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Some results about blow-up and global
existence to a semilinear degenerate heat
equation.

Jacques GIACOMONI

Abstract

In this paper, we are dealing with the following degenerate
parabolic problem :

(P) Ou— |¢|*Au=g(u) in Rt x B,
Y1 ut,z)= 0in Rt x 8By ;u(d,z)=up > 0

where By = {z € RY ;||z|| = 1} and g is nonlinear.

We are interested in analizying such. questions as local and
global existence, blow-up in finite time and convergence to a sta-
tionary solution for solutions of (F;}.

First, we give some examples of nonlinearities ¢ where the blow
up in L"’(%“F) N L*(B;) occurs. In a second part of this work,
we present two cases of global existence of solutions to () which
converge in L (B,) to a stationary solution of {F;) when t = oo.

1 Introduction
In this work, we study the following problem :

(P) A — 1z1?Au = g(u) in RY x By
Y'Y uft,z)= 0in R x @By ; u(0,z) =up > 0,

where ¢ is nonlinear and By is the unit ball in RN,
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First, using Hille-Yosida theory, we prove for all up € L*®°(B;)n
L%( rﬁ%)l and g € WL (R"), the local existence and the uniqueness of
the solution u(t) = S(t)ug of (P,), where S(t) is the semigroup associated
to (F). Then, we are interested in the behaviour of the solution u(t)
as t increases. Precisely, under different assumptions of g and ug, we
give on one hand, some examples of blow-up in finite time and on the
other hand, some examples of global existence of solutions to (P;) which
converge to a stationary solution of {F;).

Throughout this work, we keep in mind the results of [7] and [8]
which deal with the stationary problem (P) :

—|z[?Au = g(u) in B;
7 ){ w e HB/0); 0> 0

Precisely, in [7], the authors prove the nonexistence of nontrivial solu-
tions to (P) in the case where g satisfies the following assumptions :

(GS1) A— (=2y2 4 fi 28 5 g,

s5—+o00 T8

(GS2) Vs >0, G(s) < daks,

Otherwise, in [8], the authors give some results about the existence of
nontrivial solutions of (P) in the case where g is sublinear. They treat
three cases :

I. g(u) ~ Au+u? —u? wherel <p<yq
2. g(?}.) ~ Au_up Where p> 1 a,nd A > (N_2—_2_)2

3. g(u) ~ v+ Auwhere0< o< land X< (52;2)2

It is worth noting that in all cases, an unbounded connected branch of
positive solutions in either H}(B;) or L>°(B,) exists and in the second
and third case, there is uniqueness of the nontrivial solution in H}(B;).
Then, it is very natural to see in which cases the nonexistence of non-
trivial solutions of (F) implies the blow-up in finite time for solutions of
(P) and when the uniqueness of the solution of (P) implies the conver-
gence to a stationary solution for solutions to (F;) when ¢ — +o00. In
this work, we prove some results in these directions.
So, the outline of the present paper is as follows :

:Li(]%lg.) = {u/ fB: *;—";—dz < oo}




Some results abouts blow-up and global. .. 327

1. Local existence of solutions to (7) in BT x L*® N LZ(]%‘[”;).

9. Some examples of blow up in finite time for solutions to (£}
{a) The case g(0) =0
{b) The case g(0) > 0

3. Two examples of existence of global solutions and convergence to
a stationary solution.

Precisely, in Section 2, we apply Hille-Yosida theory in L°°OL2(]%‘°F). In

Section 3, we start adapting a classical spectral method (see for instance
[4]) to prove the blow-up in finite time when g satisfies :

(B1) g is convex and positive in RT.

g(s)

(B2) (57 < i, T2 = A < poo

(B3) There exists sp > 0 such that a‘:‘x’ E'G.dﬁ?\_; < 400
Next, we use a well known "energy method” (see for instance [4]). For

this, we assume the following hypothesis :

(B4) A = lilg+ %sl < 400 and there exists a > 0 , C' > 0 such that
g
h(s) = g(s) — As > Cs**! forall s > 0.

(B5) There exists € > 0 such that (2+€) fo Rty dt < sh(s), Vs> 0.

Then, we prove that if up satisfies [p E’;—°P— — I5, G:c' < 0, where
G(s) = f; g(t) dt, the solution u(t) to (P, blows up in finite time. Fi-
nally, we conclude the section with the case g(0) > 0. Precisely, we apply
a method from [3] which links directly the blow-up and the nonexistence

of stationary solutions. For this, we assume :
(B6) g(0) >0, g € C*{[0,+0of), convex and increasing.

(B7) There exists zo > 0 such that e _E'('d:'? < 0.



328 Jacques Giacomoni

Then, for any up > 0, the solution u(t) = S{t)us blows up in finite time.

In Section 4, we give some results concerning the existence of global
solutions to (F:). First, proving the radial symmetry of the solution to
(Ft) when wo is radially symmetric, we exhibit the heat kernel of —|z|2A
in H}(B). Then, using a method due to Fujita, we prove the existence
of a global solution of () for small initial data when g(t) ~ At + t?,
p > 1and A < 0. Moreover, we prove that u(t) converges to 0 in L(B,)
with an exponentional decay when ¢t — +ooc.

Finally, assuming the following hypothesis :

(G3) s— g—gﬂ is continuous and strictly decreasing,

(Gay 42 240 o

o g(s) N2
N L = A
©9) i, %2 =2 >

)2
we show that for any ug > 0 satisfying ug € L°nN L2(]%T7) Nuollze <

F71(0) and ug £ f1(0) where f(t) = g_(:ﬂ , the solution u(t) of (P) is
global and converges to the unique nontrivial stationary solution of (F,}
in Loo(Bl) n H&(Bl)

2 Local existence

Throughout this section, we assume that ¢ € W2°(R). Our goal is to
study the local existence of a solution to (F). Precisely, we show that
we can apply Hille-Yosida theory in L>®(B;) N LZ(]%T!-). Consequently,
for every ug € L™ OLZ(]%TT), the uniqueness of solutions of (F;) follows.

First, we remark :

Proposition 2.1. Let A = —|z|2A. Then, A is a self adjoint mazimal
monotone operator in Lz(ri—!’i-). Moreover, D(A) = {u € Lz(]%xp-)/u €
H}(B1) and |z)?Au € Lz(]—::]“’g)}.

Proof. For this, notice that for every u € D(A) and A > 0 :

_ 2 2 _ 2 2
”u A f:"’.! A u”[ﬂ(ﬁ - ”u”LQ(ﬁf} + QAHV u”L?

)

2 2 2 2
£ [ el 2 s
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which implies that A is dissipative in LQ(]%[‘%). Then, it suffices to show

that A is maximal. Taking f € Lz(]%’f}), we consider the following
minimization problem :

[,\ = inf S(u)
ueHl(Bl)
2
where &{u / |"| + AMVu dz—/ _f_u_
(e T AV b= [ P
By Cauchy-Schwarz’s inequality,
[ul? 2 Vi lul?. 1
L> FAV Y d:c—/—-—?[ 1> oo
22 a5 fo Gt AT b= () gt g

then, considering a minimizing sequence {u,} v C H}(By)N Lz(]ﬁﬁy),
it follows that J{u,|| HinL2(d5) S C. And by standard compactness argu-
b

ments, there exists u € H3(B1)N Lz(é—’[’g) such that up to subsequences :

d
un — u weakly in H}(By),un -~ u weakly in Lz(—m—)
z

n—+oo n—3od I |2

and
f Un n—}oo L"i

B, |z|? B |z

Therefore, I is achieved by u and the proof is complete.

We deduce immediatly the following corollary :

Corollary 2.2. A is mazimal monotone in L={B1) N Lz(ri-l’%). More-
over, D(A) = {n € HY(B1) N L*=/|z*Au € Lz(ﬁy) N L>*}.

Proof. Let f € Lz(]%’l‘%) N L= and A > 0. By Proposition 2.1, there
exists u € HiN Lz(_]_‘f—__,zz) such that

u—Az[PAu= fin B (2.1)
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Thus, it suffices to show that u € L°°(B;). Multiplying (2.1)
by (u — || filz=)*, we obtain :

/ (= | flzee)* +)\/ | V{u— || fllL=)*

=
)T
= [ -1 e A= o

which yields (u—|[f|lz)* = 0and u < |[f[|z=. By the same arguments,
we show that « > —{| fllr~. This ends the proof of Coroliary 2.2.

Remark. For N > 3, L=(B;) C L%ﬁﬁ;). And in this case, to prove
Corollary 2.2, it suffices to show the maximality of A in L*°.
Now, we apply Hille-Yosida theory (see [15]) and we deduce the
following proposition :
Proposition 2.3. Let uyp € L*®(B;) N Lz(ﬁ;). Then, there ezists a
unique solution u(t) = S(t)ug to (F,) in a mazimal interval (0,T[,T > 0
such that
(i) () € C[0, T{, L=(B1) N L* (%)) n C' (10, T, L* (%))
(i) Forallt in]0,T[, u(t) € HY{B)N L™N L?(%xr,) and |z|?Au(t) €
(%)
(#i) If ug > 0, then u(t) > 0 for allt > 0.
(iv) Ifug € L®(B;)N L?(]gf,) satisfies |z)?Aug € L®(B)N LZ(I%’”F),
then u(t) € C'([0,T[, L=(B1) N L2({&).

Proof. By Proposition 2.1, Corollary 2.2 and since g € W2 we can

loc

apply Theorems 3.7 and 3.9 of [4]. This proves assertions (i), (ii) and
(iv}. Now, let us prove assertion (iii). For every Ty < T, we multiply
the equation in (F;) by 11‘;“[%1 and integrate by parts to obtain for every
t e [O,Tg] :

l1d |'"' fz -2 g(u Ju~|?
= <
thfsl e fB IVu~| / G(To) |, &
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which implies by Gronwall’s lemma that v~ = 0. This completes the
proof of Proposition 2.3.

|

As a consequence of Hille-Yosida Theory, we have the following al-
ternative for u(t) = S(t)ug :

Corollary 2.4. Ifu, € Lz(]g-l%)nL‘”, then, either T = T (||uollp(a)) =

+oo and the solution u(-) = S{(-}ug is global, or T < +o0 and the

solution blows up in finite time which means that

-
le@llee + Nu(lpag s 25 oo

Proof. See [4].
Remarks. If g = 0 and wo € H' N LN L*({%) then u(t) = S{t)uo
is global and satisfies :

[u@)® _  _(2=2y2yy 12
< e 'z g dz - 2.2
L r [ (2.2)

The proof is based upon Hardy's inequality. First, observe that since
g = 0, (P) is linear. Therefore, u(t) = S(t)uo is global. Moreover,
multiplying (P;) by u(t)e{¥)2t and integrating by parts, we have :

d |’U,-"|2 (N_2)2t N -2 2 ’u—‘|2 (M)2t

= == —9o{ 1= i B dz —

dthl'mlzez dz 2(2)/:31!1:[262 T =2

/ |Vu!2e(¥)2tdm <0
B,

by Hardy’s inequality. Thus, integrating on {0, ¢}, we deduce (2.2).
Now, we deal with the behaviour of the solution to {F). In the next
section, we give some examples of blow-up in finite time of solutions to

(P
3 Blow up in finite time in Lz(l‘;—Tf) N L®

Throughout this section, we assume that g belongs to W,L':", ug € LN
L*({%) and G(s} = [5 g(t) dt.
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3.1 Main results

We consider three classes of functions g. First, we adapt a classical
“spectral method” (see for instance [4]). Precisely, we prove the following
theorem :

Theorem 3.1.Assuming N > 3 and

(B1) g is conver and positive in R™,
(B2} (853)2 < A= lim g_(;l < o0,

(B3) There ezists sg > 0 such that ;:°° 71% < oo where h(s) = g(s) —
As.

Then, for any up > 0 in LN LQ(]%I‘%), w(t) = S(t)uo satisfies : AT €
RY such that

. lu(tf? _ - -
i, T = o il =g

The second blow-up case is based upon an “energy method” (see for
instance [4]).

Theorem 3.2. Assume that ug satisfies (*) fg W_ul_ao’ - Iz, %—Tgl <0
and that g has the following properties :

(B4) A := lim+ @ € IR and there exists o > 0, C > 0 such that

50 §—

h(s) =g(s) — As > Cs°*! forall s >0,

(B5) There exists € > 0 such that for all s > 0, (24 ¢)H(s) < sh(s)
where H(t) = [} h(s)ds.

_ (&)}
Then, u(t) = S(t)up satisfies: 3IT > 0 such that tﬂl%l_ B, [755[2 -
+00.

Remarks.

1. If g(s) = As+ sP with X > (N—Ez)z and p > 1, (B1), (B2) and
(B3) are satisfied.
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2. If g(s) = As+ s with p > 1, (B4) and (B5) are satisfied.

3. Let ¢ € LN H}. Then, by (B4), there exists M > 0, large
enough, such that uop = M ¢ satisfies (*).

4. If up > 0 is a radially decreasing nontrivial subsolution of (FP)
and belongs to H}(By) N L*°, then, a simple computation based
upon a ”"Pohozaev’s equality type” shows that (*) is satisfied for
N > 2. Indeed, multiplying —|z|?Aue < g{uo) by B * Vv %o and
integrating by parts, we obtain :

(N52) [ v L sz @ [ Sl
2 B 2 JaB,

which implies :

|V uof? [ Gl 1 duo
- < -
A A= ok 2(N—2)/asli ds <0

Finally, we deal with the case ¢(0) > 0. In this case, we adapt a
method from {3]. And we use the results of nonexistence of solutions to
the problem (P).

Theorem 3.3. Assume that N > 3 and the following assumptions on
g:

(B6) g > 0 is conver, increasing and belongs to C ([0, +o0[),

(B7) There ezxists sg > 0 such that f+°° d < o0

Then, for all ug > 0 in LwﬁLz(m-f) and nontrivial, u(t) = S(t)uy blows
up in finite time in L* and in Lz(]%[”;).
Remarks.
1. It is worth noting that in Theorems 3.1 and 3.3, no additional
assumption is required for ug. Here, the nonexistence of weak

nontrivial solutions of the stationary problem (F) implies the blow-
up in finite time for any inittal data in L*® N L2(fm‘—’|’7).

2. The assumptions (B3) and (B7) prevent the existence of unbounded
global solutions (i.e. which blow up when ¢ — 00).
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Now, we prove Theorem 3.1:

Proof of Theorem 3.1. Let us consider 1), the eigenfunction associated
with the first eigenvalue A! of —(|z|? + |¢/))A in Hj(Bi1) such that
IB, 15 = 1 (for this, notice that N' > 3 implies that L&) C L'(i&).
It is easy to prove that A} — (£52)? when ¢ — 0. Therefore, by (B2),

there exmts € > 0 small enough such that A! < A. Thus, multiplying
(P) by & []7> We obtain :

— M 1 ﬂﬂt_bt _ glu!t!!"pE
dt /B. EO A /Bl |22 + [z j;al |2

Since g is convex {which implies that f is convex), by Jensen’s inequality,
we have :

d [ ut) . 1 / u(t), / u(t) Y.

— > (A=A ——— 1 h

di B l:tl? _( E) B, ’2[2 + (Bl |"t|2 )
From which it follows :

d ®(t) ds _ fasomal .
i ([its) 21 e s0= [

Integrating (3.1), one has Oé(t) —d—"j > t+C which together with (B3)
implies that ¢(-) blows up in finite time. Finally, noting that for N > 3,
the injection L™ — Lz(]%l%) is continuous, the proof of Theorem 3.1 is
complete.

Next, we give the proof of Theorem 3.2:

Proof of Theorem 3.2. Suppose that the solution u(t) = S({t)ue
is global. Let us consider F(t) = sz‘ (Vu(t)]® — fp, QES)-! Then,
multiplying (F;} by Ef’ and integrating by parts, we obtain :

Jue|? d [ Glu) d
falmﬁ—mf V(@O + dtfl ez = @ )

Thus, F({t) is decreasing and E(t) < E(0) < 0. Now, multiplying the
equation in (P} by ]"—(]? and integrating by parts :

1d [ |u(t)]® _ 2 g{u(t))u(t) .
53?.[ e Bl ) +/ — 22 32
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By using (B5), and taking H(s) = [ h(t) dt, we prove that :

- (v wl()?
mf,gl ITS)J 2 f [Vu(t) l2+(2+) [ H@) [ Ol

- [zt JB. [=]°

> _2E(t)+e f A(ult)

> “2E@)+¢ [ H(u(t) ,‘” (3.3)
Thus, (3.3) and (*) imply that lim / Iul:l)zlz = +o0. Then, by (3.3) :

1d [ @l Hut) wt)*+e f u(t)|‘~'
2 Jp, o = Jp e 2C Ja, kP 2O \Us,
Taking ¢(t) = fp, %ﬁ, we have :

d . af2
Eqb(t) > 2¢Ce(t) (3.4)

Integrating (3.4) on [to, ], we obtain :

Lo >ci-t)

o) Bto)?

which contradicts that u(-) is a global solution of (F;}. This compietes
the proof of Theorem 3.2.

Finally, we prove Theorem 3.3. Here, we use an approach from [3] :
the nonexistence of stationary weak solutions implies the nonexistence
of global, bounded solution of {F;) for every o > 0.

First, we adapt the definition of a weak stationary solution of (P}
from [3) :

Definition 3.1. A weak stationary solution of (P:) is @ funclion u €
L' (By) such that $26(z) € L'(B1) (where §(z) = dist(z,0By)) and

Ve e CHBY) -/B uA{d:t::/B %’I‘—}gd.@
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Then, we have the following result :

Proposition 3.4. Assume that g satisfies (B6) and (B7). Then, there
is no weak stationary solution of (F;). Proof .

We apply a method from [3]. Precisely, for all # such that 0 <75 < 1,
we define :

—|z|2Au = (1 - Yg(u) in By
(Pn){ u>0, 'ZQE Htl)(Bl)

Asin [3], we define A(u) = f5 25, h(n) = fi;h(u) and ®(u) = h~! (h(u)).

It is easy to prove the followmg assert.lons (see [3]) :
(i) (0)=0and 0 < P(u) < u
(i) @ is increasing and concave. Moreover, ®'(u) < 1.
(ili) & € L* and ®{u) satisfies :
/ g(2(uw))§

EEE

VE € C2(B)) _L (AB(w)) € > (1 -

which means that ®(u) is a “weak supersolution” of (F,).

Forall £ € C3(B), let us consider the following iterative scheme :

{ = I, tn1 AL = (1 = 1) fg, g’ﬁ':-PL" ¢ in B

uo=d(u), u € HE)(BI)

Then, noting that ®(u) € L% implies that for N > 3, 5-‘-%%“ e L}
and by the fact that 9 is a strict subsolution to (F,), we prove, by the
maximun principle, that in L%, {u,},>; is a decreasing sequence of
weak supersolutions of (P,) and u, < ®(u). Thus, v, = Jim_ u, € LT
is a weak solution of (P,). Now, consider for all ¢ in |0, 1[ the following
problem :

P { —(|2[? + |ef)A v = (1~ n)g(v) in By
€ v>0, v € H(By)

As in [1], we prove the existence of a minimal solution of {P, ,), vcn,
such that v, < v, < ®(u).
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Putting w, ,(z) := v p(c 2), for z € Bi, we have :

—{{=® + NAw,y, = (1 —n)g(we,) in B1
Wey 20, wey € HO(B )

As above, we can show that ¢ — w5, is increasing in L°°. Passing to
the limit € — 0, it is easy to prove that w := lin(l] w, satisfies ||w]|pe <
€=

{lvgl|ree and is the minimal non trivial solution of the following problem :

{—uwP +1)A —n)g(w) in R

lel = ];H— where Cy = (N - 2)jon_1| and

|on -1} the surface area of the unit sphere. Thus,

Therefore, w(z) =

Cn g(w) X
0) = f dz > £
w(0) R" Izl”‘*ﬂ‘f*‘“ 2 oo 9
+

/R” (I + l)iwIN 2

This contradicts the boundedness of w and the proof of Proposition 3.4
is now complete.

Proof of Theorem 3.3. First, note that by the maximum principle,
it suffices to prove Theorem 3.3 in the case ug = 0 (note that since
g is increasing, ug < wo = VYt > 0, S(t)up < S(t)wg). Moreover,
g(0) > 0= u; > 0 for t small. Then, for é§ > 0 small,

u(t+8) =St +8)0=S5S()oS(8)0> S(t)0=u(t) and u, >0,V > 0

Now, taking ¢ € CZ(B,), multiplying the equation in (F;) by ]f[; and
integrating by parts, we obtain :

t
d uAG = a(u(t)) (3.5)

dt By I-’»‘:l2 B B, Imlz
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Therefore, choosing ¢ = . (defined in the proof of Theorem 3.1) we
have :

dfoue [ we [ glu)e
2l o, e = e

Thus,

which provides the following alternative :

1. either there cxists M > 0 such that [p %%M, fB, “i"" <M
forallt > 0, or

2 fo, Y T oo

Let us suppose that the second case holds. Then, by Jensen’s inequality,
we have for t large enough :

d u(t)d’c 1 g(u(t))'ﬁbe 1 u(t)¢e
EE/B o 22 Bl—h—ﬁ—zég(/& W)

Hence,

1)
/ ﬁg%wc where f(t):f u{t)y
0

g(s) B |T|2

which contradicts (B7). And u(t) = S(¢)0 blows up in finite time.
Finally, suppose that the first case occurs. And let { denote the
unique sclution of the following problem :

~(lzlA¢ =1 in By
¢=0in 8B,

For N > 3, il is easy to prove that { € W%P(B,) for all p < _1;_1 which

by Hardy’s inequality and by Sobolev’s embedding implies that { €
Lz(ﬁf;) N H{(B1). Hence, there exists {(,},.pv C C§°(B1) such that :

. - L*(:%%)
AC 25 AC and ¢ ¢ (3.6)
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Choosing ¢ := ¢, in (3.5) and integrating in [t, ¢ + 1], we have :
i+l t+1
[/ ‘H.(S fn. ] + f ds/ ACn
B, |z 1
‘+1 g{u(s))n
3.7
- fs e G0

Passing to the limit n — oo, we obtain by (3.6) :

U(s)Gn noee [ ws)C
/Bl IIP 7 B, -[HT

Moreover, by Lebesgue theorem and by (3.6) :

/H’l dS/ s))Cn n—)oo H—l [
B |z B, |~'¢|2

]mdsf& (—AG) ™ [mds/ () (=AQ)

Therefore,

HB I.z-l?c m*fmdeBl (s)(-A¢) = /’“ [ sl (u(s))c

Now, since u; > 0,

/B, }% < /‘“ [Bl |$|2 = tm deB] u(s)(~AC)
t+1 ) uls t+1
ft ds/;gl_(&_[f& |EC|)2CL

glut+ 1)) . .
B lef?

an

Therefore, by monotone convergence, there exists w € IL? (ﬁ%) such

that u(t) “2X° w in Ll( ). It implies that for all ¢ € CZ(B)) :

~/1.31 le2¢ t-++oo /E;’ |x]2’ / [Bl u(s)(—A¢) ‘i))o 5, w(—Aqb) and
ft+1ds/ .‘L(ﬂi).)_‘é torep ELW_W
t B,

B s, =
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(For this, note that f{*'ds 8, % <2 g, &E’; < +o0). Therefore,
for all ¢ € C2(By) :

_f g(w)é
_~/BlwA¢- B, IEI

which contradicts the nonexistence of weak stationary solutions to (£}).
This completes the proof of Theorem 3.3.

Remarks. Consider ¢ € C! convex , increasing function satisfy-
) g ¥

o\ 2
ing lim 9(s) > (N2 2) , (B7} and for all s > 0, %@- > G(s) =

s=0t 8§
Jo g(t)dt . Then, we can apply the previous method. Precisely, for all

g > 0, u(-) = S(-)ug blows up in finite time in Lz(]%'f;).
It suffices to modify the proof of Theorem 3.3 as follows :

‘1. 0 is replaced by e¢. which is a subsolution of (P) and e¢. < up,
for € small enough.

2. The nonexistence of stationary solutions of (£;) is provided by the
results from [7].

4 Global existence of solutions to (F;) and
convergence to a stationary solution

4.1 Main results

In this section, we give two examples of global existence of solutions
to (P;) which converge to a stationary solution when ¢ — oc. In each
case, we obtain an exponential control of the convergence either in L™
or in H}(B;). Here, it is worth to underline that the convergence to a
stationary solution is related to the uniqueness of the solution to (F).
First, we prove the following :

Theorem 4.1. Assume that N > 2 and the following hypothesis :

(G1) lim g—f:lzxw,

s—0+



Some results abouts blow-up and global. . . 341

(G2) There ezists € > 0, such that |g(s) — A s| < Cs['*<.

Then, for up such that ||ugl||r small enough, u(-) = S{-}uo is global and
there exists C > 0 such that |u(t)|jp~ < Cer! for all t > 0.
In the second part of the section, we prove the following theorem :

Theorem 4.2. Assume that N > 3 and g satisfies the following as-
sumptions :

(G3) s — 'ﬂfl is continuous and strictly decreasing,
(G4) B2 —oo,
(Gs) L 20 x> (552,

Then, for any ug such that 0 < ug < f~'(0) and up Z f~1(0), with
f(s) = g—(-:l, u(t) = S(t)uo is global and converges to the unique non-
trivial solution of (P), wy, when ¢ — oco. Moreover, if we suppose,
in addition, that —g is strictly convez, there exists K > 0 such that
Hu(t) — wallgacs,) < Ce Kt forallt > 0.

We start by proving a proposition which provides the heat kernel of
—|z|?A

Proposition 4.3. Consider v = T(t)ug € L®(B;)N IP(&"’F) solution
of :

Uy — iﬂ:leH =Au in B|
u(t,z) =0 in R* x 8B, , u(0,z) = up

where ug ts radial. Then, u(t) is radial and if v(t,s) = u(t,z) with
s = —Inlz| and Ay = (852)?, then,

_ 2
e 2 (an—nt- 150

v(t,s) =

(4’”)% * v(0,s).

Proof. First, we remark that the radial symmetry of u follows from the
uniqueness of the solution to (P). Then, to compute the heat kernel of
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—|z|2A, we use a method from [7]. Indeed, put w(t, s) := e'"lgz;z"v(t, s).
We show that w satisfies :
W — Wes = (A — Ay)w in RY x (0, +00)
(Pw) _ =400 _ N2,
w(t,0)=0 , w(t,s) — 0, w(0,5) =v(0,s)e” "z
Taking w(t, —s) = ~w(t,s) for all s > 0, we have that (P,) is satisfied
in Bt x K. And we can apply Fourier transform. Indeed, for N > 2,
w(t, -) belongs to L?(R) (for N > 2, it is obvious since v € L™ and for
N =2, it suffices to remark that fp EE <oo= fF® wlds < o).
A simple computation shows that w(t,z) = woe~(FP+n =21 (g

ing inverse Fourier transform, one has :

4t e 2 [

o~ On=n-LL N2y (-t Lo
€ T T and v s)=woe

w(t,s) = wp *

(47t)2 (4m t)%

This completes the proof of Proposition 4.3.

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Here, we apply a method from [4]. First,
remark that by the maximum principle, it suffices to prove Theorem 4.1
when up is radially symmetric. Then, by Proposition 4.3, T(t)uq is
radially symmetric and

2
e Xta- (-0

Vo *

1Tty uollpe =

s
(re)r |,

2

A

llvolle (4.1)

1
(4nt)z L1
: . . 400 yx—]ﬂi
Now, using Laplace transform f(y) := [ V"~ 4 dz, we show that
N-—2 a2

e =
e' N (4nt)3. Therefore, by (4.1), ||T(t)uollp= < e**|luolizw. Now,
we apply a method from [4]. First, we define 6(-) such that 8(z) =

;%[:cl"" — z with C defined in (G2) and é > 0 satisfy

min©(z)+5<0, 68 +6>0 and 6(§) <0
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Let us choose g € LN Lz(]%"%) such that ||ugllz < 8. Then, u =
S(t)up satisfies :

t
lu@®llz= < IT(Euoll> + C ]0 N ufs)|E < €6
t
+ CeM | et (e lulshlew) T ds

Putting #(t) = sup e **||u(s)|lz= which is an increasing function, we
0,¢

have :

t
$() <5+C f $1He(s)e ds < 6 + —lA—I¢(t)1+‘
0
If p = inf{z > 0/6(z) + & <0} > 6, it is easy to prove that ¢(t) < p
for all t € [0,T[, where T" is defined in Proposition 2.3. Moreover,
|lu(t)llz~ < eMu, which implies that u is global and T = oo. This
completes the proof of Theorem 4.1.

Remarks.

1. If p €]1,400[, the function g : s — s” satisfies the hypothesis
of Theorem 4.1. Therefore, Theorems 3.1 and 4.1 show that the
behaviour of the solution of (P;) depends on the initial data.

2. It is worth noticing that for N = 2, we obtain almost a complete
description of the behaviour of solutions of (F;). Precisely, Ay =
(¥=2)2 = 0 is the “blow-up critical parameter” (see [13]) which
means that for A < Ay, there exists global solutions of (H) for
small initial data and if A > An then for all uo £ 0, u(t) = S(t)uo
blows up in finite time. However, we do not know what happens
in the case A = An. Moreover, since the heat kernel of —|z[2A
does not vanish at the boundary, we cannot apply a method due
to Fujita (see [9]) which would furnish the answer. For N > 3, we
suspect that An still remains the critical blow-up parameter.

Now, we give the proof of Theorem 4.2.
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Proof of Theorem 4.2.

Since there is a unique nontrivial solution to (P), it suffices to prove
Theorem 4.2 when wup is radially decreasing. In this case, S{t)ug is
also radially decreasing. Indeed, choosing ¢ €]0,1[, we remark that
u(t, ex) := u.(t) is solution to

— |z]*PAu = g{u) in JR+ X Bl
(F ){ u{t,z) =0 in Rt x 331 ) (0 z) = up(ex)

Since up(ex) > up(x), by the maximum principle, for any ¢ €]0,1],
u(t) > S(t}ug which proves that S(t)ug is radially decreasing.
Now, as above we prove that :

AT e 10

dt Jp, |z|?
Moreover, E(u(t)) = 4 Is, [Vu(t)? fBl —H;D satisfies
;E( (t)) <0 and E(u(t)) < E(uq). (4.2)

. - + .
Futhermore, multiplying the equation in (F}) by%@l_L we obtain :

<l (1)1 W otat=1" o)

dt |:c|2
(A= fla@) @~ £ O)Y°
B, |2{2 =

which implies that for all ¢ > 0, u(¢) < f7'(0) and therefore U;>o{(t)}
is uniformly bounded in L™(B;). By (4.2}, for N > 3, it follows that :

[Vau(t)|? "
/51 T S E{uo) — G(f (0))/1 P dr < C

B

Therefore, Ugso{u(t)} is bounded in L>(B;) N H§(B,). Then, for any
sequence {t;}, . pv such that t, — +oo, there is w € L*°(By) N H}(By)
{depending a priori on {t.},_ v) satisfying

u(ty) "2 0w in H3(BY) , (n) "2 w in L2(| 12)
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and J
G(u(ty) "=° G(w) in L'(=x3 2

For this, notice that on one hand

Mo e et patemr oty ] )
SO P b, TP

where p < & and & + = 1. On the other hand, since Ug>o{(t)} and
w are umformly bounded in L°°

j’ |G (u(tn) —qG(w)P <cf |u(ts) — w]?
B

1
1] By [#1

Let us show that

u(tn) & w when n—oc

For this, it suffices to prove that fp |Vu(ta){ - fg, IVw|®. Let us
prove that [g |Vu(t,)|? does not concentrate in £ = 0. First, for any

§ < 1, multiplying the equation in () by ]“—E(F} in Bs, we have :

d bul 2 [ 2 / du(t f g(u(t))u(t)
e — Vault — Hds = e
dt fmss |z|2+ |x|ss| uol |o|=6 On ult)ds lsics  =]?

Since u(t) is radially decreasing,

if Mz_ * f|x|<a /|m|<6MDﬂ- )

dt Jiz<s |2 Jz}?

Integrating (4.3} in [t,t + 1], we obtain :

u( t+1 2 1
+/ / Vau(s)|* < C —
Uz|<5 IIP] lel< IVute) jz1g6 [2[?

where C is independent of t. Then, for all € > 0, there is §(¢) > 0 small
enough such that for all § < 6(c), we have :

t+1
< ]Mg Vu(®)? < ¢ (4.4)

345
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To conclude the proof, suppose that fp [Vw|? < h_’rréo] [Vu(ts)]?.
n B

Then, by (4.2) E(w) < Es = tl_l’rgo E{(u(t})). However, by (4.43, it is easy

to prove that

]:+1 dszt IVu(t, + 7)) 25 £t+1 [Bl V(S(r)w)? (4.5)

Indeed, by the boundedness of {u(t)}:>0 in L™ N Hg(By),

| lz1*A(S(t + T)“O)llu(l:—T,) < |ZF2A(T('5)“0)||L2(I:_=I=,)
LT
[ NaPAT( 7= s)au(s) g 4
from which it follows :
12PAS( + Mol iny < Sllu)lze
OLQ(I_ITE) = 7 L

T d a
+ Of —"—ruli= < =
t  (t+T1-3)2s2 T

(for this, using a method from [4] Lemma 3.10, we prove that

1
2
=l AT(U“OHLz(ﬁ,) < t—%ll“ollyg(s,)

and . .
1T () uoll g s,y < t—§||”0”1,2(|:%) < Ct™ 7 lfuoll Lo

for N > 3)

Finally, (4.4) and the compactness of the embedding H2(§ < |z| <
1) < HY(8 < |2| < 1) imply (4.5). Now, using that E(-) is decreasing,
we have :

i+1
f E(S(r)w) dr < E(w) < Eu,
t
which contradicts (4.5). Thus,

[ vue =25 [ v
Bl Bl
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and for any
t>0E(S(t)(w)) = E(w) = Ew-

This implies that w is a stationary solution of (P;.uo) and either w = 0,

or w = wy which is the nontrivial solution of (P).
t-+oo

Now, let us prove that u(t) == w in L*°(B;). By a bootstrap
argument (see [12]), it is easy to prove that for any § > 0,

ll(t) — Wl Lo (jojns) = 0 (4.6)
We consider ug := €1, which satisfies
|z|?Ang + g{uo) > 0 if € is small enough (4.7)

We recall that 1, is the eigenfunction of —(|z| + |¢[*)A defined in the
proof of Theorem 3.1. Note that by (G5) and (G4), (4.7) is satisfied for
¢ small enough. Then, up is a strict subsolution of (P) and as above, it
implies that f;S(t)uo > 0 for all ¢t > 0. Hence, u(-) is increasing. Hence,
w = vy. Then, by Dini’s theorem and (4.6), we have for all é > 0 :
llu() — wallLoo(elzs) = 0 (4.8)
Moreover, from [8] we know that wy(6) = f~'(0). Therefore, since
{u(t)}+>0 U {w\} are radially decreasing
lim sup Jjwy — u(t)||Lw(m,) < limsup |[ju(t) — wallLoe(zi<s)
t—co t—o0
+ limsup ||u(t) - ’tU)‘lcho(|z|_>_5)
t—oo
= limsup ||u(t) - wallz=(zige) < 7 (0)
t—+oo

— lim lim u(t, )
t=+oo [zj—0

Thus, suppose that ¢y := t&m limou(t,m) < f~10). Then, since u(t,-)
o0 (x| —

is radially decreasing, for any zs such that lz| = & > 0, wi(zs) =
t&m u{t, z5) < cx. This contradicts that w is continuous.
[s.]

Now, considering any up such that 0 < o < f71(0) and ug # f'(0),
there exists ¢ > 0 small enough such that ey < ug. It implies that

S(t)(ewe) < S(B)(u0) < FH0) and [IS(E)uo — wil|Les(my) =F 0(4.9)
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To conclude the proof of Theorem 4.2, let us prove that if we suppose,
in addition, that —g is strictly convex, then, there exists K > 0 such
that ||u(t) — wallzs¢p,) < Ce~¥* for all ¢ > 0. First, note that

wy — 2 , s

%/B, I~ A1 ,w;(t)l vm =t
] (g(wx) — g(u(t))) (wy — u(E))—

B, =

By (4.9), for t large enough, we have :

d [ luy—u@® A g'(wy). [ (wy - u(t))?
E-Ll !3:12 + ?('—A - !Ilg )-/B ]2:]2 S 0 (4.10)

where z‘iH A g:é;P—_l’ 22 is the first eigenvalue QL(:A—_Q—%ETQ&)_LD_HBI.LBI)
[8]) :

Then, the strict convexity of —g implies (see

(

g'(wy) 1 g{wy), _
Al(_A__x_'_F—_).> Al(—A—Ww:A)_o

Thus, from (4.10), it is easy to prove that :

_ 2
[ Imouo o
B

=2 -
Using (4.10) and putting K = %1-, we have for all ¢ :
[ IV (wy — u(t))|? < Ce=K (4.11)
B,

This completes the proof of Theorem 4.2

Remarks.

L If g(s) := As —|s|P~!s where A > (¥:2)2 and p > 1, then, g
satisfies the assumptions of Theorem 4.2.
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2. Suppose that —g is strictly convex and satisfies the assumptions
(G3) to (G5). Then, taking § > 0, (4.11) and a bootstrap argu-
ment show that forall £ > 0 :

[u(t) = wallpeo(ezs) < C(8)e™.
However, we don’t know if that remains valid for é = 0.

3. The assumption (G5) and the second part of Assumption (G4)
suffice to prevent that u(f) = S(t)up converges to 0 in L™(B;)
when t — oo and when ug # 0.

t—ro0

Indeed, suppose that {|S(t)uo||lp~(p,) —* 0. Then, adapting a
method from [14], we consider ¢ small enough such that A} < A.
Then, multiplying the equation in (P} by . :

4 f ut)de , / u(t)e f g(u(t))
B,

dt Jp, |ef2 " Up P+ lef? |z|?
from which it follows for ¢ large enough :
df u(t)ye lf u(t)ip g(u(t))ep
— > =X +/
dt Jg, |zi2 = T¢Jfg, |z? B, |z

> Seo-a [ T Gy

Moreover, assumption {G5) implies that for e small enough, ¢'(0) =
(A=A})
A > Al. Thus, by (4.12), we have fp = e > Ce 2opelt too 400

which contradicts the uniform boundedness of {u(t) }+>o0-

4. In [8], the authors show the existence and the uniqueness of the
solution, u., to the following pertubed problem :

—lzl?Au = g(u) + ¢ f(u) in B
(PE){HEH(}(BI) , u>0 1

where g satisfies (G3) to (G5), f is a positive function in ®* and
belongs to C!(RT) such that ﬂlﬂn f(s)+g(s)=-0ande >0
& [ea)

small enough. Moreover, A;(—-A — Lﬂﬁﬁ%ﬂﬂu) > 0. Then,
Theorem 4.2 holds for {F;).
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