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An unknotting theorem for tori in S*.

Akiko SHIMA

Abstract

Let T be a torus in S* and T* a projection of T'. If the singular
set ['{T™) consists of one disjoint simple closed curve, then T can
be moved to the standard position by an ambient isotopy of S*.

1 Introduction

In this paper we will study an embedded torus T in S*. If the singular
set of the projection 7* (C 82) of T consists of one double curve, then
what can be said about the position of 77 The following theorem is the
main result.

Main Theorem (Theorem 4.1). Let T be a torus in §*. If the
singular set T'(T*) consists of one simple closed curve, then T can be
moved to the standard position by an ambient isotopy of S4.

We will work in the PL category. All submanifolds are assumed to
be locally flat. Let $4 be the 4-dimensional sphere, S3 the 3-dimensional
sphere, and p : S\ {oo} — 53\ {oo} the projection defined by
p(z1, 22, 23, r4) = (21,22, z3).

Let B = {(zy,22,73) € Rz} + 28+ 2} < 1}, and B = BN
{(z1,22,23) € R%z; = 0}. Let F be a closed oriented surface, and
f: F — 5%\ {00} a map. We say that f is in general position, if for
each element z of f(F), there exist a regular neighborhood N of z in
53\ {00} and a homeomorphism A : N —+ B such that N and A satisfy
the following two conditions:
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(1) Under h, (NN f(F),z) is homeomorphic to either
(B,Pl,(0,0,0)),(B,P]UPz,(D,0,0))OT (B?PIUP2UP3?(010?0))'

(2) Let R be a component of f~1(f(F) N N). There exists an integer
t such that ko f|[R: R — P, is a homeomorphism.

Note. If (N,N N f(F),z) is homeomorphic to (B, P, U Py, (0,0,0)),
then z is called a double point. If (N, NN f(F),z) is homeomorphic to
(B, AU P, U P5, (0,0,0)), then z is called a triple point.

Throughout this paper, we assume that p|F is in general position.

With every point P or subset F of $*\ {00}, we associate the point
P* = p(P) or the subset F* = p(F). We define ['(F*) to be the set of
all double points and triple points and put I'(F) = p~}(['(F*)) N F.

A solid torus V' is said to be standard in 53, if V is a regular neigh-
borhood of a trivial knot in §3. And the torus 8V C S2 C §* is said to
be a standard torus in §%. In [H-K], they proved that a boundary of a
handlebody in S* is unique up to ambient isotopies of S4.

The circle is taken to be the quotient space S' = R/(8 ~ 8+2r for
all # € R). We will write "8 € S'”. We denote by (a,b) the greatest
common divisor of the integers a and b. Let py : I x S! — I x §!
be the b-fold cyclic cover given by (z,8) — (z,b8) for & € Z\{0}. Let
ré : I x 8 — I x S! be the rotation map given by (z,8) — (z,8 + )
for ¢ € S1. Let e : §' — I x S! be an immersion. Let ig: [ x §1 —
I'x8'x 8 C1IxS8!x 8! be the inclusion map (z, ¢) = (z,d,8). Let
a, b be integers satisfying b #0. We define immersed surfaces a(a, b) in
I x 8! x 81, which satisfies

afa,)NIx S x 8= igragfb(pb“](a(Sl))).
In particular, we denote by Ti(a,b) the immersed tori a(a,b) obtained
from a shown in Figure 1.

Figure 1
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All the homology groups are with coefficients in Z.

Example 1.1. If (a,5) = 1 and b # 0, then there exists a torus T in 54
with T* = afa, b) (see [T, Theorem 8}).

Example 1.2. There exists an embedded torus 7' in $* with T* =
T1(a, b) where (a,b) = 1, b # 0. We can check that (53, T'(T™)) is home-
omorphic to (53, (a,b)-torus knot) where (a,b)-torus knot is defined
in {R] (see p 53). Therefore T)(a,b) is the immersed torus having the
singular set I'(T*) of one simple closed curve.

2 Solid tori and immersed surfaces in S*

Lemma 2.1. Let V be a solid torus, A a properly embedded annulus
into V with [a;] # 0 in Hy(V)} where ag, a1 are the components of 3A,
then there exists an embedding map h: Ax I — V with h(a,0) = a for
aglla€ A, and H{BAX TUA x 1) C 8V.

Proof (Only outline). We find a disk E such that E = lUKk, |
and k are disjoint arcs, intENA=¢,{Nk=00= 28k, | C 8V, and
k C A. Let B be a component of 8V \ (ap U ay) with B D [. Then
AU B is a torus. There exists a 3-manifold W with dW = AU B,
W O E. Let N(FE) be a regular neighborhood of E in W. We have
that dN(F) = Do UC U D; such that D; is a disk, C is an annulus,
and IN(EYNOW = C. Then W\ N(E}) = (AUB\C)U Dy U I}
is a 2-sphere. By the Schdenflies Theorem ([R] p 34), W\ N(E) is a
3-ball. W is obtained from W \ N(E) by attaching a 1-handle N(E).
Therefore W is a solid torus. We make a map & by using W.

Lemma 2.2. If V},V, and V3 are solid tori in §° such that V,NV; =
AV; N 8V; is an annulus end S3 = V{ UV, U V3, then there exist integers
i, j such that V; and V; are standard solid tori in S°.

Proof. The set Vi VoM V; consists of two disjoint simple closed curves.
Let ¢ be a component of ViNVyNVs. We denote ¢ = pli+q;m; € H(8V;)
(i=1,2 or 3} where I; is a preferred longitude of 3V;, m, is a meridian of
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AV, and (pi, ;) is a pair of relatively prime integers. By van Kampen’s
theorem, we have m(V; U V}) =< [;, ;| I7' = l?’ >. We get

z if (pi,p;) =1

ZoZ)y if(pi,py) =dl#1
Z@legl Pe = 0,ps # 0, {k, s} = {1, 5}
Zo4  pi=p;=0

H\(V;uV;) =

Since V; U V; is the complement of an open regular neighborhood of
some knot, H;{V;UV;) 2 Z. Hence we have to consider the following
two cases:

(1) pi #0,p; #0,(pi.p;) =1 or
(2) pe=0,p, = £1,{k,s} = {i,j}.
Case (1).

We construct a Seifert. fibration on S° in which each solid torus V;
has ¢ as a fiber. If |p;| # 1 for all 4, then there are three exceptional
fibers. But we can show that in any Seifert fibration of the 3-sphere,
there are at most two exceptional fibers (see [J-S] p 181). This is a
contradiction. Hence there exists an integer k with p, = £1. We have
w1 (Vi U Vi) &< I, ) 17 = EF' > Z. Therefore V; is a standard solid
torus (j # %, k). Similarly, we can show that V; is a standard solid torus.

Case (2).

Since ¢ = qzmy = ti, + g;m,, we have g, = +1. There exists a disk
D in Vi with ¢ = 8D C 8V,. Hence [c]=0in H;(53\ intV,) and ¢, = 0.
The solid torus V; is a regular neighborhood of some knot K. But K
is a boundary of some disk in §2. Hence K is a trivial knot and Vj is
a standard solid torus. Let V = Vi U V,. Since ¢ = +my = X, and
Vi NV, is an annulus, then V is a solid torus. Let V; be the third solid
torus with t # k,s. Then S3=V UV,, VNV, =9V = 8V,. But up to
homeomorphism there is only one way of decomposing S into two solid
tori with the same boundary. Therefore V; is a standard solid torus.

Remark. Let V;,V; be as above. If Hy(V;UV;) 2 Z and {¢]=0 in
Hi(V;UV;), then pr = 0,p, = %1, {k,s} = {3, 7}
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Fact. Let F be a closed surface in S* with p|F in general position,
and ¢ a simple closed curve in §% such that ¢ is transverse to f(F),
¢NT(F*) = ¢. Then the number of points of ¢NI'(F*) is even.

Lemma 2.3. If F is an oriented closed surface in S with p|F in general
position, then F'\I'(F) is divided into some regions. Then we can color
each region black or white so that adjacent regions have different colors.

Remark. Suppose that I'(F*) consists of double points, and let n be
a number of components in ['(F) which are not contractible in F. By
Lemma 2.3, one sees that if F' is a torus, then n is even.

Proof. Let Dy,..., D, be the components of 53\ F*. We will construct
a function f :{Dy,...,Ds} — Za. Let zo be a point of 3\ F*, z;
a point in I);, and [; an arc in 53 such that [; is transverse to F* and
AN; = {zo,z;}. We define f(D;) = 0 if the number of points of ;N F*
is even, otherwise f(D;) = 1 . By Fact, we can show that [ does not
depend choices of z; and I;. And then f satisfies the property that [
is an adjacent region of I); (i.e. there exists a path I C $° such that
1(0) € Py, 1(1) € Dj, {I)NT'(F*) = ¢, and I{({)NF" = {one point}), then
F(D;) # f(D;). Let £ = {Ey,..., E;} be the components of F*\T'(F”).
The orientation of F induces the orientation of E;. We define a function
h: & — Z3 by h(E;) = 1 if the positive normal vector of E; points to
a white region, otherwise A{FE;} = 0. Using h, we color the regions of
FA\T(F).

Lemma 2.4. Let F, p|F be as above, and v* a component of r'(F*).
If v* is a simple closed curve, then p~!(¥*) N F consists of two disjoint
simple closed curves.

Proof. Let N be a regular neighborhood of y* in $. Then p HN)NF
consists of either two disjoint annuli, one Mébius band or two disjoint
M#ébius bands. Since F is an oriented surface, p~'(N}) N F consists of
two disjoint annuli. Therefore p~!(y*) N F is two disjoint simple closed
curves. This completes the proof of Lemma 2.4.
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3 Local moves of surfaces in §*

Lemma 3.1. Let F be an oriented closed surface in S* with p|F in
general position. Let v* be a component of I'(F*) which is a simple
closed curve, cy, cy the components of p~'(y*) N F. If v* satisfies one of
the following conditions, then v* can be cancelled by an ambient isotopy

of S,
(1) There exist disks Iy, Dy in F with dD; = ¢; and intD;NT(F) = ¢.

(2) There exists an annulus A in F, and a solid torus ¥V in $% such
that 84 = ey Ues, 3V = A", intV N F* = ¢, and ¥* is a generator
of H] (V) > Z.

(3) There exists an annulus A in F with 34 = ¢; Uc¢g, [ = 1 in
m{F), and intANT(F) = ¢. :

Proof. If v* satisfies (1}, the lemma is proved by {Y, Lemma (4,4)]. If
v* satisfies (2), the proof is easy.

Suppose v* satisfies (3). The surface A* is an embedded torus in S°,
and v* is a simple closed curve on A*. Since [¢;] = 1 in m(F), there
exist disks D; in F with 8D; = ¢; (see [E, Theorem 1.7]). Let D = D
with AND; = ¢;. Let V), V;, be the closures of the components of $3\ A*
with ViUV, = 83, 3V; = A*, and V| O F* U D*. By the solid torus
theorem (see [R] p107), either V; or V; is a solid torus. In general, D*
is an immersed disk. By Dehn’s lemma, there exists a non-singular disk
E with intEN A* = ¢ and 0F = ~v*.

Case 1) Vj is a solid torus.

Move T by an ambient isotopy of S*, then we may assume that V) is
a standard solid torus. And V; is a standard solid torus, too. We have
v* = dE C 0Vh, E C V. Then #4* is a meridian of V; and a preferred
longitude of Vo. We have 94 = ¢y U ea, 0Vy = A*, intVo N F~ = ¢,
and {y*] = 41 in H,(V2) 2 Z. Using Lemma 3.1 (2), we can prove the
lemma in Case 1).

Case 2) V; is a solid torus.

Let ! be a preferred longitude of @V, m a meridian of 9V,. We
express v* = pl + gm where (p, ¢} is a pair of relatively prime integers.
Since v* = ¢E C 8V, then £ C V) and [y*] = 0 in H;(V1). Hence
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|p|=1 and ¢ = 0. We have A = ¢; U ¢, 9V, = A*, intV, N F* = ¢,
and [v*] = x1 in H{(V,) =2 Z. Using Lemma 3.1 (2), we can prove the
lemma in Case 2).

We will define a symmetry-spun torus in S* (see [T]). Let D? x S!
be a solid torus, and K a knot in D2 x S!. Let /i : D? x S1 — D% x §!
be the b-fold cyclic cover given by (z,8) — (z,b6) for b € Z\{0}. Let
e : D*x 8! —» D?x 51 be the rotation map given by (z,6) — (z,0+¢)
forpe St Letig: D?x S' — D¥x S'x 0 C D? x S§* x St be the
inclusion map (z, @) — (z, ¢, 8). Let a, b be integers satisfying b #£0. We
define an embedded torus T%(K;)} in D? x S! x S, which satisfies

T*(Ky) N D? x S' x 0 = 1g7ag (55~ (K)).

And we identify D? x §! x §! with a regular neighborhood of a standard
torus in .51, Then the torus T%(K}) is called a symmetry-spun torus in
54

Let T be a torus in 5%, o : §' — I x $! an immersion. Suppose
T* = a(a,b) where (a,b) = 1, and b # 0. Then there exists a knot & in
D? x S' such that T is ambient isotopic to T2(d}).

Remark. Let T be as above. There exists a symmetry-spun torus
T°(d) in 5% such that (T*({d3))* = a(a, b) and T is ambient isotopic to
T (ap).

Lemma 3.2. Let T be a torus in S*, and a an immersion from S!' to
I x St with T* = a(a,b) where (a,b) = 1, and b £ 0. Let & be a knot in
D? x 85! obtained from as above. If & is a trivial knot in 53, then T can
be moved to the standard position by an ambient isotopy of S4.

Proof. We may assume that 7 is ambient isotopic to T%(as). By
[T, Theorem 8], then there exists a homeomorphism f : $* — 5% with
f(T%(c)) = T°(dy) or T (). We easily check that T%(cy) and T (d;)
can be moved to the standard position by an ambient isotopy of S%.
Then there exists a solid torus V in S* with 8V = T°(d;) or T {d).
Hence 3f~'(V) = T*(ay), and f~*(V) is a solid torus. By [H-K, Theo-
rem 1.7], T%(cds) can be moved to the standard position by an ambient
isotopy of §%.
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4 Main Theorem

Theorem 4.1. Let T be a torus in S with piT in general position. If
I'(T™*) consists of one simple closed curve, then T can be moved to the
standard position by an ambient isotopy of §%.

Proof. We distinguish four cases according to the position of I'(T"). See
Figure 2.

IV

Figure 2

If the position of I'(T) is either I or Il, then T can be moved to the
standard position by Lemma 3.1. The case 11 cannot happen by Lemma
2.3. We will consider the case IV. Let A;, A3 be the closures of the
components of T \ ['(T), and v* = [(7™). Then T; = p(A;) is an
embedded torus, and 75 N T, = 4*. By the solid torus theorem, there
exist solid tori Vi, V, with 8V, = T;. We distinguish two cases: (1)
T; C Vjor (2) VinTy = v+ ({i, 5} = {1,2}).

Case 1) Ty C Vo or T C V1.

We may assume T} C Va. Move T by an ambient isotopy of $4, and
we suppose that V; is a standard solid torus.

(1-1) [v*]=0 in H:(V3).

The simple closed curve ™ is a meridian of Vz. Let V = 53\ intV5.
Then Aj; is an annulus satisfying 843 = ¢;Uc, 8V = A3, intVNF* = ¢,
and [y*] is a generator of H(V) & Z. By Lemma 3.1 (2), v* can be
cancelled. ‘

(1-ii} [v*] # 0 in Hq(V2).

Let N be a regular neighborhood of v* in V,, A = cl(ON N intVy),
and ag, a; the components of 4. Then A is an annulus, and {a;] # 0 in
H\(V3). Cut V, by a meridian disk. We obtain Figure 3 (1} by Lemma
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2.1. In Figure 3 the curve v* is coiled four times to a preferred longitude
of Vo. Let V= Vo\ N, and B =T, \ intN. Then V is a solid torus,
and B is an annulus. Let bg, b, be the components of @B, then {b;] # 0
in H;(V). We obtain Figure 3 (2) or (3) by Lemma 2.1. By Lemma 3.1
(2), we cancet y* of Figure 3 (2). We see in Figure 3 (3) that 7™ is an
immersed torus Ty(a, b) with (a,b)=1, b # 0. By Lemma 3.2, T' can be
moved to the standard position. We completed the proof in Case 1).

Case2) VinTy =y or VoNTy =7~

If V; O Vj or V] O V;, then we can use the method of Case 1). There-
fore, we may assume V; NV = v*. Let N be a regular neighborhood of
4*in §%, and W = V UN UV,. Then W is a torus.

(24) 1) = 0 in Hy (W),

We denote v* = p;l;+¢im; € H,(9V;) where l; is a preferred longitude
of 8V; and m; is a meridian of dV;. We calculate H{(VjUV,) in a similar
way to Lemma 2.2. Since H(W) 2 Z and [y*] = 0 in H,(W), we have
p; = 0,|p] = 1 where {i,j} = {1,2} (see Remark after Lemma 2.2).
Moreover, we get |¢;| = 1, and v* = £; + ¢;m;. Since v* is a boundary
of a meridional disk of 8V}, V; is a standard solid torus and v* = &i;.
By Lemma 3.1 (2), v* can be cancelled.

(24) [y*] # 0 in Hy (W).

Suppose that W is a solid torus. Let A; = V; N &N, and a},a} be
the components of dA;. Then A, is an annulus, and [a¥] # 0 in H;(W).
Cut W by a meridional disk D. Using Lemma 2.1, we get Figure 4 {1}.
Drawing the picture of 7* N N N D, then we get Figure 4 (2). Then we
see T* N D in Figure 4 (3). Moreover, +* satisfies Lemma 3.1 (2). Thus
~* can be cancelled.

Suppose that W is not a solid torus. Let V = §2\ intW. By the
solid torus theorem, V is a solid torus. We find an annulus A with
NDADy™, 8N D 8A, AN(VLUV,) = 7% and a; C J; where J; and J,
are components of N \ (intV; UintV3) and a1, a; are the components of
JA. Let N; be the closure of the component of N\ A with N;NintV; # ¢.
Then V; U N; is a solid torus. Let Z; = V; U Ny, Z2 = Vo U N3 and
Z3 = V. Then Z; is a solid torus, Z; N Z; = 8Z; N 8Z; is the annulus,
and S% = Z; U Zy U Z3. By Lemma 2.2 and the fact that W is not a
solid torus, we have that Z; and Z, are standard tori. Let W, = Vi,
and Wy = §3\ intV,. Then W; is a solid torus, dW; = 8V; = T}, and
W, D W;. We can reduce the argument to Case 1).
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This completes the proof of Theorem 4.1.

7K

Figure 3

(1) (2)

Figure 4
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