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A summability condition on the gradient
ensuring BMO.

Alberto FIORENZA*

Abstract
it is well-known that if u € WL1(Q), Q@ C R satisfies | Du |€
LY (), then u belongs to BMO(RQ), the John-Nirenberg Space.
We prove that this is no more true if | Du | belongs to an Orlicz
space L4(f2) when the N-function A(f) increases less than tV. In
order to obtain © € BMO{(2), we impose a suitable uniform L4
condition for | Du |.

1 Imtroduction

In a recent paper Fusco-Lions-Sbordone ((FLS]) gave imbeddings of
Orlicz-Sobolev spaces WH4(Q), © a cube in RY, in Orlicz spaces with
exponential growth, when the Young function A is of type A(t) =
tN log=?(e + t). If ¢ = 0, the space W14(Q) reduces to W'V (§2) and
it is well-known that such space is imbedded in BMO(R?). If ¢ = 1
there are some counterexamples (see [GISS]) showing that W14(Q) is
not imbedded in BMO(S).

In this paper first we show, adapting an example appeared in [GISS],
that for any Young function A(t) which growths essentially less than tV
the space W14(Q) is not imbedded in BMO(). Such a result has been
recently proved, in a different way, in a paper by Cianchi-Pick [CP].
Moreover, if we require that, in some sense, the gradient of a function
wis in La(Q, RYY uniformly with respect to the cubes contained in (,
then
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we get the imbedding in BMO(?), even if the Young function A(t) has
a growth essentially less than t". Namely, let us introduce the uniform
Orlicz spaces

N — 4
fEUAQ R =| f IUA(Q,RN)_ Slé% [QIF | f1llLag) < too

where the supremum is extended to all cubes ) contained in £ with
sides parallel to the coordinate axis. If A(t) = tV, then Ua(Q, B™)

reduces to LV(Q, R"); if A(t) = ., > 0, then Uy (Q, RY)
* ) - log"(e+t)’ ’ A\3E,

contains LY (Q, BY). We show that for such A if Vu € U (2, RY) then
u € BMO(Q) (see Corollary 3.4) and, more generally, following [IS}, if
we introduce the space

1
N=¢

f'EUéV)(Q,RN)'{:}supIQ]# sup f”]I-IfIN_‘dw < +oc
Qca oce<t | 2

we have that U (2, RY) C {,N)(Q, RM) (see Proposition 3.2} and, if

Vu € Zlév)(Q, RN), then u € BMO(RQ) (see Theorem 3.3).

Finally, following [FLS], we will prove also some imbedding results
in Orlicz spaces for the Riesz Potential Operator in the critical case (see
Theorem 3.5).

2 Notation and Preliminary results

Let us fix notation and recall basic concepts. For our purposes, a Young
function will be any nonnegative, even, convex function & : R' —
R! such that @ is (strictly) increasing on [0,00), and !i_]’:’[l]@(t)/t =0,
tll_glo d(t)/t = oo.

Let © be a bounded open set in R". The Orlicz space Lg(Q) is de-
fined to be the smallest vector space containing the set of all measurable
functions f defined on € such that ®(] f|) € L!(R2). It may be checked
that Le(f2) is a Banach space with respect to the norm

Ilfl|<»=inf{)\> O:g[@(%) dz < 1}
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where the symbol ; stands for ﬁ / . A special case is ®({} =
Q Q

P

t; (p > 1), in which Lg(?) reduces to LP(Q). II &{t) =
P

Eo—(t-e—_l_-t—) {p > 1,0 > 0) then the corresponding Orlicz space will be

denoted by LPlog™" L{f2). Following [IS}, we will consider also a space
larger than LP log™7 L(£2), namely Iy () (p> 1,0 > 0),defined as the
Banach space of all measurable functions on €2 such that

1
p—¢
£l = sup (e*’flfr’-f dm) < +o0.
i 0<e<1 5

Following [G], the closure of L** () in LP(92) will be denoted by TP ()
(by £P(R2) if ¢ = 1), and it is characterized as the space of all measurable
functions on Q such that

1
p—t
. o p=c _
3‘_‘2%(5]‘:'” d:c) = 0.
Q

In [FLS] it is proved the following extension of Trudinger’s imbedding
theorem ([T]) for Wo™ () functions:

Theorem 2.1. If u € Wy''(Q) is such that | Du |€ Lf,v)(Q) for some
o > 0, then there exist ) = ¢1{N, o), c2 = c3(N, ¢) such that

N
N—l-{—o"
dr < ¢

ex vl 3
][ p\\CIHD””L;V) |21y ) }

7}

We remark that if © is convex, then an inequality of the same type
is true also for functions ue€ W!'(Q)}, provided |u| is replaced by

fu ~ f udz|. In fact, giving a closer look to the proof of Theorem 2.1,
2

the assumption u € Wc}’l(ﬂ) 'has been used only to write the inequality

u(@) IS W) [ 1Dullz -y dy
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If w € WIH(Q) and Q is convex, replacing |u| by |u —][ udz|, this
Q

inequality is true with the constant in the right hand side depending
only on N and the shape of §2, but independently on the measure of Q2
([GT]). In the proof of Theorem 3.3 we will use such inequality with Q
replaced by a cube, therefore the constants will depend only on .

In [FLS] it is proved also that if u € W, (Q) and | Du |€ ZN(Q)
then u € ezxp(Q1), that is the closure of L°°(Q) in the Banach space

EXP(Q)= {f € L'(f) : 3) > 0 such that J[ezp (%) dz < oo} .
Q

More generally, we will denote by ezp,(?), « > 0, the closure of
L*(Q) in EX P,{}), the Orlicz space generated by the function ®(t) =
exp(t*) — 1.
' Finally, let us recall that BMO(RQ?) is defined (see {S] for instance)
as the space of the measurable functions u such that

st = sup f | u—ug | dr < +oc
QCQQ .

where the supremum is taken over all cubes ¢ with sides parallel to the

coordinate axes, and ug stands for fud:c. We would get an equivalent

definition of BMO(RQQ) if we replace fhe family of all cubes by the family
of all balls. 1t is possible to prove (see [KJF] for instance) that if 2 is
a cube then BM(O(Q) functions can be characterized by the following
property:

dA > 0: sup fexp (M—l) dz < +oc.
Qca) A

3 The main results

Let us recall that by Moser’s inequality ([M]) W1 () functions are
ezp_n_(€) functions, and if | Du |€ LN log=® L{Q) then u € exp__u__ ()

We now study imbeddings in BMO(2). While WV (§2) functions
are BMO(RQ) functions, if A(t) is a Young function with a growth essen-
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tially less than V| then the Orlicz-Sobolev space W14(€) is not imbed-
ded in BMO(). In fact we have the following example (see [GISS] for
the case A(t) =tV log™7 (e + t)):

Example 3.1. LetQ be a bounded open set in RY, and let A be ¢ Young
function of the type A(t) = tV(t), @(+o00) = 0. Then there ezists a
measurable function u such that | Dule La(Q?) and v § BMO(S).

Let {a;};c gy be such that
Y ali Tt < 400 (3.1)
i

lime; = +o0 (3.2)
j .

and let {r;}.. py be such that

Sorj< oo (3.3)
j B
1 a;
< - ] .
w(t) < log? vt > ry VielN (3.4)

Let us note that by {3.3) we can find a sequence of points z; € Q such
that the balls B(z;, r;) are pairwise disjoint and contained in  (at least
for j large enough). Let us define

rj
where
0 if |z(>1
hiz)={ —log|z| fi<lz|<l Vze R
log 2 if |z]<

3
and let u = h;. Notice that u(z) = h;(z) if | z — z; [< rj.
Hence, we have

lullsamo > f | by ~ (hy)s, | do = a,-]C \h—(h)p|dz Yje N
B, B

where B is the unit ball of R", and therefore, by (3.2}, u ¢ BMO(R).
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On the other hand

pp 3 <le—g;|<r;
IDhJ |< . r;
- l10 if |z—a;{< £}

and therefore, by (3.4),

/ A(| Dh; |)yde < ] A(|$fj:c-!) dz
lz—z;|<r; %51x~xu,|§r_, ’
l‘j ‘
_ NwaA (“-f) pNldp
A p
Fi
rJfl a
- o [ 1o(2):
7 J p?’ P (4
T
2
Ty
1 1
< N N/_. d
= WNa; /7 Plog 2 P
T
T2
1
= NQJNG?TJ—,,.E

where wy denotes the measure of the unit ball in R™, from which, sum-
ming over j and using (3.1}, we get | Du |€ L4(f2).

a

We remark that if | Du | belongs to some suitable spaces containing

LN () (for instance, weak— LY (2)) then it is known that © € BMO(R).

Now we introduce some new spaces having this property, which represent

a variant of the classical Orlicz spaces. Namely, we consider the functions
f € L4(2) such that

[ £ lpa=sup | @17 || fllL.@) < +00
QCa

If A(t) = t?, then | f |, 4,0 reduces to the classical norm in L? spaces. If
N

p=N and A(t) = d

m (N > 1,0 > 0) then | f [p.4.0 is a norm
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defining a Banach space and it is different from || f|lr ,(q)- The following
result hold:
tN

Proposition 3.2. Let A(t) = m

(N>1,0>0). If

1
su ? < 400
QcIi)l | Q17 IfllLacQ)

then .
N—¢

sup [ Q¥ [ f | FI¥- dz | < +oo
Qcn

0<egl

Proof. Let f € La(R), f > T, where A(T,) = 1. By using the
elementary inequality

(e+t) <e+t® (0<e<1t>0)

we obtain
gopN-e = log’lle+ /)] PN logetf) SN
fo_ log?le+ f) — fe log” (e + f)
, N

< (Cyma—e
- log? (e + f)
for some C, > 0, therefore

1
N—e¢

sup c"f | FIN=¢ da <Gy
Q

fN

0<e<1 5 log” (e + f)

If we drop the condition f > 7,, applying the previous estimate to
max(| f|,7,) we get

max(] f |, )™

o Nw—e¢
su € dz ][ dz
P, ;f‘” T Tog? (e + max(1 / . T7)

"o
<c,f__—--— D,
=T Tog (e ) i




320 Alberto Fiorenza

for some D, > 0.
Replacing f by Wﬂj‘) the right hand side is majorized by a con-
Q

stant depending only on o, a.nd independent of (), therefore the assertion
follows multiplying by | @ IW [Ifliz .(0) and taking the supremum over
all cubes () contained in 2.

Theorem 3.3. If u € WH(Q), Q cube in RY (N > 1), is such that
| Du | verifies the condition

1
F=c

| Du e UV (Q, RV} — sup|Q[w sup. e")[|Du|N_‘dm =
QCch 0<e<
M, - <+, (3.5)

Jor some o > 0, then u € BMO(Q).

Proof. Without loss of generality we can assume 0 < o < 1. Let us
fix @ C § and let us apply Theorem 2.1 with Q replaced by Q, and u
replaced by u — ug. We have

N
B perd
)[ex ((I:IM:T) )dxs

s
][exp |u—uq |_ + dz < (N, o),
] | el | QT‘}:v
from which
| v~ ug |
exp| ————— |l dz =
/ p( clMu,cr

Q
| u—ug |
exp | ——————2- | dz +
_uf ( Cy Mu.a
o) Mu,o >t ElMu,g’ _

| u~ ug |
f exp ( T dir

lz—zgl
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< /exp ((i;‘:‘;uc’_l —Hm) dx+/exp(1)dw
1ivly o
Q Q
< a0 {Q|+e| Q]

and therefore

sup 4 exp —— =) dz < +00.
QCQQ CIMu,o

Since §2 is a cube, then v € BMO(0).

We prove now the following
tN

Corollary 3.4. Let A(t) = m
ogle+t

+00, then u € BMO({Q).

Proof. For any Q C Q we have ||f|lz (@) < +oc and therefore (see
[BFS] lemma 3; see also [G])

(N> 1,0>0). Iff Du|nag<

lim e"][ | Du |V=¢ dz =0
e—0+
Q

from which

1
N-—-e

sup e")[ | Du [N dx <+4oc VQ C Q.
ocegt \ )

We have

1
N=¢

sup | @ |1F sup e"f | Du |V dz
QCh 0<e<1 5

EA

1 o
sup | @ |¥ sup eF=<e(N,o)||Dull1 .0
Qca 0<e<1

e(N,0)sup | Q 1% IDuliz.@)

[Fa

= ¢(N,0)| Dulaa< +oo
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and therefore by Theorem 3.3 the assertion follows. [ |

By Corollary 3.4, the function f of Example 3.1 is such that
| Df |n,a5= +oo. This fact could be also verified directly, by proving
that

T
| B, ]‘zli" sup GJL | Dh; IN=¢ dz = ¢(N)a; VieN.
0<eg

2

Let us note also that the BMO function u(z) =log | z | (] z |[< 1)
verifies the condition (3.5), and is such that « & L, | Du |¢ LV.
We remark that by using the same arguments to prove Theorem 2.1

it is possible to give an alternative proof of a well-known result by Adams
[A] (see Corollary 4.2) about the Riesz Potential Operator defined by

Isf=[1a-y 77N fway.

Theorem 3.5. let 1 < p < 4oo, 0 > 0.If f € Lﬁ)(Q), then Inf €
P
EXP_{F_(Q)
F— -3

Proof. Let us start again from the inequality

——

pme=i 1 Bt L
1z flly < g #= cqvowp | 27 [ fllp-e Vg2 P, VO<e< L

We have
i poe=t 1 Bzed 1
Flxfly < ¢ qh oy QU e
—e—1 1 E:.E._._l 1
< T g wg 1218

and therefore

1
[

Inf
r

m dz | <ec(n)

p—ltco
sup € _P ][
0<ex<1
= !

from which the assertion follows.
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Corollary 3.6. Let1 < p < 4+oo. There ezist constant ¢y = co(N),
¢y = c1{N, p) such that for any f € LP(R) the following inequality holds:

| In 1\ 77
ex 2 der <c
gf "\ ol 7T ="

Applying to the Theorem 3.5 the same density argument as in [CS],

if a function f is in the closure of L®(Q) of LP(Q) then the image of f
by the linear continuous operator /» must be in the closure of L>(Q}

of EXP_g_(8), therefore we have also the following

Corollary 3.7. Let 1 < p< 400, ¢ > 0. If f € Z2(Q), then Inf €
F

erp - (?)
We remark that, in the same way, as a corollary of Theorem 3.5, we

get that if f € LP(Q2), then Ix f € erp;nT(Q).
X =
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