2, ¡3 la a universal atrict equivariant covering of
X.

u
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A universal atrict equivariant holomorphic covering ¡3: (2 —* X of a
real algebraic curve X will be calla! a atricí uniformizatio» of X.

Remark 6.1. Let p: (l-> X be a strict uniforrn¡zation of a real algebraic
curve X. By Corollary 3.2, the induced map on the quotienta

frQ/E—> X/E

is a universal dianalytic covering of the Kiein aurfare X/E associated to
X (see [1]for the theory of Klein aurfares and dianalytic mapa). The sim-
ply connected Kiein aurfare (2/E ¡a open in the Klein aurface F’((fl/E.
Strict uniformization of real algebraic curves thua imphies uniformization
of Klein aurfacea.

Proposition 6.1. Leí X be a compací corniecied real alyebra¿c curve of
genus y. Suppose thai Xr ¿a vionernpty jiy = O or 1. Leí ¡3: (2—> X be
o uviiveraal atricí equivarioní Itolomorph¿c coveririy of X. Let O be tIte
yroup of autornorpIt¿ama of tIte siricí equivariavil coverivig ¡5. TIten,

1. tIte yroup 0 ¿a ¿somorphic lo tIte st rlci fundamental yroup a1(X, E)
of X,~

2. tIte yroup & ¿a a lozodrornic Kleiviiavi aubgroup of PGL2(fi) w¿tIt
(2 as regio» of d¿aco»tinuitv;

3. tIte quotievil JUemavirz surface (2/O ¿a equ¿varianuly isomorphic lo

x.
Moreover, tIte followiviy equivaler¡cea Itoid.

4. TIte yroup O ¿a viovielemevitary if avid ordy if y =2.

5. TIte real ¡<leinia» ymup O ¿a of tIte aecovid leivid ji and o»iy ji X
Itas real poinia.

6. lAhe group O ¿a Fuchata» ji avid o»ly ji X Ls dividiviy.

Proof. Staternent 1 ia clear. Staternent 3 followa froní Proposition 2.5.
To ahow statement 2, it auffices to observe that the restriction of ¡3 to
the double half-plane 1) is a universal equivariant covering of X\XE,
and therefore, O doca not contain any elliptic or parabohic elernenta by
Proposition 5.1.
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By Proposition 4.1, if y = O or 1 tben the group O ia cornrnutative,
¡vi particular, elementary. If y =2 then O ¡a not conímutative. Since O
¡a loxodromic, O la neceaaarily nonelernentary. This shows equivalence
4.

Since the equivariant covering ¡3 is atrict, ¡31(XE) — (2fl F’(fi).
Hence, O ja of the secovid kind if and only if X~ # 0. Thia provea
equivalence 5.

Equivalence 6 ja obvious.

u
Remark 6.2. Let X be a compact connected real algebraic curve of
genus y having real pointa. Let p: (2 —* X be a atrict uniformization of
X and let O be the group equivariant automorphiarna of the covering
p. By Proposition 4.1, 0 la a Kleinian group freeiy generated by y
elementa. Since any finitely generated free Kleinian group ja a Schottky
group [14], the group O ia a Schottky group. Sibner ahowed that a
cornpart connected real algebraic curve can be uniformized by a clasaical
Schottky aubgroup of PGL2QT) [16]. We will ahow in aforthcoming paper
that the atrict uniformization p: (2 —> X of X la, in fact, a uniformization
of X by a real Schottky group [10].

7 Global real analytic coordinates on real
Teichmiiller spaces

In thia section, a real or cornpiex algebraic curve is underatood to be
compart and connected.

Let X be a real algebraic curve. Let 1(X) be the complez Te-
¿ch múller space of X, i.e., ita elementa are paira (Y, f), where Y ja a
complex algebraic curve avid 1: X —> Y ¡a an orientation-preserving qua-.
siconformal homeomorphiarn. Two auch paira (Y, f) and (Z, It) repreaent
the same element of T(X) if ayd only if there ja a biholomorphic map
le: y —* .3 auch that le o f la hornotopic to It. It la known that T(X)
admita a natural atructure of a complex analytic manifold. For that
atructure, T(X) ja connected and of dirnension 3y — 3 if X ia of genua
~=2 (aee [15] for detaila).

The action of E on X induces ay artion of E on 1(X). Indeed, one
defines a.(Y, 1) as (Y

0, f0), where Y0 lathe complex conjugateatructure
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on the manifoid Y and f0: X —> Y0 la defined by f~(z) = f(a . x). It
la easily verified that thla gives rise to a» action of E on 1(X). It
turna out that a acta antiholomorphically on lA(X). Since lA(X)E la
nonempty, lA(X)r ia a real analytic manifold of dimension 3y — 3 if
y =2. Furthermore, T(X)E is connected [4]. The real anaiytic manifoid
lA(X)s ¡a calla! the real Teichmdller .space of X.

The real Teichmúller apare of a real algebraic curve X is of intereat
for the study of moduhi of real algebraic curves having the same topo-
logical type as X [7]. In this section we wiii conatruct a global system of
real analytic coordinatea on the real Teichrnúller apareof a real algebraic
curve of genus y =2.

Let p: (2 —* X be a atrict uniformization of the real algebraic curve
X. Let O be the group of automorphlams of the equivariant covering p.
Let M(O) be the apare of Beltrami coelficienta for O with support in (2
(see [11] for definitiona or nontrivial unproved atatementa that appear
without reference). Since O ¡a a aubgroup of PGL

2(IR), the group E
arta naturahly on M(G).

Recail that for any Heltrami coefllcient ji E M(O), there ia a unique
orientation-preaerving quasiconformal aelfhomeomorphiam tít of 1>1 (it)
having 0, 1 and ~ as fixed pointa and which ia such that ita complex
dilation ja equal to ji. Since the aet of ahí or¡entat¡on-preserving qua-
siconformal aelfhomeomorphiams of F’ (it) having 0, 1 and ~C Rs fixed
pointa ia a group, one geta, by tranaport of atructure, the atructure of
a group on M(G). Thia structure on M(O) is such that E acta by
homomorphiama.

Let ji be in M(O). Then, for al a E O, the selfhomeomorphiam
o a o (w~)’ of F

1(6S) ¡a a M5biua tranaformation. One defines a
homomorphiam of groups

0:0 —* PGL
2(<9

by letting ¿~‘(a) = mP o a o (w~)’ for any a E O. Of courae, U’ ia an
iaomorphiam of O onto ita irnage. The mapa U’ are called quasicoviformal
deformationa oJO. We put

Def(G) = {K: G —* PGL2QL) Bg E M(G): U’ = 4
the set of quasiconformal deformationa of O. Note that U’ la equal to the
incluaion of O into PGL2(<9 when ji is the trivial Beltrami coefflcient 0.
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The action of E on PGL2QL) induces an artion of E on Def(G). The
aubset Def(G)E of Def(G) is the aubset of real quaa¿co»formal deforma-
hong of 0. Obvioualy, a quasiconformal deformation ~: 0 —> PGL2(L)
¡a real if and only if ¡c(O) C PGL2(R).

One has a natural map

¿: M(G) —> Def(G)

defined by letting the irnage of ji be ¿~ for aH /1 E M(O). Thia map ja
clearly equivariant. Let Mo(O) be the subset of Beltrami coefficients ji
in M(O) auch that the deformation U’ ja equal to the inclusion ¿~ of O
in PGL2Qt). Then, Mo(O) ia a aubgroup of M(O), atable for the action
of E on M(O), and the map ¿ ia a quotient map for the artion of M0(O)
on M(G).

The set Def(G) of quasiconformal deformationa of O geta the atruc-
ture of comphex analytic manifold since M0(G) arta freely on M(O).
In fact, Def(G) ia a connected cornplex ana¡ytic manifoid of dimension
3g — 3 if y =2. The artion of o on Def(G) is antiholomorphic. Since
Def(G)E !=0, the set Def(G)E of fixed pointa ia a real analytic manifoid
of dimension Sg — 3 if y ~ 2.

A uaeful fact on Mo(O) is the following. An element ji E M(G)
belonga to Mo(O) if and only if the restriction tu” of w~’ to the limit setJA
A of O la equal to the ¡dentity.

It ia clear that for ji E Mo(O), the map tu” mapa the domain of
discontinuity (2 into itaelf. One leta Mo(O) be the aubaet of Beltrarni
coefllcienta ji E Mo(a) auch that tu”, considera! as a map from (2 into
itself, la homotopic to the ident¡ty map id~ on (2. Then, Mo(O) is a
normal aubgroup of Mo(O) which ja atable for the action of E on M(O).

Let T(O) be the quotient of M(O) by the action of Mo(O). Then,
lA(O) hRs a natural atructure of a complex analytic manifoid and is
calla! the TeicItmñller space of O. In fact, 1(0) ja a connected cornpiex
analytic manifold of dimension 3y — 3 if y =2. One has an induced
action of E on 1(0). Complex conjugation a acta antiholomorphically
on lA(O). It turna out that 1(0) la equivariantly biholornorphic to the
cornplex Teichmiiiller apare 1(X) of X. Let

~p:T(X) —-4 T(G)

be auch a bihohomorphic map.
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The map ¿: M(O) —+ Def(G) fartorizes through the quotient map
M(O) —> lA(O) and gives rise to an equivariant holomorphic map

mT(O) —* Def(G).

In fact, ir ja a universal holomorphic covering of Def(G). The group
of automorphiama of thia covering is equal to the quotient group
Mo(O)/Mo(O).

Let Def(G)5’0 be the connected cornponent of Def(G)5 contain¡ng
the inclusion ¿0:0 ~..* PGL

2((3.

Lemma 7.1. TIte ftzduced map

,rE:T(o)E ...*Def(G)
5

maps lA(O)5 reol bia»alyt¿caily ovito Def(G)50.

Prao?. Since T(O)~ ¡a connected and since mr(O) — one has that the
image mr(T(O)5) of 1(0) si

8 contained in Def(G)
5’0.

It la easy to ace that mr5 la aurjective onto Def(G)5’0. Indeed, the
reatriction of ir to the inverse image A — r1(Def(G)5’0) ¡a a covering
of Def(G)5’0. Since E acta trivially on the iatter apare, E acta trivially
on the connected component (2of A that containa lA(O)~. Then,

T(O)~ C(2CA5 CA(O)5.

Hence T(O)5 — (2is a connected component of A. Therefore, mr~ mapa
onto Def(G)5’.

Let us ahow that mr5 ja injective. Let ji and u be Beltrami coeflicienta
in M(O) representing two elementa of T(0)5. Due to a result of Earie
(see [4] or [7], Theorem 21.1), we may asaume that ji and u are in
M(O)5. Suppose that ji and u are auch that U’ —O’. Then,w=g.v-’
la in Mo(O). Hence, the map nr mapa (2 into itse¡f and la equal to the
identity on the himit set A of O.

Since ji and u are in M(O)E, w ¡a also in M(G)5. Therefore, the
map tu”’ la equivariant. In particular, ut’ mapa P1(fi) into itself. Since
thia map ¡a the identity on A cE P’ (fi), one has that a»y point z of
F’ (fi) avid ita image tt(z) beiong to the same connected component of
F’(fi)\A. It followa that mt’, considera! as a map from (2 into itaelf la
homotopic to the identity. Hence, fi u~ — w E Mo(O) and therefore,
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ji and u give rlae to the aarne element of 1(0). Thia ahowa that ,r’ is
injective.

Now that we have prova! that ir~ is bijective onto Def(G)E~O, it
followa that ,rE ja a real bianalytic map since ita complexification mr is a
holomorphic covering map. u

We wilI now conatruct ay equivariant holomorphic open embedding
4 of Def(G) into C~-<3, in case that X has real pointa and ita genua
satisfies y =2.

According to Proposition 4.1, the group O ia freeiy generated by y
elementa 71,.. . ,y~ of O.

Observe that the Mbbius tranaformationa ~‘ avid 72 do not have fixed
pointa in common. Indeed, if they had a conímon fixed point then they
would have had both of their fixed pointa in common ([14], Proposition
1.0.4). Thia would imply that there are nonzero integera m and vi auch
that ~yr= y~. Thia contradicta the fact that O is freely generated by
~

Since -» and 72 are loxodromic elementa not having conímon fixed
pointa, one may assume that yí has O Rs attrartive and as repelling
fixed point and that 72 has 1 as attractive fixed point.

Define
~b:Def(G) .~g—3

by letting
= (aa, . . ., a

9, b2, . . . , b9, eí,..., c9), (1)

where a, (reap. b1) is the attractive (resp. repelh¡ng) fixed point of ¡«ye)
and c~, ¡c~¡ < 1, la the multiphier of Ic(~yí), for alí ¿ = 1,.. .,y.

Observe tbat ~ la welI defined into r~ since earh Móbius trana-
formation y~, for ¿ > 2 ¡a loxodromic and doca not have ~ as fixed
point.

Proposition 7.2. Suppose tItal X Itas real poinis avid thai ita gevius
sai¿afies y ~ 2. TIte», tIte map ~ ¿a a» equivarianí b¿holomorph¿c ope»
em&ddñig of Def(G) ¿vito ¿9s3

Prao?. It followa from quasiconformal deformation theory that ~kia a
holomorphic map. It ¡a clear that ~bis equivariant. Since dim Def(G) =

3g — 3, it suificea to ahow that ~ ¡a injective in order to conchude that ~
¡a ay equivariant biholomorphic embedding.
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Suppose that n and A are ¡vi Def(G) such that ~b(n) = ip(A). By
definition of quasiconformal deformationa, ‘«~yi) avid AQyí) both have
O as attrartive and ~ as repelhing fixed point. Since their rnultipliers
are equal, icfryi) = AQyi). One airnilarly proves that n(y2) = A%). It
la obvioua that ‘«71) = A%) for i = 3,... ,g. Since O la generated by
‘yí, . . .,y~, one has n = A. This proves that ip ja injective. .

Tbeorem 7.3. Suppoae thai X Itaa real poinia avid that ita yema satis-
flea y> 2. Let tP: T(X) —> ~ be tIte rnap ipoiro’p. TIten, tIte ividuced
map

q~xT(X)s —*

a global aystern of real analytic coord¿»ates o» the real Teichmiiller
space T(X)s ofX.

Proof. Of course, = o o ~ Now, ~ T(X) -4 lA(O) is ay
equivariant b¡holornorphic map. Hence, <pS: T(X)r ~> T(O9~ is real
bianalytic. By Lenírna 7.1, lrS:T(O)E ~* Def(G)~

0 la real bianahytic.
By Proposition 7.2, ip: Def(G) —* ~ ia an equivariant biholornorphic
open embedding. Hence, ipE: Def(G)S —> R3~3 ja a real bianalytic
open ernbedding. Therefore, ita restriction to the connected cornponent
De?(G)E.o ja a real bianalytic open embedd¡ng too. It follows that tpS

ia a real bianalytic open ernbedding of T(X)E into fi393, i.e., a global
ayatem of real analytic coordinates on T(X)E.

u
The situation in the case of X being a real algebraic curve without

real pointa is rather different. In thia case the global aystem of real
analytic coordinates on T(X)E turna out to be the one induced by an
equivariant global syatem of complex analytic coordinatea on the entire
complex TeichmOller apare 1(X). Ihe reason for this la that, since X
has no real pointa, a uniform¡zation of X as a real algebraic curve ¡a
neceaaarily a atrict uniformization of X. Complex analyt¡c coordinates
on complex Teichrniiller apares obtained by quasiconformal deformationa
of the uniformization of a real algebra¡c curve X have been conatructed
in the papera [8, 9].

Por completeneas, we treat briefly the construction of a global systern
of real analytic coordinatea on T(X)s lvi the case that X has no real
pointa. It w¡ll then also be clear why ¡y Uds case the coardinate aystern
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extends to ay equivariant global aystem of complex analytic coordinates
on T(X).

Let X be a real algebraic curve without real pointa. We auppose
again that the genus of X satisfies y =2. By Proposition 4.1, there are
elernenta 71,.. . , 7~I4 of O aatisfy¡ng the relation

Aa before we may assume that yi has O as attractive and x
repehhing fixed point and that 2 has 1 as attractive fixed point.

Then one definea a rnap

by Equation 1, as ¡vi the case of X having real pointa. Note that y
2+i

doca not intervene at ahí in the definition of 4’. Nevertheleas, 4’ is injec-
tive. More preciaely:

Proposition 7.4. Suppose thai X Itas no real poivita vid thai ita gevius
aaiisfiea y =2. TIte», tIte map ip ¿a a» equivarianí biholomorph¿c ope»
embeddi»g of Def(G) ¿vito C~—

3.
Proof. As before it suifices to ahow that 4’ ¡a injective. Hut thia is done
in the proof of Theorern 5.2 of [8].

u

Theorem 7.5. Suppose thai X Itas vio real poivita a»d thai ita genus
satisfies y > 2. Leí V¿: 1(X) —> be tIte map 4’ o ir o ~. lIte», ‘II

¿a a» equivariavil global aysiem of complez avialytic coordiviatea ovi tIte
corviplez lAe¿chmiiller apoce T(X) of X. ¡vi porticular, tIte ividuced map

qvE:~(x)S —*

is a global system of real avialytic coordiviaiea o» tIte real TeicItmiiller
apoce T(X)s of X.

Proof. As before, w: T(X) A 1(0) ¡a an equivariant bihohomorphic
map. Since X doca not have real pointa, the domain of diacontinuity (2
of O la equal to the double haif-plane 13. Since the connected compo-
nenta of (2 are aimply connected, Mo(O) = Mo(O). It followa that the
equivariant rnap ir: lA(O) —* Def(G) ia biholomorphic. Hy Proposition
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7.4, the map 4’ ¡a ay equivariant biholomorphic open embedding 4’ of
Def(G) into ~ Hence,

‘II = 4’oirow:T(X) —>t~3

¡a ay equivariant global ayatem of complex ana¡ytic coordinates on the
entire complex Teichmiiller space T(X). u
R.emark 7.6. It should be eminently clear that, in the case that X
has real pointa, the coordinate aystem ‘¡4 on the real Teichmiiller apare
T(X)E of X doca not extend to a global coordinate ayatem of complex
analytic coardinates on the cornplex Teichmiiller apare T(X) of X.
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