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Sorne remarks cm sub-differential calculus.

Gilles GODEFROY

Abstract
Mean value inequalities are shown for functions which are sub-

or super- differentiable at every point.

Mean value inequalities are a cla.ssical tool for controlling the range
of a real valued function through the behaviour of its derivative. ihe
fundamental theorem of calculus leads to the consideration of the definite
integral of the derivative. When the function is everginhere differentiable
on 1? and the derivative is integrable, absolute continuity of the funetion
follows (see [5], Th. 8.21.).

These classical theorems have recently been extended to functions
defined on Banach spaces, and which are merely assumed to be sub-
differentiable at every point. We refer e.g. to [2] and to D. Azagra’s
dissertation [1]. In this note, we will use the old-fashioned but power-
ful tools from [6] to establish slight reflnements on this recent progress.
Since our arguments rely heavily on [6], we included for the reader’s
convenience an Appendix with a self-contained proof of a special case
of our basic lemma 1. This self-cantained proof contains most of the
relevant ideas.

1 ata grateful to D. Preiss who provided me with the fundamental
reference [6], and to J. Saint Raymond for useful conversations.

Notation. A function f frota a Banach space X to 1? is Gateaux-
subdifferentiable al z E X if there exists p E Xt such that for ah
h e X\{0},
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hm mf -1—¡[f(x± th) — f(x) — p(th)] =O (*)

When p satisfies (*),we write p E D¿f(x). Similarly, f is Gateaux-
siíperdifferentiable at z 6 2< and q E DSf(x) if

1hm su~¡-j--j4f(x±th)—1(x) —q(th)] =0

When the aboye “hm mf” and “Hm sup” are uniform on h E X with
h 11= 1, we have Fréchet sub- or superdifferentiabihity, and we denote

p E D~f(z) nr q E Df(x). When X = 1?, these two notions coincide
and we simple write tf(x) and d+f(z).

If E 18 a measurable stíbset of 1?, we denote by m[E] its Lebesgue
measure.

We now proceed to state and prove mean value inequahities, in which
we will use the integral of sub- or superdifferentials rather than their
supremum.

The following crucial lemma reiles heavily on classical results from
[6].

Lemma 1. La g 1? —> IR be a Borel funetion such tha¡ dg(t) U
d+g(t) j <a for every t E IR. Define

~4t) = inf{I e I;~ E tg(t) u d~g(t)}

Thai p is a Borel function, aud for any (a, b) E E2 with a < b, one has

m[g([a, b])] = ‘p(t)dt

Proof. One defines one-sided extreme derivatives, with values in [—~,+oo],
as follows:

D~g(t) — hm ,,h
2~. Q9(t+h) —

and
D+g(t) = [ini sup ~[g(t+h) — gQ)]
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These quantities are called the right luwer and upper Dini derivatives
of q at t. The Ieft Dm1 derivatives Dq(t) and D—q(t) are defined by
substituting (W to 0+. It is easily checked that

d9(t) = [D—gQj,D~g(t)j (1)

and
d~gQ) = [D+g(t),1Tg(t)] (2)

We claim that the Dini derivatives are Borel functiuns. Indeed, Let (x~)
be a sequence in IR such that the sequence ((xn,g(xn))) is dense in the
graph of g. Let u he a given real number. For (n, k, 1) 6 1V

3, we set

‘3n,k,Z = {t E IR;t ~ (a,,. — U1i~~) ur 9(xn) — g(t) = (u + k’)(x,. — t)}

It is easy to check that

D~q(t) > u ~ it E A U A B~,k4
k>t ¡>1 n>t

it follows from the aboye equivalente that Dtg is a Borel function.
Identical argurnents apply tu the other Dini derivatives, and its easily
fol[ows that the funetion p is Borel.

For any n ~ 1, we consider the Burel set

E,, = {t E /R; d~g(t) fl (—ti, ti) !=0)
For al! t E En, one has by (2)

D+g(t) < n;Wg(t) > —n

By ([6], [emma VII.6.3), it folluws that

m[g(E,,)] =n rn(E,,) (3)

Since we can apply the same argument to dcg, it fo[ows from our as-
stímptions and (3) that fur E measurable set,

m(E)=0~rn[g(E)]=0 (4)

Consider nuw the Borel set

G = {t E IR; dg(t) !=0)
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From the re[ation

¡tq(t) =Ltg(t) =inf(dg(t))

it fol[ows that G = Gí u G2, with

ti?1 = {t E O; Dg(t) E IR}

and
02 = {t E 0; Wg(t) = IYg(t) = —oc}

By ([6], theorem IX.4.I), there exists asubset H1 ofG1 with m(Hj) = 0,
such that ¡br alí it E G1\H1,

Jltg(t) —D~g(t) = {tg(t)}

By the remark in ([6], p.
272) for every measurable subset E of (Gí\H

1),
one has

rn[g(E)] =J 1 Cg(t) dt (5)

and by (4y aboye, m[g(Hí)] = 0. Moreover, by ([6], theorem IX.4.4.),
one has rn(G2) = 0, hence m[g(G2)] = 0. It follows now from (5) that

m~g(E)] =ji d9(t) ¡ di (6)

for any measurable subset E of & where d9(t) can be given arbitrary
values when it E H~ where it is not sing[e-va[ued.

It is clear that we can apply the same argument to d+g. It suffices
now to write IR as the disjoint union

IR=JuK

where the RomA sets J and K are defined by

J = {t E IR; ~(t) = inf{¡ 1 j;¿ E Cg(t)}}

and
1< = {t E IR; p(t) < inf{[ 1 ;t E d9(t)}}

to obtain the conclusion by applying (6) on J and the analogue d+g in-
equa[ity on 1<. u
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If h = [a, b] —+ IR is an arhitrar¡Ly fíínc.tion, we denote byfi
h (t) dt

its “lower integral” on [a, b], defined by

= sup{jb
g(t)dt;g ineasurable g =

AL }
Qur main result is an improvement of ([1], theorem 3.22).

Theorem 2. Let 2< be a Banach space, ami ¡ci f = 2< —* IR be a Jiorel

D¿f(x)UDSI(x) #@
funcition .such thai

for evcry z EX. Define 0 = X —* IR by

•(z) = inf{¡¡ p II;pc fl¿f(z) u Dtf(x)}

Thai for every (x, y) E 2<2, one has

m[f([x,y])] ~[j y — x ~¡ •(ty + (1 — t)x)dt

Proof. We pick (x, y) E 2<2 with z ~ y, and define g = [0,1] —> IR by

g(t) = f(ty + (1 — t)x)

C[early, g is Borel since 1 is. Moreover, it is easy to check that if

p E D¿f(ty+ (1— t)x)

then
p(y — :i~) E &-g(t)

Hence, in the notation of ¡emma 1 and theorem 2, we have for a!! t E [0,1]

rp(t) =$(ty + (1 — t)x. — x

Since p is Borel, we have by definition of the lower integral that

0(ty + (1 — t)x)dt
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Moreover, [emma 1 states that

m[f([x, y])] = m[g([0, 1])] = ‘p(t)dt

and this concludes the proof.

u

Let us check what we obtain when we dispense with the continuity
assumption in ([1], Th. 3.22) and apply Lemrna 1.

Proposition 3. Let 2< be a Banach space, ami U an open convez subsel
of 2<. Leí f : U —* IR be a fitriction. Assurne that ihere exists M > O
such thai for every x e U, Mere existsp E D¿(f)(x) snch that fi p 11=M.
Thai for oil (x, y) E U2, one has

m[f([x, y])] =M fi x —

Proof. Let us cali g = [0,1] —+ IR the function defined by

g(A)r f(Ay+(l —A)x)

For every A C [0, 1] aud every p E D¿f(Ay + (1 — A)x), one has

p(y — x) E ctg(x) (7)

hence d-g(A) ~ <a for every >. E [0, 1]. It fol¡ows that g is lower semí-
continuous, hence in particular it is a Borel function. Moreover, in the
notation of lemma 1, we have by (7) that

~4\)=M fi x — y II
for every A E [0,1] and then by lemma 1,

m[g([0, 1»] = m[f([x, y])] =M fi — y fi

u

Remark 4. We recatí that a function f IR —* IR has the Darboux
property if f([a,b]) contains fi(a), f(b)] U [1(b), f(a)] for ah a < b (in
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other words, if f satisfles the intermediate value theorem). Hy ¡emma
1, a Borel function g with the Darboux property such that

(dg(t) u d~g(t)) n [—M, M] !=<a

for every it E IR is M—Lipchitzian. Note that any derivative is a Borel
funetion with the Darboux property.

Qf course, continuous functions have the Darboux property, hence
by theorem 2 we can weaken the assumption in ([1], theorem 3.22) and
replace “p E D¿f(x)” by

“p E D¿f(x) U Dtf(x)”.

Remark 5. It is clear that 0 e d79(t) for ah t E IR does not imply
that g is continuous (take the characteristic function of any open subset
of IR). However, by [2], if 2< is a Banach space on which Ihere exists a
Lipschitz Fréchet-differentiable bump function and g X -4 IR is such
that D~4g(x) = {0} for ahí x 6 2<, then g 18 constant. This assumption
on 2< is actuahly needed: if X has an equivalent rough norm fi - ¡¡ (see [3],
chapter III) then the characteristic function h of {x; fi x 11< 1} satisfies
DFh(x) = {0} for aH x 6 2<. A concrete example is provided by the
natural norm of ti(1V).

Remark 6. By Froposition 4, if f : [0, 1] —* IR is such that O E
tf(t) for alt it 6 [0,1], then m[f([0, 1])] = 0. However, there is a
function g — [0 1]2 —* IR such that (0,0) 6 tg(v) for every u 6 [0, 1]2

but g([0, 13) — [0,1]. Indeed, there exists ([7]; see [4]) a continuously
differentiable funetion u, = [0, 1]2 -~ iR with w([0 13) — [0,1] and a
continuous function -y = [0,1] —* [0, 13 such that w’[-y(t)] = O for every
it 6 [0,1] but (mo ‘y)[O, 1] = [0, 1]. The function g = [0,13 —* [0,1]
defined by:

(1) g(t’) = in if there 18 it E [0,1] such that o = -y(it).

(Ii) g(v) = 1 otherwise.

satisfles the required conditions.

Appendix. For the reader’s convenience we include a self-contained
proof of the following statement: tet f : [0,1] —+ iR be such that
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tf(z) ~ <a for every x, and let a = [0,1] -4 [0,+oc) be a Lebesgue
measurable function such that

[—a(z),a(x)]fl flf(x) !=<a

for al! x E [0,1]. Then

m[f([0, 1])] <

Proof. For any A c [0,1], Iet

d(A) = sup{¡ it — u ¡; (it, u) E A2)

Fact A: For every z 6 [0,1] and ¿5 > 0, there is s > O such that if x E A
and ¿¡(A) <E, then

1 f(y) =ffr) — (a(x) + 6)d(A).

There is E > O such thatPraof. Pick it E dwf(z) with ¡ it 1=a(x).
¡ y — x <E implies

f(y) =f®+t(y—x) —¿¡y-—rl

hence

f(y) = f(x)—(¡it¡+6)jy—xI

276

= f(x) — (o4x) + 6)d(A)

Fact B: For any y > 0, there is a sequence (A,,) of measurable subsets
of [0, 1] such that

(i) uA,, = [0,1]

(II) sup, ¿¡(A,,) =y

(iii) Sd(A,.) < 1 + y

(iv) Sd(A,,) SUPAn (ci’) < f¿ a(t)dit + y
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Proof. For any k 6 IV Iet

= <Y’([ky, (k+ ib))

Since the B,s are measurable, there are open sets (Ok) with Bk C 0k
and

Sm(Ok)<1+’y

We split the O~s into disjoint intervals (Ik,á) of tength lees than y, and
we define Ak,J = Bk fl hp After reindexing, we write (Ak,j) = (A,,). It
is easily seen that this sequence (A,,) works.

Wc now conclude the proof. Pick <5 > 0. For al) =1, let (4),,>~ be
a sequence sat.isfying the conditions of Fact B with ‘¡ — k’ Wc set

Ek = U [inf(f), inf(f) + (sup(a) + 6)d (Á~)l
~> 44 4 4 J

We have
supd (Á~) =k1

n
Hence by Fact A, for alí x 6 [6,1], there exists K(x) =1 such that
f(z) E 14 for every k =K(x). Hence we líave

f([0,1])G U Fn 141
¡<>1 [~>¡< j

We set
FK=flFk

k>K

By conditions (iii) and (iv) of Fact B, we have
mn(Ek) = S,,d (A~) siíp(a) + AS~d (A~)

4

= j a(t)dt + L1 + 6(1 + k’)

Therefore
m(JXÉ) = a(fldt ±6
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and since (FK) 18 an increasing seqí¡ence it follows that

ir 1
m[f([0, 1])] =rnj U F<</ c4t)dt +6

LK>1 140

and the conclusion follows since ¿ > O is arbitrary.

u
It is not difflcult to a.djust the aboye proof in order to show that if

f: IR —* IR is a function such that

O c ¿¡1(x) U <tf(x)

for every x E IR, then
rn[f(IR)] = O

This provides a “mean value inequality” for functions which are not
necessarily measurable, since e.g. the characteristic function of any set
satisfles the assumptions.
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