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Optimal control of fluid flow in soil 1.
deterministic case.

Youcef KELANEMER

Ira rnemory of Professor Ulric/a Hornuny*

Abstract
We study the numerical aspect of the optirnal control of prob-

Iems governed by a linear elliptic partial differential equation
(PDE). Wc consider here the gas flew in porous media. The ob-
served variable is the fiow fleld we want to maxirnize ira a given part
of the demain er its boundary. The control variable is the pres-
sure at one part of tite boundary or tite discharges of sorne wells
located in the interior of the dornain. Tite objective functional is
a balance between the norrn of the flux in tIte observation region
and the costs due te tite control variables. We consider several
geernetric configurations of the control and tite ebservation vari-
ables, and we make use of different ebjective functionals. We take
advantage of tite Iinearity of tite flux w.r.t. the control variable te
significantly reduce tite cemputational effert and to deduce the op-
tirnal controls of wide class of objective functionals. In this paper
we consider the deterrninistic case where tite inodel pararneters are
given ira the whole dornain.

1 Introduction

Statienary fluid transpert un pereus media and heat transfer un con-
ducting materlais are governed by a well-known second erder elliptic

Wrofessor Ulrich Hornung was of a big help to titis work.
Mathemnatics Subject Classification: 49320, 35325, aSQaS.
Servido Puhlicaciones Univ. Complutense. Madrid, 1998.

http://dx.doi.org/10.5209/rev_REMA.1998.v11.n2.17266



374 Youcef Kelanemer

differential equatien [Bea79]. In general, this equation is thecombina-
tion of the mass conservatien and Darcy laws fer the masa transfer, or
the energy censervation and Fourier laws for the heat transfer. In this
paper we will refer to the gas flow in poreus media, but the study and
the results are dírectly applicable te other problems like water transpert
and heat transfer. The model is twe-dimensienal and results from a ver-
tical averaging. Together with appropriate boundary cenditions which
are un eur case the Dirichlet beundary condition en ene part and the
Neurnann ene en the ether part, the beundary value preblern (BVP) of
gas transfer can be written as{ —V.(KVy) =1

=9, X61% (1)
—h ZEI’N.

Here AS is a strictly positive-beunded function in the beunded demain
9 c ¡~2 and called transrnissivity. We assume that there are two con-
stants e1 and c2, such that O < c1 < AS < c2 < no. The functions f
andthe beundary data y and h are given. The flux q = —ASVy is the
gas velocity un the medium and the quantity q,, = q u is tIte flux in the
outer normal direction en F. The state variable y is fer the cempressible
gas the square of the air pressure.

When dealing with soil rernediation, several strategies are used. The
ene we censider here is the seil venting. Purnp and treat (PAT) tech-
nique, which consists of extracting air using purnps located in a con-
tarninated soil and treat it with filters, has widely been used [RM94],
[Bruol] and [NG91]. TIte purnps are called wells and are seurces when
they introduce air in the domain and sinks when they extract the air
out of it. The air rnovement induces a cenvectien which rerneves the di-
luted pollutant te the exterior part of tIte contaminated pereus media.
Instead of intreducing or extracting air using sorne wells ira the domain,
other applications need te do this frorn the boundary.

2 The Optimization Problem

TIte procedure of air pumping is very cestly and tIte rernediation takes
many years. Therefore tIte eptimization of tIte soil venting technique is
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ver>’ important. When we observe tItis technique, we see that the dis-
charges of the pumps or tIte under-pressures produced at sorne places are
the mean control variables. The cest and tIte result of the remediation
depend strongly en them. Designing cost-effective and reliable remedi-
atien schemes is a difficult task. lix groundwater quality rnanagement,
Wagner and Gerelick [WG87] [WG89] and Gorelick [Ger9O] minirnize
the discItarges of sorne wells subject te a reduction of contarninant con-
centration te acceptable level. lix soil venting ene would maximize the
extracted contaminant subject te sorne censtraints en the discItarges.
BetIt preblems are rather complicated: rnultiphase and multicernpenent
transport geverning laws are not obvieus and the big number of unknewn
parameters rnake tIte predictien and the ~ptimization hard tasks. There-
fore, a simplificatien of the problem is te reduce it te maxirnizatien of
tIte air flow lix tIte regien of higIt velatilization.

Here we describe eur eptimal control preblern.

1. The ebservation is the flux we want to maximize in ene reglen of
the domain er through ene part of the boundary.

2. The control variable is tIte pressure prescribed en tIte beundar>’
and represented by the DiricIt¡et conditien er tIte discharges of tIte
wells at sorne locatiens and represented by a seurce terrn of Dirac
type. TIte control variable is notated Itere by u and be¡engs te tIte
space IP.

3. TIte ebjective functienal called J, is a balance between tIte profit
of tIte strategy, function of the tform of tIte flux un tIte interesting
region, and tIte costs of this strategy, function of the nerm of tIte
control variable. We have te minirnize tIte difference between tIte
cests and tIte profits.

4. Due te technical and physical reasons, tIte optirnizatien 18 subject
te sorne constraints. TIte equipment werks under restrictions and
tIte change rate lix pellutant pItase is toe small, such tItat a med-
erate air purnping will remove alrnest as rnuch pellutant as will do
a streng ene. Nevertheless, large discItarges u will give Itigh values
for J and avoid tIte explicite use of tIte constraints lix man>’ cases.

lix this paper we study three eptimal control prob¡ems wItich corre-
spend te three different configuratiens, namely:
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1. Boundary ebservatien and Dirichlet botíndar>’ conditien control
variable. Wc leok br tIte Dirichlet cenditien on ene part of tbe
beundar>’ whicIt produces tIte “best” flux ebserved en anether part
of it. lix this first part we study the maxirnization of the flux
througIt different segments en tIte rigItt side of the unit square.
We will see that due te tIte diffusion and the geemetrical consid-
erations, tIte effect of tIte control variable en tIte ebservatien may
be small.

2. Distributed observation and Dirichlet beundary cendítion control
variable. TIte enly difference between tItis second preblem and tIte
first ene is tItat the flux is ebserved un ene regien of tIte dornarn in-
stead of ene part of tIte beundar>’. TIte control variable is still the
Dirichlet boundary condition. lix epposite te the first formulatien,
when the regien of tIte observation is located near tIte control vari-
able, we see that the optirnizatien makes sense and tIte solution is
not always the more intuitive ene.

3. Distributed observation and tIte discharges of Dira¿z type seurces
control variable. In the third preblern we change tIte nature and
tIte locations of tIte control variable. We alse optimize tIte dis-
cItarges of sorne wells located inside tIte dernain un erder te pro-
duce a st rong flux un a given reglen. TItis third fermulation makes
ene mere step tItan tIte seceixd ene. Then it is clear that the ep-
timizatien of the discItarges when combined with optimization of
tIte pesitiens must produce. tIte “best” “optirnal” of alí. TIte last
step, namely the eptirnizatien of tIte pesitions, is still te be done
in future work.

2.1 Boundary Observation and Dirichlet Condition
Control

Wc study a typical problern where tIte control variables u5 are the pres—
sures generated at sorne part of tIte beundar>’ of a remediatien site 9,
and tIte cest functienal J(u) simultaneeusly measures tIte normal flux
(using 4’ in equatien (3)) that is produced at sorne ether part of tIte
beundar>’ and also tIte costs (using ti’ in equation (3)) that are caused
when generating tIte pressures u5. lix principie, sucIt a problem is in the
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Figure 1: The domain, the boundary types and tIte observation segrnent(a,b)

framework of a well-known theery fer eptimal control of partial differen-
tial equations [Lio7l]. We censider aix elliptic beundar>’ value preblem
of the form

—V.(KVy) :+Bu, xEI’D (2)

1 =h, xErN.
Here AS is a strictly positive-beunded functien in the beunded demain
9 G ¡~2 the piecewise srneoth beundar>’ of which r = rD u FN with
F~ n FN = 0 as shewn in Figure 1. TIte siate variable is y(u), and the
coral rol variable is u E U. The operator E : U —* HI/2(F) is assurned
te be linear frern the Hilbert-space U inte H’/2(F). Its adjeint B*

—* U is given by

o

<Br, u> = <r, Bu> Vr E ff112(E), u E U.
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The cosi furactional is chosen as

J(u)= f$(q,4y(u))g)dr+’P(u) (3)
1%

where 4’ is a differentiable cenvex function en 1?, ji E L~ (1’) is a weight
function en r, and u’ is a differentiable cenvex functienal en U.

Adjoint problem. We introduce tIte adjoint variable p as tIte solution
ef tIte elliptic preblem

x69{ (J<Vp(u)) = 0,
= 4”(q9(y(u))p)p, x E r0
=0, ZErN

wItere r~ = —v ASVp(u) is tIte norrnal beundar>’ flux belenging te tIte
adjeint p. TIte interest of tIte adjoint state p consists of sirnplifying tIte
integral un tIte functienal 3. We get tIte fellowing lernrna.

Lemma 2.1. Tite differeratial of tite cosi furactiortal .1 is givera by

8~J(u) = B*r~(p(u)) + 3~~’(~). (4)

Proof. Follewing tIte metItodology of Liens [Lio7l], cItapter 11.4, we get

<04(u), u — u> =

1%

— q~(y(u)))ji df + <0~’IJ(u), u — u>

for any u E U. Green’s formula gives

(KS
7p(u))(y(v) — y(u)) dfl — Iv. KVp(u)(y(v) — y(u)) di’

1k 17

= í~ <KV(y(v) — y(u))p(u) dcl — ji. KV(y(v) — y(u))p(u) df.
1k 1?

Since
V. (KVp(u)) = O lix 9,

y(u) — y(u) = Bv — Bu en
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= O en FN,

y. (AS S7(y(u) — y(u)) = O en 9,

and
Qv(Y(tI)) — gv Oi(u)) = O en FN,

we get

¡ p(u)(gv(y(v)) — qy(y(u))) dF = ¡ r~B(v — u) di’,

and from this we obtain

y — u> = <B*rv, u — u> + <O~’P(u), u — u>

and thus tIte conclusion. Q.E.D.
Equation (4) gives a tIteoretical toel te compute tIte functienal J.

ln discrete forrn, ene can compute tIte irnages B*r~ and tIten the cost
functional for tIte basis vecters. TIterefere tIte quadratic functional i can
be expressed un matrix form with tIte dimension of tIte control variable.

21.1 Finite Element Discretization of the PDE

lix tItis paper tIte domain 9 is taken te be tIte unit square in E2. It is
clear that in order te compute tIte state variable and tIte flux, preblern
(2) should be solved numerically. Te discretize this elliptic preblem, we
rnake use of tIte mixed-hybrid finite element methed (MHFEM). TIte
original mixed metItod leads te an indefinite matrix, a difficulty which
is overceme by Itybridization using Lagrange multipliers. This methed
computes tIte state variable aud flux simultanenusí>’ and Itas tIte advan-
tage te conserve tIte masa balance cdl by celí. For more details about
tIte theeretical and numerical aspects of the MHFEM, tIte reader is un-
vited te see [TIto77] and [BF91]. Mere details abeut tIte basís functiens
and metItods of assernbling tIte matrices can be found un [KHDO].It is
te be mentioned tItat in this optimization forrnulatiens, tIte flux is a
linear functien with respect te tIte control variable and tItus tIte ellip-
tic PDE Itas te be solved for the basis vectors only. Alse tIte dornain
is subdivided te a finite set of triangles. In eur case tIte triangulation
of tIte unit square is uniferm and contains 3200 elernents. Ibis corre-
sponds te a 40 segments in in each of tIte twe directions and ensures tIte
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super-convergence of tIte discretization, i.e. tIte L2-norm of tIte error in
tIte pressure is of erder tIte square of tIte edge size. We approximate tIte
pressure by piecewise censtant functiens and tIte flux in tIte lewest order
Raviart-Thornas space. TIte discret flux is tIterefore linear in eacIt tri-
angle and with continuous normal cemponent across tIte inter-element
beundaries (tIte edges). As mentioned befere, we introduce Lagrange
multipliers en tIte edges of tIte triangulatien te make tIte solution of tIte
linear systern more cenvenient. TItis last ene is done using cenjugate
gradient metIted, preconditiened by chelesky facterizatien.

Discrete Variatianal Formulation. We give here tIte discrete for-
mulation wItich correspend te tIte MHFEM. We define

• ‘Th tIte regular triangulatien of 9. RA is tIten tIte set of triangles
wItich ferrn by their union 9 and satisfy the twe fellewing cendi-
tions

— Cenformity: Intersection of twe different triangles is empty,
ene cemmon edge er ene cemrnen vertex.

— Regularity: TIte minimal angle (taken ever ah triangles Y in
Yh) is beunded frorn below by a strictly pesitive censtant.

•EA= U bR,
TE7A

• RT0(T) = {(a + bxi,c+ bx
2),a,b,c c 1?> G (P1(’fl)

2, wbere
Y c ‘fl, P, (Y) is tIte feur dimensional space of tIte linear functiens
in x

1 and x2.

• RT
0j(YA) = {4’e (12(9))2,4’¡~ E RTo(’T9,VTE ‘774,

• M% (YA) tIte space of piecewise censtant functiens en YA (constant
en each elernent),

• M% (Eh) the space of piecewise constant functions en E,, (censtant
en each edge),

• M0lD(EA) = {A E M0
1(E,¿IIA = O en rD}.
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TIte hybrid version of tIte lowest order Raviart-Thornas mixed method
for problern (2) is given by: Find (q,y,A) E RT2l(YA) x Mg1(Yh) ><

M21,D(EA) such that

j(K~’~) . y

j’~) =—j~~+

V4’6M24(Th)

z j(q.vT)P YPEM2qD(Eh)
TErh

(5)

fer given control variable u and parameters y, f, and h. Let us choese
tIte bases for tIte spaces RT% (YA), M% (‘fl) and M

0lD(EA) as described
in KaasscItieter and Huijben [KH9O].TIte discrete variational formula-
tion (5) leads te a linear system of tIte ferrn{ Aq +Bty +V>t —G

Bq =F (6)

Lq =11

Solving the Linear System (6). We want te deterrnine tIte un-
knewns q, y, A in (6). First, using tIte formal eliminatien, we compute A,
tIten y and at tIte end q. We describe briefly alí steps (cf. KaasscItieter
and Huijben [KH9O]).Let us note tItat tIte matrix A is block diagonal.
Each bleck is 3 x 3 and positive definite. TItus its inverse A’ can be
easily cemputed.

• Selve tIte systern

[L[IdÁ — MB]t’LtjJA = L[—MB + IdÁ]A’ O + LMF — H

fer A, where M = A’ Bt[BALBIfll. TIte matrix L[IdÁ —

MB]A’L’ is sparse, syrnmetric, and positive definite. One can ef-
fectivel>’ solve it using a preconditiened cenjugate gradient method.

• Solve tIte system

[BA’B’]y = (—E + B~’ O — B AlLtA)
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Figure 3: Optirnal control, pressure en
a = 0.01, fi = 2 and ~ = 100, (left):
(0.4, 0.6)

rL:
<a,b) = (0,0.2), and (right): (ab) =

41

40

39
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1

Figure 4: Optirnal flux en tIte right boundary:
a = 0.01, fi = 2 and -y = 100, (left); (ab) = (0,0.2), and (right): (a,b) =

(0.4, 0.6)
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Figure 5: Optimal control, pressure en 1’b:
(a,b) = (0.4, 0.6), fi = 2 and y = 10, (left): a = 0.01 aud (right): a = 0.0001

te maxirnize the flux through the segment S~ = 1 x (0,0.2) er S2 =
1 x (0.4,0.6). Figure 2 shows tIte state variable and the flow fleld for
tIte case of S~ and S2. TItis variables correspend te the optimal control
represented in Figure 3. TIte correspendent fluxes en are sItown un
Figure 4. We do the sarne wIten tIte ebservatien of tIte flux is done en
the segment S2. It is clear that the optimization in tIte case where tIte
observation is en tIte segment S~ is more meaningful than the case of
S2~ TItis is due te twe things: TIte flrst ene is that tIte diffusion plays
the role of dilution of tIte control effect. TIte secend reason is that tIte
segment S~ lies dewn near tIte insulated side (0,1) x O which avoids tIte
diffusien in tIte dewn directien. One can see in Figure 4 that tIte flux
en r~ is almest uniform fer tIte case of S2 wItile fer tIte case of S1, the
flux has a visible difference between tIte down aud upper parts. We Itave
tried te play with tIte parameters y and a but the situatien remained
tIte same as shews Figure 5. We cenclude this first part by tIte fellewing
remark.
Remark. In many fleld applicatiens, the parameters of tIte flew model,
namely K,f,g and h are not available. Neverthless, if the normal flux
en tIte segment of observatien can be measured when using tIte basis
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control variables, tIten tIte optimizatien is realizable.

2.2 Distributed Observation and Uirichlet Condition
Control

2.2.1 Forinulation

New we consider an optimal control problem where tIte observation is
distributed and tIte control variable is given as DiricItlet boundary con-
ditien. We consider aix elliptic beundary value problem of tIte ferm{ \7. q =0, x69

q =—ASVy, z69

—Bu :%~. (7)

Itere AS is tIte previously defined transmissivity ficíd un tIte beunded
domain 9 c E2 tIte srneoth boundary of which is r = 1% U ~N with
FD fl rN = 0. TIte coralrol variable is u = (uj,..., u,,) E E”.

TIte cosi furactional is

J(u) =1 ‘b(x, q(y(u))) dO + ‘¡‘(u), (8)
62

wItere 4’(z, ~)is a differentiable functional en R2 and ‘1’ is a. differentiable
functional en E”. Here we take

~(x) ~2 and’¡du)=~Z¡uj¡0 (9)
1

where ji E Lc~i(9) is a weight functien en 9 and fi > 2, a given real
number.

WItat we want te flnd are minimizers of J, i.e., u E U~d C E”, sucIt
tItat

J(u) =JO’) Vv E tIad~

Lemma 2.3. For /3 > 2, onc can deduce thai

1. •is quadmtíc furactional of u,
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2. tite functioraal J(u) 15 raot quadratie orad nol coraucx buí of regulariiy
at least C’,

3. J(u) —* no mitera luí -4 no i.c. V A > O, BM > 0, such thai,
uI>M =>J(u)>A,

4. 3(0) = O arad 04(0) = O,

5. 3(u) < O for ¡u¡ small cnouyit arad dliferení of O,

Lemma 2.4. Usirag lemnia 2.3, me concítule t/aat
1. 3 is bouradedfrom beloir arad itas one ylol>al rniraimum, le. it crisis

(nol raeccssarily uraique) u 6 1V’, suc/a t/aat

3(u) =3(v) Vv E E”,

2. Since tite furictiortal 3 is of regularity al leasí C’, we can soy t/aat
it is coravex near any miraimizer u orad satisfies tite equation

O~J(u) = 0,

w/aere

= —~Ía9$x,q~(u))$ . V~(m) d9+ <¿%‘P(u),w>

for al! ir E IP.?.

Lemma 2.5. Leí u0 be a ylobal miraimizer of 3 defined by (8) orad
(9) for fi > 2 arad ji ~ ~. Define 4’e(x,q) = ~6~M2”)¡q¡2 and .Io(u) =
f$o<x,q(y(u))) d9+’¡«u) mitereGe 114, litera
a

1
• i~ — isa global minimizer of Jo(u) arad

=

Proaf. We Itave Jo(O) = O, 8,~J0(0) = O and q is linear w.r.t. u, tIterefore
tIte lemma can be preved using substitutions ení>’. Q.E.D.

TItis lemrna wItich is similar te lemma 2.2 has alse an important
application: lncreasing tIte weigItt functien by a constant factor witItout
modifying tIte cests of the control variable leads te a multiplicatien of
tIte optimal selutien by anotIter factor.
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2.2.2 Numerkal Optimization

We prepose Itere te apply tIte Newton metItod te find tIte variables u fer
wItich tIte gradient of tIte objective functional vanishes. TItis metIted
is well adapted te this case because tIte Hessian matrix of 3 is easy
te compute. TIte algorithrn is well known but te make it easier and
time-effectiver, we compute its teols as

1. Solve tIte state systems{ S?~qo =0, xE9
=—KVyo, x69

Yo 0, XErD
u qo =0, XErN

andforj=1,...,ra

—0, xE9
——KVy5, xEQ
= Be1, xEl%

—0, ZEFN.

Determine tIte matríx

13~3=— ¡ídx)qi.qádS2, (10)

tIte constant vector

bá=—jízÚr)qo.qá cm, (11)

and tIte censtant real

6r ji(x) 22 iqoj ~ (12)
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2. For a given u = (u5)5=1,.,.,,, E IV’, ene can compute tIte functienal
3, its differential ¿9~J(u) and its Hessian 71 using tIte matrix 1), tIte
vector b and tIte censtant c given by (10), (11), and (12) witItout te
rnake use of the fiuxes; Using (17) and (18) we get tIte functienal

1
3(u) = —u.Vu+u.b+c+4’(u) (13)

2

tIte differential

d~J(u) =Vu+b+V’I«u) (14)

and tIte Hessian

74, = { V1j + a(fi — 1)iu~i02 if i~j (15)

ib i =

TIterefore it is not necessary te solve tIte PDE fer eacIt control variable in
order te compute the Hessian matrix since alí tIte infermation is stered
in 13, b and c. At each iteration of tIte Newton metItod, ene needs te
update tIte term a(fi — 1)iu5j

02 en tIte diagonal of tIte Hessian. lix
tItis case of neix-quadratic functienal, tItere exist in general mere tItan
ene minirnizer. TIte difficulty is that tIte Newton algerithm is a local
searcIt and depends en tIte initialization. Te avoid tItat tIte solutien
given by tIte Newton algerithrn is ene maximizer nr ene saddle peiní, as
the ene given un Figure 7, we run the algerithm with sorne hundreds of
randem initial data. We Itave seen that rnost of tIte solutiens te wItich
tIte Newton metIted converges are tIte global minimizer er its epposite
(3<—u) = 3(u)). TIte dimensien of tIte control variable is rather small
(=10). TItus tIte numerical solutien of tIte linear system (tIte Hessian)
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can be done by man>’ ways. We have chesed the l,U-factorization.

Figure 6:
¡3=4

Optimalcentrol,state variable and flux: fox = (0.1, 0.2)x(0.4, 0.8),

2.2.3 Application and Results

Figures 6, 9 and 10 represent the optimal solutien (left), and tIte state
variable and tIte flew fleld (right) with ¡3 = 4, fi = 8 and fi = 2.5,
respectively. For tItese three cases we Itave eptimized the flux in boxj =
(0.1,0.2) x (0.4,0.8). Also, ji = 1 in box1 and ji = O outside it, except
for the case ¡3 = 2.5. In this case when fi is not rnuch larger than 2,
tIte minimizer becernes very srnall and in erder te avoid tUs we make
use of lemrna 2.3 and we put ji = 10 in bex1. TIte number of iterations
depends en tIte initializatien and the telerated error en tIte selutien.
For a randern initializatiens un [—10,10]” and fer stepping criterion for
Newton algorithm of 1010 tIte average number of iterations ever 100
initializatiens (minimizatiens) is 12, 33, 60,102,160 and 1.51 bar /3 = 2.5,
4, 6, 8, 10 and 12 respectivel>’. One rernark that tIte rate of cenvergence
is ItigItí>’ related te the value of fi. For fi = 2.5, we are rather near

110w fícíd (arrows> and síaje variable (gray)

015 00 01$ OS
a



Optimad control of fluid llow un sol)...

-: 25

Figure 7: Optimal solution, state variable and flux: fox =

¡3=4
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(0.1, 0.2)x(0.4, 0.8),

FigureS: Optirnal solutien, state variable and flux: fox = (0.1, 0.4) x (0.4, 0.6),
¡3=4
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5 2 3 5 6

FigureO: Optirnalsolutien, state
¡3=8

variableand flux: Box= (0.1, 0.2)x{0.4, 0.8),

Optimal solutien, state variable aud flux: Box = (0.1, 0.2) xFigure 10:
(0.4, 0.8), fi = 2.5
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05= -0.09 0.14 047 03

Figure 11: Optimal solution, state variable and flux, observation in two bexes:
Bexl = (0.1, 0.4) x (0.2 0.4),Box2 = (0.1, 0.2) x (0.6, 0.8), fi = 2.5

the quadratic case aud the rate is the highest. The flux for fi = 4
(Figure 6)and especially fer fi = 2..5 (Figure 10) are streng near tIte bex
and small elsewhere. Fer fi = 8 (Figure 9) tIte flux is still strong far
from tIte box. TIte reason is that tIte fi-nerm or tIte functional ~I¡for fi
large tends te tIte infinity norm which says that the price you pa>’ for
ene control variable is tIte price yen pa>’ for its maximum value. TItis
is alse the reasen why tIte absolute value of tIte eptimal control variable
dees not var>’ toe much in. tIte case fi = 8, as sItews Figure 9-(left),
centrar>’ te tIte case fi = 4 and fi = 2.5 as present Figure 6-(left) and
10-(left). Note that tIte saxidle peint solution given in Figure 7 weuld
be tIte intuitive solution in man>’ cases: ene weuld prescribe a large
under-pressure en tIte epposite of the centre of tIte bex to extract tIte
contaminants. Figure 8 presents ene optimal selutien where we Itave
changed tIte lecatien of tIte box te (0.1,0.4) x (0.4,0.6). One can see
that if tIte observation is net clese eneugh te tIte control variable, tIte
optirnization leads terather peor strategies.

In this secend case, where the ebservatien is distributed in ene reglan
of the domain and if tItis reglen is net tao far frem the control variable,
tIte optimization gives a meaningful answer te tIte questien of existence

<2
0.

—0.1’

—I

8 9 10
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of a best cItoice of ventilation strateg>’. We remind tIte reader tItat
this answer was not so clear in tIte case of tIte beundar>’ ebservatien
considered in Section 2.1. TIte streng dependence between tIte lecations
of tIte control and tIte observatien shewn in tIte twe first eptimal control
preblems is a legical metivatien te tIte next fermulatien.

2.3 Distributed Observation and the Discharges of Dirac
Type Sources Control

2.3.1 Formulation

lix this tItird and last part we cItange tIte preblem a little bit mere
and we permit tIte control variable te enter tIte domain, tao. We are
interested in selving an optimal control preblem where tIte ebservatien is
distributed and tIte control functien is given as seurces or sinks located
lix tIte domain. We consider tIte elliptic boundary value preblem

69
69 (16){~: I;~t;t’
E FN.

Here tIte control variable is u = (ui, ..., u,,) E 1?” and 6~ is tIte Dirac
functien at x5 6 9 the pesitien of tIte well j: 65(x) = 6<z — z5).

TIte cosi functioraal is

3(u) = ¡4«xq(y(u))) d9+ ‘I«u), (17)

62

where $(x,.) and ~ are two differentiable functionals en fi
2 and 10, re-

spectively. Here we take 4’ expenentialí>’ decreasing of q whicIt is mere
realistic because tIte quantity of extracted pellutant from tIte sol! un-
creases but converges exponentially te a maximal value. TIte functienal
q~ is a penalt>’ term taken equal te tIte /3-norm;

.1

where ji E L””(9) is a weight functien en 9. TIte two real numbers /3 > 1
and a > O are given. TIte weight function is zere outside an observatien
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bex un tIte unit square and in a small and fixed vicinity of eacIt well, and
equal te 1 un tIte rest of tIte domain. TIte flux, selution of preblem (16)
dees not belong te tIte Hilbert space L2(9), and te avoid aix>’ ambiguit>’,
we cut off a fixed vicinit>’ from tIte suppert of ji. TItis vicinity will not
depend en tIte discItarge of tIte well 017 tIte space discretizatien. We Itave

Lemnia 2.6.

1. Tite funciioraal4> decreases mit/a ihe norm of q buí is sillí posluye.
Ji mearas thai o very strony flux mill nol /aelp much more titan a
moderate orte.

2. Tite furactional ‘~P iracreases mit/a tite non of i/ae diseharges u. Fon
sinaí! values of u arad /3 > 2, 4’ comunales ‘1> arad 1/aus t/ae mira-
imizer sitoníd nol be O. Fon fi < 2 ihe non of tite mznnnzzer
deperacis on a.

Fon lanqe u arad fi > 1 t/ae furaclionol J is also tange arad diverges lo no
mit/a u arad therefore me itave tite existence of a globol miraimizer of 3,
le., u E t1ad C fi”, suc/a 1/aol

3(u) =3(u) Vv E U~,d.

2.3.2 Numerical solution of the BVP

TIte right-Itand side in preblem (16) is tIte sum of functiens witIt regu-
larity less tItan 111(9). Te selve it we preceed as follews. We assume
that tIte cenductivity is Lipschitz un a vicinity of each well and we define
tIte fionctions of tIte Hilbert space L2(9)

—u
5 ln¡x—xg¡. (19)

2 irAS5

Therefore

V . (AS5V!/5) = —tU
6
5,
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tIten tIte functien 9 = y — ~ ~ satisfies tIte BVP

V in91 —ASV•: =ZKVyá.t’ en (20)

t —3yj enl’D.

TIte ríght-Itand side in preblem (20) is in this case adivergence of a func-
tien in 12(9), and tItus we can deduce a variational formulatien which
Itas a unique solution for (20) un H’(!i2). Therefore, we appl>’ tIte finite
element discretization te problern (20) and by adding tIte fundamental
selutions YJ,J = 1,..., ra defined b>’ (19), we get tIte solution of problem
(16).

2.3.3 Application and Results

lix this case of non-cenvex functional ene can make use of global optí-
mization techixiques like stecItastic search er genetic algerithm [Gel89]
because tIte computatien of tIte functional is rather cheap and tItere ma>’
exist man>’ local minimizers. These two global searcIt metheds are es-
pecialí>’ suitable fer non-regular functienal witIt control variable of high
dimension. TIte dimensien of tIte control variable is in our case low
which makes tIte number of rninimizers low, toe. In the ether Itand tIte
functional is of ItigIt regularit>’ and thus we think that Newton algeritItm
is still applicable. Due te tIte ferm of tIte ebjective functienal (Figure
13), tIte Newton metItod slowly converges for fi being larger than 2 and
ma>’ diverge fer fi being smaller tItan 2. Therefore sorne medificatiens
are in order: For example fer /3 <2 ene can introduce a relaxation fac-
tor in tIte iteratien te aveid a big change in the solution. One can alse
initialize this iteration with tIte selution of a larger /3. One Itas te take
care of tIte vicinity of zero for ¡3 < 2 because’¡! will net be differentiable
te tIte erder 2. We tr>’ te see tIte impact of tIte parameter /3 en tIte
eptimal control. We Itave taken a = 0.002, A = 1, and fi vanes between
1.2 and 12. We suppese tItat tIte pellutants are lecated in tIte regien
given by tIte bex (0.4,0.8) x (0.4,0.8). Figure l2represents tIte eptimal
solutiens wItich correspend te /3 = 2 and fi = 3 and Figure 14 sItows
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the behavieur of the eptimal control functien of the parameter fi. The
best selutien in term of positions of the wells fer fi = 2 is te put alí tIte
discharge en the well lecated un tIte centre of the pollutien. This is net
tbe case, if fi becomes large. For fi > 4 tIte wells share the discharges iii
an equitable way. For seil remediation it is important te have negative
total discharge which is the case shown un Figure 12.

Eantis WdI O Im,.cix.c Wel1

*

‘ ti . -

Exncn W.II O I.ycts WtM

0~O 2.5 25.0 37.5 50.0 0.0 00 20.0 300 400

Figure 12: Optimal selution: flow fleld, Bex(0.4, 0.8) x <0.4, 0.8), the location
of the wells are (0.6, 0.2), (0.6, 0.6) and <0.6, 0.9), <right): fi = 2 and (left):
¡3=3
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I~= 1.5

13=2.0.-
3=3.5:

x
1.0 2.0 3.0 4.0 5.0

Figure 13: 1-0 representation of tIte functienal J when
2—z~ fl- +0.01 *A
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-¡.0 -

-2.0 -

-3.0 -
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varying ¡3 : j(x) =

weII 1
wcjI 2
welj 3

• ——
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1 2 3 4 5 6 7 8 9 lO II 82

Figure 14: Optimal solutions: Discharges of tIte three wells respectively func-
tions of ¡3, wells lecations respectively: (0,6, 0.2), (0.6, 0.6) and (0.6, 0.9).
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3 Conclusion

In this paper, we Itave censidered some aspects of optimizatien of flow
eseentialí>’ geverned b>’ a secend erder elliptic differential equation. TIte
control variable was tIte pressure en ene part of tIte beundar>’ fer tIte first
and tIte second fermulations, and tIte discItarges of sorne wells located un
tIte demain for tIte third ene. We would say that tIte first formulation is
ratIter Itard in tIte sense tItat tIte unique eptirnal selution does net alwa>’s
produce aver>’ goed strateg>’. TItis is due te tIte fact tIta.t tIte control and
the observation lecations are distant and tIte diffusien of tIte fluid avoids
any strong relation between tItem. In tIte secend fermulatien, where tIte
reglen of ebservation meves towards tIte control variable, tIte situation
becemes better and tIte optimal solutiens seern te treat tIte problem of
soil venting un a clear way. TItis is better tItan tIte first fermulation but
ene cannet imagine tItat a polluted sol! “meves” tewards tIte ventilation
equipments. TItus tIte tItird formulatien seems te be tIte best appreach.
TIte control variable sIteuld move un tIte demain te fluid tIte pesitiens
wIticIt permit te treat tIte preblern of optimizatien of tIte discItarges.
As future work we plan te treat tIte eptimization of the pesitions and
tIte discItarges of the wells simultaneeusl>’. Another advantage of tItis
tItird strategy is that tIte extracted air leaves tIte domain at a srnall area
which make tIte treatment of tItis air easier. The injection wells can be
also used te introduce Iteated air te enItance rernediation in sorne cases
[LDOO].

AnotIter peint we Itave te mention is tIte spacial variabilit>’ of tIte
soil properties, namel>’ tIte transmissivit>’. Recently Unger, Sudick>’, and
Fors>’tIt [USF95] Itave addressed tIte preblem of rebustness of a remedi-
atiera strateg>’ with respect te spatial Iteterogeneities of tIte seil. TItis
variability of tIte transmissivity Itas te be censidered and tIte optimal
control preblern depends strengly en it. Without tItis effort tIte opti-
rnization gives in general highí>’ uncertain resu¡ts un term of rernediatien
[Gor9O].

AnotIter aspect of tIte eptimizatien of seil venting is tIte pollutant
transpert in tIte seil. TItis brings man>’ cemplicatiens te tIte preb-
lem, namely tIte nurnerical selution of tIte cenvectien-diffusion transport
equation, tIte pararneters of tItis equatien which are almest unknewn but
effers tIte pessibilit>’ te define the objective functional in a more direct
way. lix tItis case, ene sItould maximize tIte quantity of the extracted
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pellutants under sorne pIt>’sical ami technical restrictiens. TItis has te
be done and te be compared witIt tIte optimizatien censidered in tItis
papa.
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