Volumen 11, número 2: 1998

http://dx.doi.org/10.5209/rev_REMA.1998.v11.n2.17257

Some results about blow-up and global existence to a semilinear degenerate heat equation.

Jacques GIACOMONI

Abstract

In this paper, we are dealing with the following degenerate parabolic problem:

$$(P_t) \left\{ \begin{array}{l} \partial_t u - |x|^2 \Delta u = g(u) \text{ in } \mathbf{R}^+ \times B_1 \\ u(t, x) \equiv 0 \text{ in } \mathbf{R}^+ \times \partial B_1 \text{ ; } u(0, x) = u_0 \ge 0 \end{array} \right.$$

where $B_1 = \{x \in \mathbb{R}^N : ||x|| = 1\}$ and g is nonlinear.

We are interested in analizying such questions as local and global existence, blow-up in finite time and convergence to a stationary solution for solutions of (P_t) .

First, we give some examples of nonlinearities g where the blow up in $L^2(\frac{dx}{|x|^2}) \cap L^{\infty}(B_1)$ occurs. In a second part of this work, we present two cases of global existence of solutions to (P_t) which converge in $L^{\infty}(B_1)$ to a stationary solution of (P_t) when $t \to \infty$.

1 Introduction

In this work, we study the following problem:

$$(P_t) \left\{ \begin{array}{l} \partial_t u - |x|^2 \Delta u = g(u) \text{ in } \mathbb{R}^+ \times B_1 \\ u(t,x) \equiv 0 \text{ in } \mathbb{R}^+ \times \partial B_1 \text{ ; } u(0,x) = u_0 \geq 0, \end{array} \right.$$

where g is nonlinear and B_1 is the unit ball in \mathbb{R}^N .

1991 Mathematics Subject Classification: 35K65. Servicio Publicaciones Univ. Complutense. Madrid, 1998. First, using Hille-Yosida theory, we prove for all $u_0 \in L^{\infty}(B_1) \cap L^2(\frac{dx}{|x|^2})^1$ and $g \in W^{1,\infty}_{loc}(\mathbb{R}^N)$, the local existence and the uniqueness of the solution $u(t) = S(t)u_0$ of (P_t) , where S(t) is the semigroup associated to (P_t) . Then, we are interested in the behaviour of the solution u(t) as t increases. Precisely, under different assumptions of g and u_0 , we give on one hand, some examples of blow-up in finite time and on the other hand, some examples of global existence of solutions to (P_t) which converge to a stationary solution of (P_t) .

Throughout this work, we keep in mind the results of [7] and [8] which deal with the stationary problem (P):

$$(P) \begin{cases} -|x|^2 \Delta u = g(u) \text{ in } B_1 \\ u \in H_0^1(B_1)/\{0\} ; u \ge 0 \end{cases}$$

Precisely, in [7], the authors prove the nonexistence of nontrivial solutions to (P) in the case where g satisfies the following assumptions:

(GS1)
$$\lambda - (\frac{N-2}{2})^2 + \lim_{s \to +\infty} \frac{g(s)}{s} > 0.$$

(GS2)
$$\forall s > 0$$
, $G(s) \leq \frac{g(s)s}{2}$.

Otherwise, in [8], the authors give some results about the existence of nontrivial solutions of (P) in the case where g is sublinear. They treat three cases:

- 1. $g(u) \sim \lambda u + u^p u^q$ where 1
- 2. $g(u) \sim \lambda u u^p$ where p > 1 and $\lambda > (\frac{N-2}{2})^2$
- 3. $g(u) \sim u^{\alpha} + \lambda u$ where $0 < \alpha < 1$ and $\lambda < (\frac{N-2}{2})^2$

It is worth noting that in all cases, an unbounded connected branch of positive solutions in either $H^1_0(B_1)$ or $L^\infty(B_1)$ exists and in the second and third case, there is uniqueness of the nontrivial solution in $H^1_0(B_1)$. Then, it is very natural to see in which cases the nonexistence of nontrivial solutions of (P) implies the blow-up in finite time for solutions of (P_t) and when the uniqueness of the solution of (P) implies the convergence to a stationary solution for solutions to (P_t) when $t \to +\infty$. In this work, we prove some results in these directions.

So, the outline of the present paper is as follows:

 $^{{}^{1}}L^{2}(\tfrac{dx}{|x|^{2}}) := \ \{u \, / \, \int_{B_{1}} \tfrac{|u|^{2}}{|x|^{2}} dx \, < \, \infty \}$

- 1. Local existence of solutions to (P_t) in $I\!\!R^+ \times L^{\infty} \cap L^2(\frac{dx}{|x|^2})$.
- 2. Some examples of blow up in finite time for solutions to (P_t)
 - (a) The case g(0) = 0
 - (b) The case g(0) > 0
- 3. Two examples of existence of global solutions and convergence to a stationary solution.

Precisely, in Section 2, we apply Hille-Yosida theory in $L^{\infty} \cap L^{2}(\frac{dx}{|x|^{2}})$. In Section 3, we start adapting a classical spectral method (see for instance [4]) to prove the blow-up in finite time when g satisfies:

(B1) g is convex and positive in \mathbb{R}^+ .

(B2)
$$(\frac{N-2}{2})^2 < \lim_{s \to 0^+} \frac{g(s)}{s} = \lambda < +\infty.$$

(B3) There exists
$$s_0 > 0$$
 such that $\int_{s_0}^{+\infty} \frac{ds}{g(s) - \lambda s} < +\infty$

Next, we use a well known "energy method" (see for instance [4]). For this, we assume the following hypothesis:

(B4)
$$\lambda = \lim_{s \to 0^+} \frac{g(s)}{s} < +\infty$$
 and there exists $\alpha > 0$, $C > 0$ such that $h(s) = g(s) - \lambda s \ge C s^{\alpha+1}$, for all $s \ge 0$.

(B5) There exists
$$\epsilon > 0$$
 such that $(2 + \epsilon) \int_0^s h(t) dt \le sh(s)$, $\forall s > 0$.

Then, we prove that if u_0 satisfies $\int_{B_1} \frac{|\nabla u_0|^2}{2} - \int_{B_1} \frac{G(u_0)}{|x|^2} < 0$, where $G(s) = \int_0^s g(t) \, dt$, the solution u(t) to (P_t) blows up in finite time. Finally, we conclude the section with the case g(0) > 0. Precisely, we apply a method from [3] which links directly the blow-up and the nonexistence of stationary solutions. For this, we assume:

(B6)
$$g(0) > 0$$
, $g \in C^1([0, +\infty[), \text{convex and increasing.}]$

(B7) There exists
$$x_0 > 0$$
 such that $\int_{x_0}^{+\infty} \frac{ds}{g(s)} < \infty$.

Then, for any $u_0 \geq 0$, the solution $u(t) = S(t)u_0$ blows up in finite time. In Section 4, we give some results concerning the existence of global solutions to (P_t) . First, proving the radial symmetry of the solution to (P_t) when u_0 is radially symmetric, we exhibit the heat kernel of $-|x|^2\Delta$ in $H_0^1(B_1)$. Then, using a method due to Fujita, we prove the existence of a global solution of (P_t) for small initial data when $g(t) \sim \lambda t + t^p$, p > 1 and $\lambda < 0$. Moreover, we prove that u(t) converges to 0 in $L^{\infty}(B_1)$ with an exponentional decay when $t \to +\infty$.

Finally, assuming the following hypothesis:

(G3) $s \to \frac{g(s)}{s}$ is continuous and strictly decreasing,

(G4)
$$\xrightarrow{g(s)} \xrightarrow{s \to +\infty} -\infty$$

(G5)
$$\lim_{s\to 0^+} \frac{g(s)}{\overline{s}} = \lambda > (\frac{N-2}{2})^2$$
,

we show that for any $u_0 > 0$ satisfying $u_0 \in L^{\infty} \cap L^2(\frac{dx}{|x|^2})$, $||u_0||_{L^{\infty}} \le f^{-1}(0)$ and $u_0 \not\equiv f^{-1}(0)$ where $f(t) := \frac{g(t)}{t}$, the solution u(t) of (P_t) is global and converges to the unique nontrivial stationary solution of (P_t) in $L^{\infty}(B_1) \cap H^1_0(B_1)$.

2 Local existence

Throughout this section, we assume that $g \in W^{1,\infty}_{loc}(\mathbb{R})$. Our goal is to study the local existence of a solution to (P_t) . Precisely, we show that we can apply Hille-Yosida theory in $L^{\infty}(B_1) \cap L^2(\frac{dx}{|x|^2})$. Consequently, for every $u_0 \in L^{\infty} \cap L^2(\frac{dx}{|x|^2})$, the uniqueness of solutions of (P_t) follows. First, we remark:

Proposition 2.1. Let $A = -|x|^2 \Delta$. Then, A is a self adjoint maximal monotone operator in $L^2(\frac{dx}{|x|^2})$. Moreover, $\mathcal{D}(A) = \{u \in L^2(\frac{dx}{|x|^2})/u \in H_0^1(B_1) \text{ and } |x|^2 \Delta u \in L^2(\frac{dx}{|x|^2})\}.$

Proof. For this, notice that for every $u \in \mathcal{D}(A)$ and $\lambda > 0$:

$$\begin{split} \|u-\lambda\,|x|^2\Delta\,u\|_{L^2(\frac{dx}{|x|^2})}^2 &= \|u\|_{L^2(\frac{dx}{|x|^2})}^2 + 2\lambda\|\nabla\,u\|_{L^2}^2 \\ &+ \|\lambda|^2\int_{B_1}|x|^2|\Delta\,u|^2 \geq \|u\|_{L^2(\frac{dx}{|x|^2})}^2 \end{split}$$

which implies that A is dissipative in $L^2(\frac{dx}{|x|^2})$. Then, it suffices to show that A is maximal. Taking $f \in L^2(\frac{dx}{|x|^2})$, we consider the following minimization problem:

$$I_{\lambda} = \inf_{u \in H_0^1(B_1)} \mathcal{E}(u)$$
where
$$\mathcal{E}(u) = \frac{1}{2} \int_{B_1} (\frac{|u|^2}{|x|^2} + \lambda |\nabla u|^2) dx - \int_{B_1} \frac{f u}{|x|^2}$$

By Cauchy-Schwarz's inequality,

$$I_{\lambda} \geq \inf_{u \in H_0^1(B_1)} \frac{1}{2} \int_{B_1} (\frac{|u|^2}{|x|^2} + \lambda |\nabla u|^2) \, dx - (\int_{B_1} \frac{|f|^2}{|x|^2})^{\frac{1}{2}} (\int_{B_1} \frac{|u|^2}{|x|^2})^{\frac{1}{2}} > -\infty$$

then, considering a minimizing sequence $\{u_n\}_{n\in\mathbb{N}}\subset H^1_0(B_1)\cap L^2(\frac{dx}{|x|^2})$, it follows that $\|u_n\|_{H^1_0\cap L^2(\frac{dx}{|x|^2})}\leq C$. And by standard compactness arguments, there exists $u\in H^1_0(B_1)\cap L^2(\frac{dx}{|x|^2})$ such that up to subsequences:

$$u_n \underset{n \to \infty}{\rightharpoonup} u$$
 weakly in $H^1_0(B_1), u_n \underset{n \to \infty}{\rightharpoonup} u$ weakly in $L^2(\frac{dx}{|x|^2})$

and

$$\int_{B_1} \frac{f u_n}{|x|^2} \xrightarrow{n \to \infty} \int_{B_1} \frac{f u}{|x|^2}$$

Therefore, I_{λ} is achieved by u and the proof is complete.

We deduce immediatly the following corollary:

Corollary 2.2. A is maximal monotone in $L^{\infty}(B_1) \cap L^2(\frac{dx}{|x|^2})$. Moreover, $\mathcal{D}(A) = \{u \in H_0^1(B_1) \cap L^{\infty}/|x|^2 \Delta u \in L^2(\frac{dx}{|x|^2}) \cap L^{\infty}\}.$

Proof. Let $f \in L^2(\frac{dx}{|x|^2}) \cap L^{\infty}$ and $\lambda > 0$. By Proposition 2.1, there exists $u \in H_0^1 \cap L^2(\frac{dx}{|x|^2})$ such that

$$u - \lambda |x|^2 \Delta u = f \text{ in } B_1 \tag{2.1}$$

Thus, it suffices to show that $u \in L^{\infty}(B_1)$. Multiplying (2.1) by $(u - ||f||_{L^{\infty}})^+$, we obtain:

$$\int_{B_1} \frac{(u-\|f\|_{L^{\infty}})^{+2}}{|x|^2} dx + \lambda \int_{B_1} |\nabla (u-\|f\|_{L^{\infty}})^{+}$$

$$= \int_{B_1} (f-\|f\|_{L^{\infty}}) \frac{(u-\|f\|_{L^{\infty}})^{+}}{|x|^2} \le 0$$

which yields $(u-||f||_{L^{\infty}})^+ \equiv 0$ and $u \leq ||f||_{L^{\infty}}$. By the same arguments, we show that $u \geq -||f||_{L^{\infty}}$. This ends the proof of Corollary 2.2.

Remark. For $N \geq 3$, $L^{\infty}(B_1) \subset L^2(\frac{dx}{|x|^2})$. And in this case, to prove Corollary 2.2, it suffices to show the maximality of A in L^{∞} .

Now, we apply Hille-Yosida theory (see [15]) and we deduce the following proposition:

Proposition 2.3. Let $u_0 \in L^{\infty}(B_1) \cap L^2(\frac{dx}{|x|^2})$. Then, there exists a unique solution $u(t) = S(t)u_0$ to (P_t) in a maximal interval [0, T[, T > 0 such that

- (i) $u(\cdot) \in C^0([0,T[,L^{\infty}(B_1) \cap L^2(\frac{dx}{|x|^2})) \cap C^1(]0,T[,L^2(\frac{dx}{|x|^2})).$
- (ii) For all t in]0, T[, $u(t) \in H_0^1(B_1) \cap L^{\infty} \cap L^2(\frac{dx}{|x|^2})$ and $|x|^2 \Delta u(t) \in L^2(\frac{dx}{|x|^2})$.
- (iii) If $u_0 \geq 0$, then $u(t) \geq 0$ for all t > 0.
- (iv) If $u_0 \in L^{\infty}(B_1) \cap L^2(\frac{dx}{|x|^2})$ satisfies $|x|^2 \Delta u_0 \in L^{\infty}(B_1) \cap L^2(\frac{dx}{|x|^2})$, then $u(t) \in C^1([0,T[\,,L^{\infty}(B_1) \cap L^2(\frac{dx}{|x|^2}).$

Proof. By Proposition 2.1, Corollary 2.2 and since $g \in W_{loc}^{1,\infty}$ we can apply Theorems 3.7 and 3.9 of [4]. This proves assertions (i), (ii) and (iv). Now, let us prove assertion (iii). For every $T_0 < T$, we multiply the equation in (P_t) by $\frac{(-u)^+}{|x|^2}$ and integrate by parts to obtain for every $t \in [0, T_0]$:

$$\frac{1}{2}\frac{d}{dt}\int_{B_1}\frac{|u^-|^2}{|x|^2}\,dx = -\int_{B_1}|\nabla u^-|^2 - \int_{B_1}\frac{g(u)u^-}{|x|^2} \leq C(T_0)\int_{B_1}\frac{|u^-|^2}{|x|^2}$$

which implies by Gronwall's lemma that $u^- \equiv 0$. This completes the proof of Proposition 2.3.

As a consequence of Hille-Yosida Theory, we have the following alternative for $u(t) = S(t)u_0$:

Corollary 2.4. If $u_0 \in L^2(\frac{dx}{|x|^2}) \cap L^{\infty}$, then, either $T = T(\|u_0\|_{\mathcal{D}(A)}) = +\infty$ and the solution $u(\cdot) = S(\cdot)u_0$ is global, or $T < +\infty$ and the solution blows up in finite time which means that

$$||u(t)||_{L^{\infty}} + ||u(t)||_{L^{2}(\frac{dx}{|x|^{2}})} \xrightarrow{t \to T^{-}} +\infty$$

Proof. See [4].

Remarks. If $g \equiv 0$ and $u_0 \in H^1 \cap L^{\infty} \cap L^2(\frac{dx}{|x|^2})$ then $u(t) = S(t)u_0$ is global and satisfies:

$$\int_{B_1} \frac{|u(t)|^2}{|x|^2} \le e^{-(\frac{N-2}{2})^2 t} ||u_0||_{L^2(\frac{dx}{|x|^2})}^2. \tag{2.2}$$

The proof is based upon Hardy's inequality. First, observe that since $g \equiv 0$, (P_t) is linear. Therefore, $u(t) = S(t)u_0$ is global. Moreover, multiplying (P_t) by $u(t)e^{(\frac{N-2}{2})^2t}$ and integrating by parts, we have :

$$\begin{split} \frac{d}{dt} \int_{B_1} \frac{|u^-|^2}{|x|^2} e^{(\frac{N-2}{2})^2 t} \, dx &= 2 \left(\frac{N-2}{2}\right)^2 \int_{B_1} \frac{|u^-|^2}{|x|^2} e^{(\frac{N-2}{2})^2 t} \, dx - 2 \\ \int_{B_1} |\nabla u|^2 e^{(\frac{N-2}{2})^2 t} \, dx &\leq 0 \end{split}$$

by Hardy's inequality. Thus, integrating on [0, t], we deduce (2.2).

Now, we deal with the behaviour of the solution to (P_t) . In the next section, we give some examples of blow-up in finite time of solutions to (P_t) .

3 Blow up in finite time in $L^2(\frac{dx}{|x|^2}) \cap L^{\infty}$

Throughout this section, we assume that g belongs to $W_{loc}^{1,\infty}$, $u_0 \in L^{\infty} \cap L^2(\frac{dx}{|x|^2})$ and $G(s) = \int_0^s g(t) dt$.

3.1 Main results

We consider three classes of functions g. First, we adapt a classical "spectral method" (see for instance [4]). Precisely, we prove the following theorem:

Theorem 3.1. Assuming $N \geq 3$ and

(B1) g is convex and positive in \mathbb{R}^+ ,

(B2)
$$(\frac{N-2}{2})^2 < \lambda := \lim_{s \to 0^+} \frac{g(s)}{s} < +\infty$$
,

(B3) There exists $s_0 > 0$ such that $\int_{s_0}^{+\infty} \frac{ds}{h(s)} < \infty$ where $h(s) = g(s) - \lambda s$.

Then, for any $u_0 \ge 0$ in $L^{\infty} \cap L^2(\frac{dx}{|x|^2})$, $u(t) = S(t)u_0$ satisfies: $\exists T \in \mathbb{R}^+$ such that

$$\lim_{t \to T^{-}} \int_{B_{1}} \frac{|u(t)|^{2}}{|x|^{2}} = +\infty \quad and \quad \lim_{t \to T^{-}} ||u(t)||_{L^{\infty}} = +\infty$$

The second blow-up case is based upon an "energy method" (see for instance [4]).

Theorem 3.2. Assume that u_0 satisfies (*) $\int_{B_1} \frac{|\nabla u_0|^2}{2} - \int_{B_1} \frac{G(u_0)}{|x|^2} < 0$ and that g has the following properties:

- (B4) $\lambda := \lim_{s \to 0^+} \frac{g(s)}{s} \in \mathbb{R}$ and there exists $\alpha > 0$, C > 0 such that $h(s) = g(s) \lambda s \ge C s^{\alpha+1}$ for all $s \ge 0$,
- (B5) There exists $\epsilon > 0$ such that for all $s \geq 0$, $(2 + \epsilon)H(s) \leq sh(s)$ where $H(t) = \int_0^t h(s) ds$.

Then, $u(t) = S(t)u_0$ satisfies: $\exists T > 0$ such that $\lim_{t \to T^-} \int_{B_1} \frac{|u(t)|^2}{|x|^2} = +\infty$.

Remarks.

1. If $g(s) = \lambda s + s^p$ with $\lambda > \left(\frac{N-2}{2}\right)^2$ and p > 1, (B1), (B2) and (B3) are satisfied.

- 2. If $g(s) = \lambda s + s^p$ with p > 1, (B4) and (B5) are satisfied.
- 3. Let $\phi \in L^{\infty} \cap H_0^1$. Then, by (B4), there exists M > 0, large enough, such that $u_0 = M \phi$ satisfies (*).
- 4. If $u_0 \geq 0$ is a radially decreasing nontrivial subsolution of (P) and belongs to $H_0^1(B_1) \cap L^{\infty}$, then, a simple computation based upon a "Pohozaev's equality type" shows that (*) is satisfied for N > 2. Indeed, multiplying $-|x|^2 \Delta u_0 \leq g(u_0)$ by $\frac{x}{|x|^2} \cdot \nabla u_0$ and integrating by parts, we obtain:

$$-\left(\frac{N-2}{2}\right)\int_{B_1} |\nabla u_0|^2 - \frac{1}{2}\int_{\partial B_1} |\frac{\partial u_0}{\partial n}|^2 ds \ge (2-N)\int_{B_1} \frac{G(u_0)}{|x|^2}$$

which implies:

$$\int_{B_1} \frac{|\nabla u_0|^2}{2} - \int_{B_1} \frac{G(\underline{u_0})}{|x|^2} \le -\frac{1}{2(N-2)} \int_{\partial B_1} |\frac{\partial u_0}{\partial n}|^2 \, ds < 0$$

Finally, we deal with the case g(0) > 0. In this case, we adapt a method from [3]. And we use the results of nonexistence of solutions to the problem (P).

Theorem 3.3. Assume that $N \geq 3$ and the following assumptions on g:

- (B6) g > 0 is convex, increasing and belongs to $C^1([0, +\infty[),$
- (B7) There exists $s_0 > 0$ such that $\int_{s_0}^{+\infty} \frac{ds}{g(s)} < \infty$.

Then, for all $u_0 \ge 0$ in $L^{\infty} \cap L^2(\frac{dx}{|x|^2})$ and nontrivial, $u(t) = S(t)u_0$ blows up in finite time in L^{∞} and in $L^2(\frac{dx}{|x|^2})$.

Remarks.

- 1. It is worth noting that in Theorems 3.1 and 3.3, no additional assumption is required for u_0 . Here, the nonexistence of weak nontrivial solutions of the stationary problem (P) implies the blowup in finite time for any initial data in $L^{\infty} \cap L^{2}(\frac{dx}{|x|^{2}})$.
- 2. The assumptions (B3) and (B7) prevent the existence of unbounded global solutions (i.e. which blow up when $t \to \infty$).

Now, we prove Theorem 3.1:

Proof of Theorem 3.1. Let us consider ψ_{ϵ} the eigenfunction associated with the first eigenvalue λ_{ϵ}^1 of $-(|x|^2+|\epsilon|^2)\Delta$ in $H_0^1(B_1)$ such that $\int_{B_1} \frac{\psi_{\epsilon}}{|x|^2} = 1$ (for this, notice that $N \geq 3$ implies that $L^2(\frac{dx}{|x|^2}) \subset L^1(\frac{dx}{|x|^2})$). It is easy to prove that $\lambda_{\epsilon}^1 \longrightarrow (\frac{N-2}{2})^2$ when $\epsilon \to 0$. Therefore, by (B2), there exists $\epsilon > 0$ small enough such that $\lambda_{\epsilon}^1 < \lambda$. Thus, multiplying (P_t) by $\frac{\psi_{\epsilon}}{|x|^2}$, we obtain:

$$\frac{d}{dt}\int_{B_1}\frac{u(t)\,\psi_\epsilon}{|x|^2}+\lambda_\epsilon^1\int_{B_1}\frac{u(t)\,\psi_\epsilon}{|x|^2+|\epsilon|^2}=\int_{B_1}\frac{g(u(t))\psi_\epsilon}{|x|^2}$$

Since g is convex (which implies that f is convex), by Jensen's inequality, we have:

$$\frac{d}{dt} \int_{B_1} \frac{u(t) \, \psi_{\epsilon}}{|x|^2} \geq (\lambda - \lambda_{\epsilon}^1) \int_{B_1} \frac{u(t) \psi_{\epsilon}}{|x|^2} + h \left(\int_{B_1} \frac{u(t) \psi_{\epsilon}}{|x|^2} \right)$$

From which it follows:

$$\frac{d}{dt} \left(\int_0^{\phi(t)} \frac{ds}{h(s)} \right) \ge 1 \quad \text{where } \phi(t) = \int_{B_1} \frac{u(t) \psi_t}{|x|^2}$$
 (3.1)

Integrating (3.1), one has $\int_0^{\phi(t)} \frac{ds}{h(s)} \ge t + C$ which together with (B3) implies that $\phi(\cdot)$ blows up in finite time. Finally, noting that for $N \ge 3$, the injection $L^{\infty} \hookrightarrow L^2(\frac{dx}{|x|^2})$ is continuous, the proof of Theorem 3.1 is complete.

Next, we give the proof of Theorem 3.2:

Proof of Theorem 3.2. Suppose that the solution $u(t) = S(t)u_0$ is global. Let us consider $E(t) = \frac{1}{2} \int_{B_1} |\nabla u(t)|^2 - \int_{B_1} \frac{G(u(t))}{|x|^2}$. Then, multiplying (P_t) by $\frac{u_t}{|x|^2}$ and integrating by parts, we obtain:

$$\int_{B_1} \frac{|u_t|^2}{|x|^2} = -\frac{1}{2} \frac{d}{dt} \int_{B_1} |\nabla u(t)|^2 + \frac{d}{dt} \int_{B_1} \frac{G(u(t))}{|x|^2} = -\frac{d}{dt} (E(t))$$

Thus, E(t) is decreasing and $E(t) \leq E(0) < 0$. Now, multiplying the equation in (P_t) by $\frac{u(t)}{|x|^2}$ and integrating by parts:

$$\frac{1}{2}\frac{d}{dt}\int_{B_1} \frac{|u(t)|^2}{|x|^2} = -\int_{B_1} |\nabla u(t)|^2 + \int_{B_1} \frac{g(u(t))u(t)}{|x|^2}$$
(3.2)

By using (B5), and taking $H(s) = \int_0^s h(t) dt$, we prove that:

$$\frac{1}{2} \frac{d}{dt} \int_{B_{1}} \frac{|u(t)|^{2}}{|x|^{2}} \geq -\int_{B_{1}} |\nabla u(t)|^{2} + (2+\epsilon) \int_{B_{1}} \frac{H(u(t))}{|x|^{2}} + \lambda \int_{B_{1}} \frac{|u(t)|^{2}}{|x|^{2}} \\
\geq -2 E(t) + \epsilon \int_{B_{1}} \frac{H(u(t))}{|x|^{2}} \\
\geq -2 E(0) + \epsilon \int_{B_{1}} \frac{H(u(t))}{|x|^{2}} \tag{3.3}$$

Thus, (3.3) and (*) imply that $\lim_{t\to\infty}\int_{B_1}\frac{|u(t)|^2}{|x|^2}=+\infty$. Then, by (3.3):

$$\frac{1}{2} \frac{d}{dt} \int_{B_1} \frac{|u(t)|^2}{|x|^2} \ge \frac{\epsilon}{\epsilon} \int_{B_1} \frac{H(u(t))}{|x|^2} \ge C \frac{|u(t)|^{2+\alpha}}{|x|^2} \ge C \epsilon \left(\int_{B_1} \frac{|u(t)|^2}{|x|^2} \right)^{\frac{2+\alpha}{2}}$$

Taking $\phi(t) = \int_{B_1} \frac{|u(t)|^2}{|x|^2}$, we have :

$$\frac{d}{dt}\phi(t) \ge 2\epsilon C\phi(t)^{\frac{\alpha+2}{2}} \tag{3.4}$$

Integrating (3.4) on $[t_0, t]$, we obtain:

$$\frac{1}{\phi(t)^{\frac{\alpha}{2}}} - \frac{1}{\phi(t_0)^{\frac{\alpha}{2}}} \ge C(t - t_0)$$

which contradicts that $u(\cdot)$ is a global solution of (P_t) . This completes the proof of Theorem 3.2.

Finally, we prove Theorem 3.3. Here, we use an approach from [3]: the nonexistence of stationary weak solutions implies the nonexistence of global, bounded solution of (P_t) for every $u_0 \ge 0$.

First, we adapt the definition of a weak stationary solution of (P_t) from [3]:

Definition 3.1. A weak stationary solution of (P_t) is a function $u \in L^1(B_1)$ such that $\frac{g(u)}{|x|^2}\delta(x) \in L^1(B_1)$ (where $\delta(x) = dist(x, \partial B_1)$) and

$$\forall \, \xi \, \in \, C^2(\bar{B}_1) \quad - \int_{B_1} u \Delta \, \xi \, dx = \int_{B_1} \frac{g(u)}{|x|^2} \, \xi \, dx$$

Then, we have the following result:

Proposition 3.4. Assume that g satisfies (B6) and (B7). Then, there is no weak stationary solution of (P_t) . **Proof.**

We apply a method from [3]. Precisely, for all η such that $0 \le \eta < 1$, we define :

$$(P_{\eta}) \begin{cases} -|x|^2 \Delta u = (1 - \eta)g(u) \text{ in } B_1 \\ u \ge 0, \quad u \in H_0^1(B_1) \end{cases}$$

As in [3], we define $h(u) = \int_0^u \frac{ds}{g(s)}$, $\tilde{h}(u) = \frac{1}{1-\eta}h(u)$ and $\Phi(u) = \tilde{h}^{-1}(h(u))$. It is easy to prove the following assertions (see [3]):

- (i) $\Phi(0) = 0$ and $0 \le \Phi(u) \le u$.
- (ii) Φ is increasing and concave. Moreover, $\Phi'(u) \leq 1$.
- (iii) $\Phi \in L^{\infty}$ and $\Phi(u)$ satisfies:

$$\forall \, \xi \in C^2(B_1) - \int_{B_1} (\Delta \Phi(u)) \, \xi \ge (1 - \eta) \int_{B_1} \frac{g(\Phi(u))\xi}{|x|^2}$$

which means that $\Phi(u)$ is a "weak supersolution" of (P_n) .

For all $\xi \in C_0^2(\bar{B}_1)$, let us consider the following iterative scheme:

$$\begin{cases} -\int_{B_1} u_{n+1} \Delta \xi = (1-\eta) \int_{B_1} \frac{g(u_n)\xi}{|x|^2} & \text{in } B_1 \\ u_0 = \Phi(u), & u \in H_0^1(B_1) \end{cases}$$

Then, noting that $\Phi(u) \in L^{\infty}$ implies that for $N \geq 3$, $\frac{g(\Phi(u))}{|x|^2} \in L^1$ and by the fact that 0 is a strict subsolution to (P_{η}) , we prove, by the maximum principle, that in L^{∞} , $\{u_n\}_{n\geq 1}$ is a decreasing sequence of weak supersolutions of (P_{η}) and $u_n \leq \Phi(u)$. Thus, $v_{\eta} = \lim_{n \to \infty} u_n \in L^{\infty}$ is a weak solution of (P_{η}) . Now, consider for all ϵ in]0, 1[, the following problem:

$$(P_{\epsilon,\,\eta}) \left\{ \begin{array}{ll} -(|x|^2 + |\epsilon|^2)\Delta \, v = (1 - \eta)g(v) & \text{in } B_1 \\ v \geq 0 \, , \, v \in H_0^1(B_1) \end{array} \right.$$

As in [1], we prove the existence of a minimal solution of $(P_{\epsilon,\eta})$, $v_{\epsilon,\eta}$, such that $v_{\epsilon,\eta} \leq v_{\eta} \leq \Phi(u)$.

Putting $w_{\epsilon,\eta}(x):=v_{\epsilon,\eta}(\epsilon\,x),\, {\rm for}\,\, x\,\in\, B_{\frac{1}{\epsilon}},\, {\rm we \,\, have}:$

$$\begin{cases} -(|x|^2+1)\Delta \ w_{\epsilon,\eta} = (1-\eta)g(w_{\epsilon,\eta}) \ \text{ in } \ B_{\frac{1}{\epsilon}} \\ w_{\epsilon,\eta} \geq 0 \ , \quad w_{\epsilon,\eta} \in \ \mathrm{H}^1_0(B_{\frac{1}{\epsilon}}) \end{cases}$$

As above, we can show that $\epsilon \longrightarrow w_{\epsilon,\eta}$ is increasing in L^{∞} . Passing to the limit $\epsilon \to 0$, it is easy to prove that $w := \lim_{\epsilon \to 0} w_{\epsilon}$ satisfies $||w||_{L^{\infty}} \le ||v_n||_{L^{\infty}}$ and is the minimal non trivial solution of the following problem:

$$\begin{cases} -(|x|^2+1)\Delta \ w = (1-\eta)g(w) & \text{in} \ \mathbb{R}^N \\ w \ge 0 \end{cases}$$

Therefore, $w(x) = \frac{1}{C_N|x|^{N-2}} * \frac{g(w)}{|x|^2+1}$ where $C_N = (N-2)|\sigma_{N-1}|$ and $|\sigma_{N-1}|$ the surface area of the unit sphere. Thus,

$$w(0) = \int_{\mathbb{R}^{N}} \frac{C_{N} g(w)}{|x|^{N-2}(|x|^{2}+1)} dx \ge \inf_{s \in [0,||w||_{L^{\infty}}]} g(s)$$
$$\int_{\mathbb{R}^{N}} \frac{1}{(|x|^{2}+1)|x|^{N-2}} = +\infty$$

This contradicts the boundedness of w and the proof of Proposition 3.4 is now complete.

Proof of Theorem 3.3. First, note that by the maximum principle, it suffices to prove Theorem 3.3 in the case $u_0 \equiv 0$ (note that since g is increasing, $u_0 \leq w_0 \Rightarrow \forall t \geq 0$, $S(t)u_0 \leq S(t)w_0$). Moreover, $g(0) > 0 \Rightarrow u_t > 0$ for t small. Then, for $\delta > 0$ small,

$$u(t+\delta) = S(t+\delta)0 = S(t) \circ S(\delta)0 \geq S(t)0 = u(t) \text{ and } u_t \geq 0 \text{ , } \forall t \geq 0$$

Now, taking $\phi \in C_0^2(\bar{B_1})$, multiplying the equation in (P_t) by $\frac{\phi}{|x|^2}$ and integrating by parts, we obtain:

$$\frac{d}{dt} \int_{B_1} \frac{u(t)\phi}{|x|^2} - \int_{B_1} u\Delta\phi = \int_{B_1} \frac{g(u(t))\phi}{|x|^2}$$
 (3.5)

Therefore, choosing $\phi=\psi_\epsilon$ (defined in the proof of Theorem 3.1) we have :

$$\frac{d}{dt}\int_{B_1}\frac{\underline{u(t)\psi_{\epsilon}}}{|x|^2}+\lambda_{\epsilon}^1\int_{B_1}\frac{u\psi_{\epsilon}}{|x|^2+|\epsilon|^2}=\int_{B_1}\frac{g(u(t))\psi_{\epsilon}}{|x|^2}$$

Thus,

$$\frac{d}{dt} \int_{B_1} \frac{\underline{u(t)\psi_{\epsilon}}}{|x|^2} \ge \int_{B_1} \left(\frac{g(u(t))}{\underline{u(t)}} - \lambda_{\epsilon}^1 \right) \frac{\underline{u(t)\psi_{\epsilon}}}{|x|^2}$$

which provides the following alternative:

- 1. either there exists M>0 such that $\int_{B_1} \frac{g(u(t))\psi_{\epsilon}}{|x|^2}$, $\int_{B_1} \frac{u(t)\psi_{\epsilon}}{|x|^2} \leq M$ for all $t\geq 0$, or
- 2. $\int_{B_1} \frac{u(t)\psi_{\epsilon}}{|x|^2} \stackrel{t \to +\infty}{\longrightarrow} +\infty$.

Let us suppose that the second case holds. Then, by Jensen's inequality, we have for t large enough:

$$\frac{d}{dt} \int_{B_1} \frac{u(t)\psi_{\epsilon}}{|x|^2} \ge \frac{1}{2} \int_{B_1} \frac{g(u(t))\psi_{\epsilon}}{|x|^2} \ge \frac{1}{2} g\left(\int_{B_1} \frac{u(t)\psi_{\epsilon}}{|x|^2}\right)$$

Hence,

$$\int_0^{f(t)} \frac{ds}{g(s)} \geq \frac{1}{2}t + C \quad \text{where} \ \ f(t) = \int_{B_1} \frac{\underline{u}(t)\psi_{\epsilon}}{|x|^2}$$

which contradicts (B7). And u(t) = S(t)0 blows up in finite time.

Finally, suppose that the first case occurs. And let ζ denote the unique solution of the following problem :

$$\begin{cases} -(|x|^2)\Delta\zeta = 1 & \text{in } B_1\\ \zeta \equiv 0 & \text{in } \partial B_1 \end{cases}$$

For $N \geq 3$, it is easy to prove that $\zeta \in W^{2,p}(B_1)$ for all $p < \frac{N}{2}$ which by Hardy's inequality and by Sobolev's embedding implies that $\zeta \in L^2(\frac{dx}{|x|^2}) \cap H^1_0(B_1)$. Hence, there exists $\{\zeta_n\}_{n \in I\!\!N} \subset \mathcal{C}_0^\infty(B_1)$ such that :

$$\Delta \zeta_n \xrightarrow{L^1} \Delta \zeta \quad \text{and} \quad \zeta_n \xrightarrow{L^2(\frac{dx}{|x|^2})} \zeta$$
 (3.6)

Choosing $\phi := \zeta_n$ in (3.5) and integrating in [t, t+1], we have :

$$\left[\int_{B_{1}} \frac{u(s)\zeta_{n}}{|x|^{2}} \right]_{t}^{t+1} + \int_{t}^{t+1} ds \int_{B_{1}} u(s)(-\Delta\zeta_{n}) \\
= \int_{t}^{t+1} ds \int_{B_{1}} \frac{g(u(s))\zeta_{n}}{|x|^{2}} \tag{3.7}$$

Passing to the limit $n \to \infty$, we obtain by (3.6):

$$\int_{B_1} \frac{u(s)\zeta_n}{|x|^2} \stackrel{n \to \infty}{\longrightarrow} \int_{B_1} \frac{u(s)\zeta}{|x|^2}$$

Moreover, by Lebesgue theorem and by (3.6):

$$\int_{t}^{t+1} ds \int_{B_{1}} \frac{g(u(s))\zeta_{n}}{|x|^{2}} \xrightarrow{n \to \infty} \int_{t}^{t+1} ds \int_{B_{1}} \frac{g(u(s))\zeta}{|x|^{2}}$$

and

$$\int_{t}^{t+1} ds \int_{B_{1}} u(s)(-\Delta \zeta_{n}) \stackrel{n \to \infty}{\longrightarrow} \int_{t}^{t+1} ds \int_{B_{1}} u(s)(-\Delta \zeta)$$

Therefore.

$$\left[\int_{B_1} \frac{u(s)\zeta}{|x|^2}\right]_t^{t+1} + \int_t^{t+1} ds \int_{B_1} u(s)(-\Delta\zeta) = \int_t^{t+1} ds \int_{B_1} \frac{g(u(s))\zeta}{|x|^2}.$$

Now, since $u_t \geq 0$,

$$\begin{split} \int_{B_{1}} \frac{u(t)}{|x|^{2}} & \leq \int_{t}^{t+1} ds \int_{B_{1}} \frac{u(s)\zeta}{|x|^{2}} = \int_{t}^{t+1} ds \int_{B_{1}} u(s)(-\Delta\zeta) \\ & = \int_{t}^{t+1} ds \int_{B_{1}} \frac{g(u(s))\zeta}{|x|^{2}} - \left[\int_{B_{1}} \frac{u(s)\zeta}{|x|^{2}} \right]_{t}^{t+1} \\ & \leq \int_{B_{1}} \frac{g(u(t+1))\zeta}{|x|^{2}} \leq M \end{split}$$

Therefore, by monotone convergence, there exists $w \in L^1(\frac{dx}{|x|^2})$ such that $u(t) \stackrel{t \to +\infty}{\longrightarrow} w$ in $L^1(\frac{dx}{|x|^2})$. It implies that for all $\phi \in C^2_0(\bar{B_1})$:

$$\begin{split} &\int_{B_1} \frac{u(t)\phi}{|x|^2} \stackrel{t \to +\infty}{\longrightarrow} \int_{B_1} \frac{w\phi}{|x|^2}, \ \int_t^{t+1} ds \int_{B_1} u(s)(-\Delta\phi) \stackrel{t \to \infty}{\longrightarrow} \int_{B_1} w(-\Delta\phi) \text{ and} \\ &\int_t^{t+1} ds \int_{B_1} \frac{g(u(s))\phi}{|x|^2} \stackrel{t \to \infty}{\longrightarrow} \int_{B_1} \frac{g(w)\phi}{|x|^2} \end{split}$$

(For this, note that $\int_t^{t+1} ds \int_{B_1} \frac{g(u(s))\phi}{|x|^2} \leq 2 \int_{B_1} \frac{w\phi}{|x|^2} < +\infty$). Therefore, for all $\phi \in C_0^2(\bar{B_1})$:

$$-\int_{B_1} w \Delta \phi = \int_{B_1} \frac{g(w)\phi}{|x|^2}$$

which contradicts the nonexistence of weak stationary solutions to (P_t) . This completes the proof of Theorem 3.3.

Remarks. Consider $g \in C^1$ convex, increasing function satisfying $\lim_{s \to 0^+} \frac{g(s)}{s} > \left(\frac{N-2}{2}\right)^2$, (B7) and for all $s \geq 0$, $\frac{sg(s)}{2} \geq G(s) = \int_0^s g(t) \, dt$. Then, we can apply the previous method. Precisely, for all $u_0 > 0$, $u(\cdot) = S(\cdot)u_0$ blows up in finite time in $L^2(\frac{dx}{|x|^2})$.

It suffices to modify the proof of Theorem 3.3 as follows:

- 1. 0 is replaced by $\epsilon \phi_{\epsilon}$ which is a subsolution of (P) and $\epsilon \phi_{\epsilon} < u_0$, for ϵ small enough.
- 2. The nonexistence of stationary solutions of (P_t) is provided by the results from [7].

4 Global existence of solutions to (P_t) and convergence to a stationary solution

4.1 Main results

In this section, we give two examples of global existence of solutions to (P_t) which converge to a stationary solution when $t \to \infty$. In each case, we obtain an exponential control of the convergence either in L^{∞} or in $H_0^1(B_1)$. Here, it is worth to underline that the convergence to a stationary solution is related to the uniqueness of the solution to (P). First, we prove the following:

Theorem 4.1. Assume that $N \geq 2$ and the following hypothesis:

(G1)
$$\lim_{s \to 0^+} \frac{g(s)}{s} = \lambda < 0,$$

(G2) There exists $\epsilon > 0$, such that $|g(s) - \lambda s| \le C|s|^{1+\epsilon}$.

Then, for u_0 such that $||u_0||_{L^{\infty}}$ small enough, $u(\cdot) = S(\cdot)u_0$ is global and there exists C > 0 such that $||u(t)||_{L^{\infty}} \leq Ce^{\lambda t}$ for all $t \geq 0$.

In the second part of the section, we prove the following theorem:

Theorem 4.2. Assume that $N \geq 3$ and g satisfies the following assumptions:

(G3) $s \to \frac{g(s)}{s}$ is continuous and strictly decreasing,

$$(G4) \xrightarrow{g(s)} \xrightarrow{s \to +\infty} -\infty$$
,

$$(G5) \xrightarrow{g(s)} \xrightarrow{s \to 0^+} \lambda > (\frac{N-2}{2})^2$$

Then, for any u_0 such that $0 < u_0 \le f^{-1}(0)$ and $u_0 \not\equiv f^{-1}(0)$, with $f(s) := \frac{g(s)}{s}$, $u(t) = S(t)u_0$ is global and converges to the unique nontrivial solution of (P), w_{λ} , when $t \to \infty$. Moreover, if we suppose, in addition, that -g is strictly convex, there exists K > 0 such that $\|u(t) - w_{\lambda}\|_{H_0^1(B_1)} \le C e^{-Kt}$ for all $t \ge 0$.

We start by proving a proposition which provides the heat kernel of $-|x|^2\Delta$:

Proposition 4.3. Consider $u = T(t)u_0 \in L^{\infty}(B_1) \cap L^2(\frac{dx}{|x|^2})$ solution of

$$\begin{cases} u_t - |x|^2 \Delta u = \lambda u & \text{in } B_1 \\ u(t, x) = 0 & \text{in } \mathbb{R}^+ \times \partial B_1 , \ u(0, x) = u_0 \end{cases}$$

where u_0 is radial. Then, u(t) is radial and if v(t,s) := u(t,x) with $s = -\ln|x|$ and $\lambda_N = (\frac{N-2}{2})^2$, then,

$$v(t,s) = \frac{e^{\frac{N-2}{2}s - (\lambda_N - \lambda)t - \frac{|s|^2}{4t}}}{(4\pi t)^{\frac{1}{2}}} * v(0,s).$$

Proof. First, we remark that the radial symmetry of u follows from the uniqueness of the solution to (P_t) . Then, to compute the heat kernel of

 $-|x|^2\Delta$, we use a method from [7]. Indeed, put $w(t,s):=e^{-\frac{N-2}{2}s}v(t,s)$. We show that w satisfies :

$$(P_w) \begin{cases} w_t - w_{ss} = (\lambda - \lambda_N)w & \text{in } \mathbb{R}^+ \times (0, +\infty) \\ w(t, 0) = 0 & \text{, } w(t, s) \xrightarrow{s \to +\infty} 0 & \text{, } w(0, s) = v(0, s)e^{-\frac{N-2}{2}s} \end{cases}$$

Taking w(t,-s)=-w(t,s) for all $s\geq 0$, we have that (P_w) is satisfied in $I\!\!R^+\times I\!\!R$. And we can apply Fourier transform. Indeed, for $N\geq 2$, $w(t,\cdot)$ belongs to $L^2(I\!\!R)$ (for N>2, it is obvious since $v\in L^\infty$ and for N=2, it suffices to remark that $\int_{B_1} \frac{|u|^2}{|x|^2} <\infty \Rightarrow \int_0^{+\infty} w^2\,ds <\infty$).

A simple computation shows that $\hat{w}(t,x) = \hat{w_0}e^{-(|x|^2 + (\lambda_N - \lambda)t)}$. Using inverse Fourier transform, one has:

$$w(t,s) = w_0 * \frac{e^{-(\lambda_N - \lambda)t - \frac{|s|^2}{4t}}}{(4\pi t)^{\frac{1}{2}}} \quad \text{and} \quad v(t,s) = v_0 * \frac{e^{\frac{N-2}{2}s - (\lambda_N - \lambda)t - \frac{|s|^2}{4t}}}{(4\pi t)^{\frac{1}{2}}}.$$

This completes the proof of Proposition 4.3.

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Here, we apply a method from [4]. First, remark that by the maximum principle, it suffices to prove Theorem 4.1 when u_0 is radially symmetric. Then, by Proposition 4.3, $T(t)u_0$ is radially symmetric and

$$||T(t)u_{0}||_{L^{\infty}} = \left\|v_{0} * \frac{e^{\frac{N-2}{2}s - (\lambda_{N} - \lambda)t - \frac{|s|^{2}}{4t}}}{(4\pi t)^{\frac{1}{2}}}\right\|_{L^{\infty}}$$

$$\leq ||v_{0}||_{L^{\infty}} \left\|\frac{e^{\frac{N-2}{2}s - (\lambda_{N} - \lambda)t - \frac{|s|^{2}}{4t}}}{(4\pi t)^{\frac{1}{2}}}\right\|_{L^{1}}$$

$$(4.1)$$

Now, using Laplace transform $f(y) := \int_{-\infty}^{+\infty} e^{yx - \frac{|x|^2}{4t}} dx$, we show that $\|e^{\frac{N-2}{2}s - \frac{s^2}{4t}}\|_{L^1} = e^{t\lambda N} (4\pi t)^{\frac{1}{5}}$. Therefore, by (4.1) $\|T(t)y\|_{L^1} = e^{t\lambda N} (4\pi t)^{\frac{1}{5}}$.

 $e^{t\lambda_N}(4\pi t)^{\frac{1}{2}}$. Therefore, by (4.1), $||T(t)u_0||_{L^{\infty}} \leq e^{\lambda t}||u_0||_{L^{\infty}}$. Now, we apply a method from [4]. First, we define $\Theta(\cdot)$ such that $\Theta(x) = \frac{C}{\epsilon |\lambda|} x^{1+\epsilon} - x$ with C defined in (G2) and $\delta > 0$ satisfy

$$\min \Theta(x) + \delta < 0$$
, $\Theta(\delta) + \delta > 0$ and $\Theta'(\delta) < 0$

Let us choose $u_0 \in L^{\infty} \cap L^2(\frac{dx}{|x|^2})$ such that $||u_0||_{L^{\infty}} \leq \delta$. Then, $u = S(t)u_0$ satisfies:

$$||u(t)||_{L^{\infty}} \le ||T(t)u_0||_{L^{\infty}} + C \int_0^t e^{\lambda(t-s)} ||u(s)||_{L^{\infty}}^{1+\epsilon} \le e^{\lambda t} \delta$$

$$+ C e^{\lambda t} \int_0^t e^{\epsilon \lambda s} (e^{-\lambda s} ||u(s)||_{L^{\infty}})^{1+\epsilon} ds$$

Putting $\phi(t) = \sup_{[0,t]} e^{-\lambda s} \|u(s)\|_{L^\infty}$ which is an increasing function, we have :

$$\phi(t) \le \delta + C \int_0^t \phi^{1+\epsilon}(s) e^{\epsilon \lambda s} \, ds \le \delta + \frac{C}{\epsilon |\lambda|} \phi(t)^{1+\epsilon}.$$

If $\mu = \inf\{x > 0 / \Theta(x) + \delta \le 0\} \ge \delta$, it is easy to prove that $\phi(t) \le \mu$ for all $t \in [0, T[$, where T is defined in Proposition 2.3. Moreover, $\|u(t)\|_{L^{\infty}} \le e^{\lambda t} \mu$, which implies that u is global and $T = \infty$. This completes the proof of Theorem 4.1.

Remarks.

- 1. If $p \in]1, +\infty[$, the function $g: s \to s^p$ satisfies the hypothesis of Theorem 4.1. Therefore, Theorems 3.1 and 4.1 show that the behaviour of the solution of (P_t) depends on the initial data.
- 2. It is worth noticing that for N=2, we obtain almost a complete description of the behaviour of solutions of (P_t) . Precisely, $\lambda_N=(\frac{N-2}{2})^2=0$ is the "blow-up critical parameter" (see [13]) which means that for $\lambda<\lambda_N$, there exists global solutions of (P_t) for small initial data and if $\lambda>\lambda_N$ then for all $u_0\not\equiv 0$, $u(t)=S(t)u_0$ blows up in finite time. However, we do not know what happens in the case $\lambda=\lambda_N$. Moreover, since the heat kernel of $-|x|^2\Delta$ does not vanish at the boundary, we cannot apply a method due to Fujita (see [9]) which would furnish the answer. For $N\geq 3$, we suspect that λ_N still remains the critical blow-up parameter.

Now, we give the proof of Theorem 4.2.

Proof of Theorem 4.2.

Since there is a unique nontrivial solution to (P), it suffices to prove Theorem 4.2 when u_0 is radially decreasing. In this case, $S(t)u_0$ is also radially decreasing. Indeed, choosing $\epsilon \in]0,1[$, we remark that $u(t,\epsilon x):=u_{\epsilon}(t)$ is solution to

$$(P_{\epsilon,t}) \left\{ \begin{array}{l} u_t - |x|^2 \Delta u = g(u) \quad \text{in } I\!\!R^+ \times B_{\frac{1}{\epsilon}} \\ u(t,x) = 0 \quad \text{in } I\!\!R^+ \times \partial B_{\frac{1}{\epsilon}} \quad , \ u(0,x) = u_0(\epsilon x) \end{array} \right.$$

Since $u_0(\epsilon x) \geq u_0(x)$, by the maximum principle, for any $\epsilon \in]0,1[$, $u_{\epsilon}(t) \geq S(t)u_0$ which proves that $S(t)u_0$ is radially decreasing.

Now, as above we prove that:

$$\frac{d}{dt} \int_{B_1} \frac{|u(t)|^2}{|x|^2} = -\int_{B_1} |\nabla u(t)|^2 + \int_{B_1} \frac{g(u(t))u(t)}{|x|^2}$$

Moreover, $E(u(t)) = \frac{1}{2} \int_{B_1} |\nabla u(t)|^2 - \int_{B_1} \frac{G(u(t))}{|x|^2}$ satisfies

$$\frac{d}{dt}E(u(t)) < 0 \text{ and } E(u(t)) < E(u_0).$$
(4.2)

Furthermore, multiplying the equation in (P_t) by $\frac{(u-f^{-1}(0))^+}{|x|^2}$ we obtain :

$$\frac{d}{dt} \int_{B_1} \frac{\left((u(t) - f^{-1}(0))^+ \right)^2}{|x|^2} + \int_{B_1} |\nabla (u(t) - f^{-1}(0))^+|^2
= \int_{B_1} \frac{\left((\lambda - f(u(t)))(u - f^{-1}(0))^+ \right)^2}{|x|^2} \le 0$$

which implies that for all $t \ge 0$, $u(t) \le f^{-1}(0)$ and therefore $\bigcup_{t \ge 0} \{u(t)\}$ is uniformly bounded in $L^{\infty}(B_1)$. By (4.2), for $N \ge 3$, it follows that:

$$\int_{B_1} \frac{|\nabla u(t)|^2}{2} \le E(u_0) - G(f^{-1}(0)) \int_{B_1} \frac{1}{|x|^2} dx \le C$$

Therefore, $\bigcup_{t\geq 0}\{u(t)\}$ is bounded in $L^{\infty}(B_1)\cap H^1_0(B_1)$. Then, for any sequence $\{t_n\}_{n\in\mathbb{N}}$ such that $t_n\to +\infty$, there is $w\in L^{\infty}(B_1)\cap H^1_0(B_1)$ (depending a priori on $\{t_n\}_{n\in\mathbb{N}}$) satisfying

$$u(t_n) \stackrel{n \to \infty}{\rightharpoonup} w$$
 in $H_0^1(B_1)$, $u(t_n) \stackrel{n \to \infty}{\rightharpoonup} w$ in $L^2(\frac{dx}{|x|^2})$

and

$$G(u(t_n) \stackrel{n \to \infty}{\to} G(w) \text{ in } L^1(\frac{dx}{|x|^2}).$$

For this, notice that on one hand

$$\int_{B_1} \frac{|u(t_n) - w|^2}{|x|^2} \leq \left(\int_{B_1} |u(t_n) - w|^{p'} \right)^{\frac{1}{p'}} \left(\int_{B_1} \frac{1}{|x|^{2p}} \right)^{\frac{1}{p}}$$

where $p < \frac{N}{2}$ and $\frac{1}{p} + \frac{1}{p'} = 1$. On the other hand, since $\bigcup_{t \geq 0} \{u(t)\}$ and w are uniformly bounded in L^{∞} ,

$$\int_{B_1} \frac{|G(u(t_n) - G(w)|^2}{|x|^2} \leq C \int_{B_1} \frac{|u(t_n) - w|^2}{|x|^2}$$

Let us show that

$$u(t_n) \xrightarrow{H_0^1(B_1)} w$$
 when $n \to \infty$

For this, it suffices to prove that $\int_{B_1} |\nabla u(t_n)|^2 \stackrel{n\to\infty}{\longrightarrow} \int_{B_1} |\nabla w|^2$. Let us prove that $\int_{B_1} |\nabla u(t_n)|^2$ does not concentrate in x=0. First, for any $\delta < 1$, multiplying the equation in (P_t) by $\frac{u(t)}{|x|^2}$ in B_δ , we have:

$$\frac{d}{dt} \int_{|x| < \delta} \frac{|u|^2}{|x|^2} + \int_{|x| < \delta} |\nabla u(t)|^2 - \int_{|x| = \delta} \frac{\partial u(t)}{\partial n} u(t) \, ds = \int_{|x| \le \delta} \frac{g(u(t))u(t)}{|x|^2}$$

Since u(t) is radially decreasing,

$$\frac{d}{dt} \int_{|x| \le \delta} \frac{|u|^2}{|x|^2} + \int_{|x| \le \delta} |\nabla u(t)|^2 \le \int_{|x| \le \delta} \frac{g(u(t))u(t)}{|x|^2} \tag{4.3}$$

Integrating (4.3) in [t, t+1], we obtain:

$$\left[\int_{|x| \le \delta} \frac{u(s)^2}{|x|^2} \right]_t^{t+1} + \int_t^{t+1} ds \int_{|x| \le \delta} |\nabla u(s)|^2 \le C \int_{|x| \le \delta} \frac{1}{|x|^2}$$

where C is independent of t. Then, for all $\epsilon > 0$, there is $\delta(\epsilon) > 0$ small enough such that for all $\delta \leq \delta(\epsilon)$, we have :

$$0 \le \int_t^{t+1} \int_{|x| \le \delta} |\nabla u(t)|^2 \le \epsilon \tag{4.4}$$

To conclude the proof, suppose that $\int_{B_1} |\nabla w|^2 < \lim_{n \to \infty} \int_{B_1} |\nabla u(t_n)|^2$. Then, by (4.2) $E(w) < E_{\infty} = \lim_{t \to \infty} E(u(t))$. However, by (4.4), it is easy to prove that

$$\int_{t}^{t+1} ds \int_{B_1} |\nabla u(t_n + \tau)|^2 \xrightarrow{n \to \infty} \int_{t}^{t+1} \int_{B_1} |\nabla (S(\tau)w)|^2$$
 (4.5)

Indeed, by the boundedness of $\{u(t)\}_{t\geq 0}$ in $L^{\infty}\cap H_0^1(B_1)$,

$$\begin{aligned} || \, |x|^2 \Delta(S(t+\tau)u_0) ||_{L^2(\frac{dx}{|x|^2})} & \leq & || \, |x|^2 \Delta(T(t)u_0) ||_{L^2(\frac{dx}{|x|^2})} \\ & + & \int_t^{t+\tau} || \, |x|^2 \Delta T(t+\tau-s) g(u(s)) ||_{L^2(\frac{dx}{|x|^2})} \, ds \end{aligned}$$

from which it follows:

$$|||x|^{2} \Delta S(t+\tau) u_{0}||_{L^{2}(\frac{dx}{|x|^{2}})} \leq \frac{C}{\tau} ||u(t)||_{L^{\infty}} + C \int_{t}^{t+\tau} \frac{ds}{(t+\tau-s)^{\frac{1}{2}} s^{\frac{1}{2}}} ||u_{0}||_{L^{\infty}} \leq \frac{C}{\tau}$$

(for this, using a method from [4] Lemma 3.10, we prove that

$$|||x|^2 \Delta T(t) u_0||_{L^2(\frac{dx}{|x|^2})} \le \frac{1}{t^{\frac{1}{2}}} ||u_0||_{H^1_0(B_1)}$$

and

$$||T(t)u_0||_{H_0^1(B_1)} \le t^{-\frac{1}{2}} ||u_0||_{L^2(\frac{dx}{|x|^2})} \le C t^{-\frac{1}{2}} ||u_0||_{L^\infty}$$

for $N \geq 3$)

Finally, (4.4) and the compactness of the embedding $H^2(\delta \le |x| \le 1) \hookrightarrow H^1(\delta \le |x| \le 1)$ imply (4.5). Now, using that $E(\cdot)$ is decreasing, we have:

$$\int_{t}^{t+1} E(S(\tau)w) d\tau \le E(w) < E_{\infty}$$

which contradicts (4.5). Thus,

$$\int_{B_1} |\nabla u(t_n)|^2 \stackrel{n \to \infty}{\longrightarrow} \int_{B_1} |\nabla w|^2$$

and for any

$$t > 0E(S(t)(w)) = E(w) = E_{\infty}.$$

This implies that w is a stationary solution of $(P_t.u_0)$ and either $w \equiv 0$, or $w \equiv w_\lambda$ which is the nontrivial solution of (P).

Now, let us prove that $u(t) \stackrel{t\to\infty}{\longrightarrow} w$ in $L^{\infty}(B_1)$. By a bootstrap argument (see [12]), it is easy to prove that for any $\delta > 0$,

$$||u(t) - w||_{L^{\infty}(|x| \ge \delta)} \stackrel{t \to \infty}{\longrightarrow} 0 \tag{4.6}$$

We consider $u_0 := \epsilon \psi_{\epsilon}$ which satisfies

$$|x|^2 \Delta u_0 + g(u_0) > 0$$
 if ϵ is small enough (4.7)

We recall that ψ_{ϵ} is the eigenfunction of $-(|x|^2 + |\epsilon|^2)\Delta$ defined in the proof of Theorem 3.1. Note that by (G5) and (G4), (4.7) is satisfied for ϵ small enough. Then, u_0 is a strict subsolution of (P) and as above, it implies that $\frac{d}{dt}S(t)u_0 \geq 0$ for all $t \geq 0$. Hence, $u(\cdot)$ is increasing. Hence, $w = v_{\lambda}$. Then, by Dini's theorem and (4.6), we have for all $\delta > 0$:

$$||u(t) - w_{\lambda}||_{L^{\infty}(|x| > \delta)} \stackrel{t \to \infty}{\longrightarrow} 0 \tag{4.8}$$

Moreover, from [8] we know that $w_{\lambda}(0) = f^{-1}(0)$. Therefore, since $\{u(t)\}_{t\geq 0} \cup \{w_{\lambda}\}$ are radially decreasing

$$\begin{split} \limsup_{t \to \infty} \|w_{\lambda} - u(t)\|_{L^{\infty}(B_{1})} & \leq \limsup_{t \to \infty} \|u(t) - w_{\lambda}\|_{L^{\infty}(|x| \leq \delta)} \\ & + \limsup_{t \to \infty} \|u(t) - w_{\lambda}\|_{L^{\infty}(|x| \geq \delta)} \\ & = \limsup_{t \to \infty} \|u(t) - w_{\lambda}\|_{L^{\infty}(|x| \leq \delta)} \leq f^{-1}(0) \\ & - \lim_{t \to \infty} \lim_{t \to \infty} u(t, x) \end{split}$$

Thus, suppose that $c_{\lambda} := \lim_{t \to \infty} \lim_{|x| \to 0} u(t, x) < f^{-1}(0)$. Then, since $u(t, \cdot)$ is radially decreasing, for any x_{δ} such that $|x| = \delta > 0$, $w_{\lambda}(x_{\delta}) = \lim_{t \to \infty} u(t, x_{\delta}) \le c_{\lambda}$. This contradicts that w_{λ} is continuous.

Now, considering any u_0 such that $0 < u_0 \le f^{-1}(0)$ and $u_0 \ne f^{-1}(0)$, there exists $\epsilon > 0$ small enough such that $\epsilon \psi_{\epsilon} < u_0$. It implies that

$$S(t)(\epsilon \psi_{\epsilon}) < S(t)(u_0) \le f^{-1}(0)$$
 and $||S(t)u_0 - w_{\lambda}||_{L^{\infty}(B_1)} \xrightarrow{t \to \infty} 0$ (4.9)

To conclude the proof of Theorem 4.2, let us prove that if we suppose, in addition, that -g is strictly convex, then, there exists K > 0 such that $||u(t) - w_{\lambda}||_{H_0^1(B_1)} \leq C e^{-Kt}$ for all $t \geq 0$. First, note that

$$\frac{d}{dt} \int_{B_1} \frac{|w_{\lambda} - u(t)|^2}{|x|^2} + \int_{B_1} |\nabla(w_{\lambda} - u(t))|^2$$

$$= \int_{B_1} \frac{(g(w_{\lambda}) - g(u(t)))(w_{\lambda} - u(t))}{|x|^2}$$

By (4.9), for t large enough, we have :

$$\frac{d}{dt} \int_{B_1} \frac{|w_{\lambda} - u(t)|^2}{|x|^2} + \frac{\lambda_1}{2} \left(-\Delta - \frac{g'(w_{\lambda})}{|x|^2}\right) \int_{B_1} \frac{(w_{\lambda} - u(t))^2}{|x|^2} \le 0 \quad (4.10)$$

where $\frac{\lambda_1}{2}(-\Delta - \frac{g'(w_\lambda)}{|x|^2})$ is the first eigenvalue of $(-\Delta - \frac{g'(w_\lambda)}{|x|^2})$ in $H^1_0(B_1)$. Then, the strict convexity of -g implies (see [8]):

$$\lambda_1(-\Delta - \frac{g'(w_\lambda)}{|x|^2}) > \lambda_1(-\Delta - \frac{1}{|x|^2} \frac{g(w_\lambda)}{w_\lambda}) = 0$$

Thus, from (4.10), it is easy to prove that:

$$\int_{B_1} \frac{|w_\lambda - u(t)|^2}{|x|^2} \le Ce^{-\frac{\lambda_1 t}{2}}$$

Using (4.10) and putting $K = \frac{\lambda_1}{2}$, we have for all t:

$$\int_{B_1} |\nabla(w_{\lambda} - u(t))|^2 \le Ce^{-Kt}$$
 (4.11)

This completes the proof of Theorem 4.2.

Remarks.

1. If $g(s) := \lambda s - |s|^{p-1}s$ where $\lambda > (\frac{N-2}{2})^2$ and p > 1, then, g satisfies the assumptions of Theorem 4.2.

2. Suppose that -g is strictly convex and satisfies the assumptions (G3) to (G5). Then, taking $\delta > 0$, (4.11) and a bootstrap argument show that for all t > 0:

$$||u(t) - w_{\lambda}||_{L^{\infty}(|x| \geq \delta)} \leq C(\delta)e^{-Kt}.$$

However, we don't know if that remains valid for $\delta = 0$.

3. The assumption (G5) and the second part of Assumption (G4) suffice to prevent that $u(t) = S(t)u_0$ converges to 0 in $L^{\infty}(B_1)$ when $t \to \infty$ and when $u_0 \neq 0$.

Indeed, suppose that $||S(t)u_0||_{L^{\infty}(B_1)} \stackrel{t\to\infty}{\longrightarrow} 0$. Then, adapting a method from [14], we consider ϵ small enough such that $\lambda_{\epsilon}^1 < \lambda$. Then, multiplying the equation in (P_t) by ψ_{ϵ} :

$$\frac{d}{dt} \int_{B_1} \frac{u(t)\psi_{\epsilon}}{|x|^2} + \lambda_{\epsilon}^1 \int_{B_1} \frac{u(t)\psi_{\epsilon}}{|x|^2 + |\epsilon|^2} = \int_{B_1} \frac{g(u(t))\psi_{\epsilon}}{|x|^2}$$

from which it follows for t large enough:

$$\frac{\frac{d}{dt} \int_{B_{1}} \frac{u(t)\psi_{\epsilon}}{|x|^{2}} \geq -\lambda_{\epsilon}^{1} \int_{B_{1}} \frac{u(t)\psi_{\epsilon}}{|x|^{2}} + \int_{B_{1}} \frac{g(u(t))\psi_{\epsilon}}{|x|^{2}} \\
\geq \frac{1}{2} (g'(0) - \lambda_{\epsilon}^{1}) \int_{B_{1}} \frac{u(t)\psi_{\epsilon}}{|x|^{2}} \tag{4.12}$$

Moreover, assumption (G5) implies that for ϵ small enough, $g'(0) = \lambda > \lambda_{\epsilon}^{1}$. Thus, by (4.12), we have $\int_{B_{1}} \frac{u(t)\psi_{\epsilon}}{|x|^{2}} \geq Ce^{\frac{(\lambda-\lambda_{\epsilon}^{1})t}{2}} \stackrel{t\to\infty}{\longrightarrow} +\infty$ which contradicts the uniform boundedness of $\{u(t)\}_{t\geq0}$.

4. In [8], the authors show the existence and the uniqueness of the solution, u_{ϵ} , to the following pertubed problem:

$$(P_{\epsilon}) \left\{ \begin{array}{ll} -|x|^2 \Delta u = g(u) + \epsilon \, f(u) & \text{in } B_1 \\ u \, \in \, H^1_0(B_1) \ , \ u \geq 0 \end{array} \right.$$

where g satisfies (G3) to (G5), f is a positive function in \mathbb{R}^+ and belongs to $C^1(\mathbb{R}^+)$ such that $\lim_{s\to +\infty} f(s) + g(s) = -\infty$ and $\epsilon > 0$ small enough. Moreover, $\lambda_1(-\Delta - \frac{(g'(u_{\epsilon}) + \epsilon f'(u_{\epsilon}))}{|x|^2}) > 0$. Then, Theorem 4.2 holds for (P_{ϵ}) .

References

- [1] H. Berestycki, Le nombre de solutions de certains problèmes semilinéaires elliptiques. J. Funct. Anal. 40 (1981), 1-29.
- [2] H. Berestycki and M.J. Esteban, Existence and bifurcation of solutions for an elliptic degenerate problem. J.D.E. 134, No. 1 (1997).
- [3] H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for $u_t \Delta u = g(u)$ revisited. Advances in Differential Equations 1 (1996), 76-91.
- [4] T. Cazenave and A. Haraux, Introduction aux problèmes d'évolution semi-linéaires, mathématiques et applications. 1, Ellipses, Paris, 1990.
- [5] T. Cazenave and P. L. Lions, Solutions globales d'équations de la chaleur semi-linéaires. Comm. P. D. E. 9 (1984), 955-978.
- [6] M. Escobedo, M.A. Herrero and J.J.L. Velázquez, A nonlinear Fokker-Planck equation modelling the approach to thermal equilibrium in a homogeneous plasma. Preprint.
- [7] M.J. Esteban and M. Ramaswamy, Nonexistence result for positive solutions of nonlinear elliptic degenerate problems. Nonlinear Analysis, Theory, Methods and Applications. 26, No. 4 (1996), 835-843.
- [8] M.J. Esteban and J. Giacomoni, Existence of global branches of positive solutions for semilinear elliptic degenerate problems. Preprint.
- [9] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$. J. Fac. Sci. Univ. Tokyo. Section I.A. Math. 13 (1966), 109-124.
- [10] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations. Commun. P. D. E. 6 (1981), 883-901.
- [11] Y. Giga, A bound for global solutions of a semilinear heat equations. Commun. Math. Phys. 103 (1986), 415-421.

- [12] O. A. Ladyzhenkaya, V. A Solonnikov, N. N. Uralceva, *Linear and quasilinear equations of parabolic type*. Transl. Math. Monogr. 23 (1968), Providence, R.I. Am. Math. Soc. V. A.
- [13] H. A. Levine, The role of critical exponents in blow up Theorems. SIAM Review. 32 No. 2 (1990), 262-288.
- [14] M. A. Jendoubi, Exponential stability of positive solutions to some nonlinear heat equations. Preprint.
- [15] K. Yosida, Functionnal Analysis. Springer (1978).

CEREMADE (URA.CNRS N 749), Université de Paris-Dauphine, 75775 Paris Cedex 16, France e-mail: giacomo@ceremade.dauphine.fr

> Recibido: 6 de Octubre de 1997 Revisado: 9 de Febrero de 1998