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Some remarks on sub-differential calculus.

Gilles GODEFROY

Abstract

Mean value inequalities are shown for functions which are sub-
or super- differentiable at every point.

Mean value inequalities are a classical tool for controlling the range
of a real valued function through the behaviour of its derivative. The
fundamental theorem of calculus leads to the consideration of the definite
integral of the derivative. When the function is everywhere differentiable
on IR and the derivative is integrable, absolute continuity of the function
follows (see [5], Th. 8.21.).

These classical theorems have recently been extended to functions
defined on Banach spaces, and which are merely assumed to be sub-
differentiable at every point. We refer e.g. to [2] and to D. Azagra’s
dissertation [1]. In this note, we will use the old-fashioned but power-
ful tools from [6] to establish slight refinements on this recent progress.
Since our arguments rely heavily on [6], we included for the reader’s
convenience an Appendix with a self-contained proof of a special case
of our basic lemma 1. This self-contained proof contains most of the
relevant ideas.

I am grateful to D. Preiss who provided me with the fundamental
reference [6], and to J. Saint Raymond for useful conversations.

Notation. A function f from a Banach space X to R is Gateaux-
subdifferentiable at z € X if there exists p € X* such that for all
h € X\{0},
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NP |
tim inf !‘t—l[f(iE +th) — f(z) - p(th)] > 0 (%)
When p satisfies (»}, we write p € Dg f(z}. Similarly, f is Gateaux-
superdifferentiable at z € X and ¢ € D} f(z) if

lim sup [ (c + th) — f(z) - q(th)] < 0
t—=0 t]
When the above “lim inf” and “lim sup” are uniform on A € X with
| b ||= 1, we have Fréchet sub- or superdifferentiability, and we denote
p € Dif(z) or ¢ € DEf(z). When X = R, these two notions coincide
and we simple write d~ f(z) and d¥ f(z).

If £/ is a measurable subset of R, we denote by m[F] its Lebesgue
ineasure.

We now proceed to state and prove mean value inequalities, in which
we will use the integral of sub- or superdifferentials rather than their
supremum.

The following crucial lemma relies heavily on classical results from

[6].
Lemma 1. Let g : R — IR be a Borel function such that d=g(t) U
dtg(t) # @ for every t € R. Define

o(t) =inf{] £];€ € dg(t) U d*g(t)}

Then ¢ is a Borel function, and for any (a,b) € R? with a < b, one has

b

mig(a, b)) < [ p(0)dt

a

Proof. One defines one-sided extreme derivatives, with values in [—o0, +o0],
as follows:

D*g(t) =tim inf ig(t+h) - g(0)]
and
D¥g(t) = lim sup %[y(t + k) —g(t)]
h—0t
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These quantities are called the right lower and upper Dini derivatives
of g at t. The left Dini derivatives D~ g(t) and D~g(t) are defined by
substituting 0~ to 0%. It is easily checked that

d”g(ty = [D=g(t), D* g(t)] (1)

and L
d*g(t) = [Dtg(t), D™ g(1)] (2)
We claim that the Dini derivatives are Borel functions. Indeed, let (z,)

be a sequence in I such that the sequence ((x,, g(z,))) is dense in the
graph of g. Let u be a given real number. For (n, k1) € IN?, we set

Buki = {1 € B5t ¢ (2 — 1), 2,) of g(20) = 9(t) > (w+ k™) (&, — 1)}

it is easy to check that

Dtgity>nete (VU ) Bk

E>11>1n>1

it follows from the above equivalence that D*g is a Borel function.
Identical arguments apply to the other Dini derivatives, and its easily
follows that the function ¢ is Borel.

For any n > 1, we consider the Borel set

By = {t € B;d*g(t) N (~n,n) # 0}
For all t € £, one has by (2)
Drg(t) < n; D7 g(t) > —n
By ([6], lemma V11.6.3), it follows that
mlg(En)] < n - m(Ey) ®)

Since we can apply the same argument to d™g¢, it follows from our as-
sumptions and (3) that for ¥ measurable set,

m(E)=0= mlg(E£))=0 {4)
Consider now the Borel set.

G={te R;d ¢g(t) # 8}
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From the relation
D7g(t) < D~g(t) < inf(d™g(?))
it follows that G = G{ U G, with
Gy ={t € G; D g(t) € R}

and o
G2 ={t € G; D g(t) = D~g(t) = —cc}

By ([6], theorem 1X.4.1), there exists a subset H) of Gy with m(H,) =0,
such that for all t € G\ Hy,

D=g(t) = Dt g(t) = {d"g(t)}

By the remark in ([6], p.272) for every measurable subset E of (G'\ H}),
one has

mlg(B)] < [ 1d~g(0) |dt )
and by (4) above, m[g(H;)] = 0. Moreover, by ([6], theorem 1X.4.4.),
one has m(Gy) = 0, hence mg{G,)} = 0. It follows now from (5) that

mlg(E)] < /E |d=g(t) | dt " (6)

for any measurable subset £ of G where d”g(t) can be given arbitrary
values when t € H| where it is not single-valued.

It is clear that we can apply the same argument to d*g. It suffices
now to write & as the disjoint unicn

R=JUK
where the Borel sets J and K are defined by
J={t€ R;p(t) = inf{| £|;£ € d”g(t)}}

and
K={te R;o(t)<inf{|£{;€€ dg(t)}}

to obtain the conclusion by applying (6) on J and the analogue dtg in-
equality on K. »
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If h =la,b] > R is an arbitrarily function, we denote by

.[abh(t)dt

its “lower integral” on [a, b}, defined by

b : b
/ h(t)dt = sup {/ ¢(t)dt; g measurable g < h}

Our main result is an improvement of ([1], theorem 3.22).

Theorem 2. Let X be a Banach space, and let f = X = R be a Borel
function such that

Daf(2)U DEf(x) # 0
for everyz € X. Defined = X — K by

o(z) =inf{lip[l;p € Dgf(z) U DEf(z)}
Then for every (z,y) € X?, one has

1
mif(@ Dl <ly=sll- [ e(y+( -z

Proof. We pick (z,y) € X? with = # y, and define g = [0,1] = R by
g(t) = flty+ (1 — t)z)
Clearly, g is Borel since f is. Moreover, it is easy to check that if
p€ Daflty+ (1 -t)z)
then
p(y —z) € d”g(1)
Hence, in the notation of lemma 1 and theorem 2, we have for all ¢ € [0, 1]

pt) < @ty+ (1 -z fy—z ||

Since ¢ is Borel, we have by definition of the lower integral that

1 : i
[ e <iiy-al- [ oty+-nae
0 »J0
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Moreover, lemma 1 states that

1
mlJ (o, )] = mlg (0, 1] < [ ()

and this concludes the proof.

Let us check what we obtain when we dispense with the continuity
assumption in ([1], Th. 3.22) and apply Lemma 1.

Proposition 3. Let X be a Banach space, and U/ an open convez subsel
of X. Let f: U — R be a function. Assume that there exists M > 0
such that for every x € U, there exists p € D (f)(z) such that|| p ||< M.
Then for all (z,y) € U?, one has

mf(fzy) < M|l z -yl

Proof. Let us call ¢ = [0, 1] — IR the function defined by
9(A) = fQy+ (1 - A)z)
For every A € [0, 1] and every p € Dz f(Ay + (1 — A)z), one has
ply - z) € d"g(z) (7)

hence d=g(A) # @ for every A € [0, 1]. It follows that g is lower semi-
continuous, hence in particular it is a Borel function. Moreover, in the
notation of lemma 1, we have by (7) that

M < Milz—yll
for every A € [0, 1] and thén by lemma 1,
mfg([0,1)] = m[f([z,y)] < M ||z — y ||
|

Remark 4. We recall that a function f : B — R has the Darboux
property if f(]a,b}) contains [f(a), f(5)]U{f(b), f(a)] for all & < b (in
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other words, if f satisfies the intermediate value theorem). By lemma
1, a Bore! function g with the Darboux property such that

(d7g(t) UdTg(t)) N [-M, M] #0

for every t € IR is M ~Lipchitzian. Note that any derivative is a Borel
function with the Darboux property.

Of course, continuous functions have the Darboux property, hence
by theorem 2 we can weaken the assumption in ([1], theorem 3.22) and
replace “p € D f(z)” by

“pe D;f(z)U D(",;f(z)”.

Remark 5. It is clear that 0 € d~g(t) for all t € I does not imply
that ¢ is continuous (take the characteristic function of any open subset
of ). However, by [2], if X is a Banach space on which there exists a
Lipschitz Fréchet-differentiable bump function and ¢ : X — R is such
that Dzg(z) = {0} for all z € X, then g is constant. This assumption
on X is actually needed: if X has an equivalent rough norm || - || (see [3],
chapter III} then the characteristic function h of {z;||  ||< 1} satisfies
D~ Fh(z) = {0} for all z € X. A concrete example is provided by the
natural norm of ¢, (IV).

Remark 6. By Proposition 4, if f : [0,1] — R is such that 0 €
d~f(t) for all ¢ € [0,1}, then m[ ([0,1))] = 0. However, there is a
function g = [0,1]? - R such that (0,0) € d~g(v) for every v € [0,1]?

but ¢([0,1}?>) = [0,1]. Indeed, there exists ([7]; see [4]) a continuously
differentiable function w = [0,1]% - R with w([0, 1]2) [0,1] and a
continuous function v = [0, 1] = {0, 1) such that w'[y(t}] = 0 for every
t € [0,1] but (wo~)[0,1] = [0,1]. The function g = [0, 1} — [0, 1]
defined by:

(i) g(v) = wif there is t € [0, 1] such that v = y(¢t).
(ii) g(v) = 1 otherwise.
satisfies the required conditions.

Appendix. For the reader’s convenience we include a self-contained
proof of the following statement: let f : [0,1] — R be such that
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d~f(z) # O for every z, and let & = [0,1] — [0, 400) be a Lebesgue
measurable function such that

[-a(z),a(z)]nd” f(z) # @
for all z € [0,1]. Then

1
¢

mUﬂmnnsj'mgﬂ.

Proof. For any A C [0,1], let

d(A) =sup{| t - u; (t,u) € A%}

Fact A:Forevery z € [0,1] and § > 0, thereis £ > O such that if z € A
and d(A} < &, then

inf f(y) 2 f(z) - (a(z) + 8)d(A).

yeA

Proof. Pick t € d™ f(z) with | ¢t |< afz). There is € > 0 such that
| ¥ — z |< € implies

fly) > f@)+tly-z)-d|y—z|

hence

fly) 2 fl@)-(t|+d)|y—=]
2 [flz) = (az) + 8)d(A)

Fact B: For any v > 0, there is a sequence (A,)} of measurable subsets
of [0, 1] such that
(i) VA, =[0,1]
(i) sup,d(An) <~
(ili}) Yd(An) <1+
(iv) Td(An)supy, () < fy al(t)dt + 7
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Proof. For any k € IV let

By, = o~ [k, (k+1)7))

Since the Bj s are measurable, there are open sets ((y) with By C Oy
and

Em(Or) < 147

We split the Ojs into disjoint intervals ([} ;) of length lees than -, and
we define A ; = By N I ;. After reindexing, we write (A ;) = (A,). It
is easily seen that this sequence (A,) works.

We now conclude the proof. Pick 4 > 0. For all > 1, let (Aﬁ) 5 be

n-w—
a sequence satisfying the conditions of Fact B with v = k~!. We set

Be=|J [‘m (), () + (sup(e) + (A‘;)}

k
a>t L4

n

We have
supd (Aﬁ) <k

Hence by Fact A, for all z € [0, 1], there exists K(z) > 1 such that
f(x) € Fy, for every k > K(z). Hence we have

f([O,l])g U [n Ek]

K>1 [k>K

We set

Fr = Fx
E>K

By conditions (iii) and (iv) of Fact B, we have

m(E)

IA

Yad (Aﬁ) s;g)(a) + 68,d (Aﬁ)

IA

1
f ot)dt + k= + 6(1 + k1)
0

Therefore .

m(Fy) < [0 alt)dt + &
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and since {Fg) is an increasing sequence it follows that

m{f([0,1))] < m [ U FK] < Ca(t)dt+ 4

K>1

and the conclusion follows since & > 0 is arbitrary.

It is not difficult to adjust the above proof in order to show that if

f iR — R is a function such that

O ed f(z)udtf(x)

for every z € IR, then

m[f(R)] =0

This provides a “mean value inequality” for functions which are not
necessarily measurable, since e.g. the characteristic function of any set
satisfies the assumptions.
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