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Some remarks on the regularity of weak
solutions of degenerate elliptic systems.

Luca ESPOSITO and Giuseppe MINGIONE

Abstract

We prove the existence of second derivatives of the weak so-
lutions u € W b? of the degenerate system div A{Du) = 0, where
no differentiability is supposed on the monotone vector field A :
R™N — R*N_ We also give a boundedness result for the scalar
case.

1 Introduction

The main result of this paper is the higher differentiability of local so-
lutions of elliptic systems of the type

divA(Dv)=0  in D'(Q) (1)

where €2 is an open subset of R™ and A is a mapping from R™ into
R™V. This problem has been studied by several authors; we only quote
[AF],[DB],[Gi],[GM],[U], where the reader can find further references.
To get such regularity, it is necessary to impose a suitable ellipticity
assumption on A. We want to recall that if A is ¢! and satisfies the
ellipticity condition
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31431 -2
G 2 v 2 )T e (2)
B

and the growth conditions

| A(z) | L+ | 2 D)5 (3)
| 2220) < AP+ |2 (1)
g

for v,L,A > 0, p > 1, (see [Gi]), then, denoting by u a solution of (1),
one can prove that, if 4 > 0 then

u € WEEQ)

ocC

and if, 0 < u then:
~2
V(Du) = (u3+ | Du )57 Du e w2

However in some recent papers (see [E|,(EFL],[FF]) it has been observed,
in the case that (1) is the Euler-Lagrange system of a variational integral,
that condition (4) can be dropped while the condition (2) can be replaced
by a weaker form of ellipticity. In this paper we prove, in the general
framework of the systems, the existence of second derivatives of the local
solutions of (1), assuming that A : R™¥ — R™ is a continuous map
satisfying (3) and the monotonicity condition

(A(z1) = Aza), 21 = 22) 2 0(@®+ |21 Pt | 22 DT [z = 2P (5)

We distinguish the scalar case from the vectorial case, in fact in the
scalar case (N = 1) we are also able to prove the local boundedness
of the gradient of the local solution of (1). The proof of this results
rests on the observation that the classical integral estimate involving
the second derivatives of the weak solutions of a nondegenerate elliptic
system satisfying (2)-(4) (see for example [Gi], chapter 8):

2 2\B=2 |\ 0 9 c 2 2,2
g+ | Du T | Du d:tg——-——--[ pit | Du |*)? dx
A( | Du |?) I T I
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can be proved with the constant ¢ not depending on A and g (see
propositions 1 and 2, below).

Then we show (see lemma 2) that it is possible to find an approxima-
tion of the nondifferentiable, degenerate vector field A, by a sequence of
smooth vector fields A, satisfying conditions (2)-(4) for different con-
stants . Finally the result follows by a simple approximation argument
based on the monotonicity assumption made on A and the stability of
the constats in the last inequality mentioned before.

2 Preliminary results and lemmas

In the following Q denotes a bounded open set in R™, Bp(xz,) will indi-
cate the ball with centre in =, and radius R. Moreover ¢ will denote a
generic constsant, wich may vary throught the paper. If u is integrable
in Bp(z,) we set:

1
—_— u dx =f u dr.
wnR™ SBa(2,) Br{z.)

We will simply write Bp in place of Bp(z,) when no confusion will arise.
Let A: R™W — R™ Ye a continuous function. We shall deal with the
equation

(u).‘m,n =

div A(Dv) =0 in D'(Q) (6)

where v e WHP(Q), p>1,and N > L
We will assume that A(z) grows polinomially like | z [P~} and satisfies a
monotonicity assumption, namely that

| A2) < LG+ | 2 )T (7)

(Alz1) — A(22), 21 — 22) 2 v(p®+ |21 P+ | 22 25 |z — 2 2 (8)

for some g > 0, L > 0 and for every z € R™. Without loss of generality
we will suppose that u < 1. We say that u € WI’P(Q,RN) is a weak
solution of (1) if and only if

| 4i(Du)Dap = 0 Vo e W@ (9)

5
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fora=1,..n; i = 1,...N. Now we estabilish two Propositions that
are crucial in the approximation argument used in the proof of the main
resuit.

Vectorial case.

Proposition 1. Let 4 : R™ — R™ be a C! function satisfying (7),
and assume that there exist v, A > 0 such that for any z,£ € R™

AL . . 2
S @G 2 v |2 )T (e (10)
B
DAL =
|53 IS AW 2 )T (1)
ol

where p > 0. Ifu € WH¥(Q, RY) is a weak solution of (6) in Q and if
p > 2 then:

uwe W)
while if } < p < 2 then

u € WEP(Q).

Moreover there exists a constant C depending onn, N,p, L, v but not on
A,y oru such that if BR(z,) C R, 0< p < R:

¥ (12)

=2 C 2 9
(124 | Du 2) | D2 |2 dzs——[ (24 | Du|
-/Bp : (R —p)? /B,

Remark 1. We want to stress that the constant C appearing in (12)
does not depend on A, u, u. Actually, under assumption of Proposition
1 it is well known that local solutions u of (1) have second derivatives
satisfying (12), (see |[Gi}]), nevertheless it is not obvious that estimate
(12) holds with the nice dependence quoted above. Now we state a
technical lemma that we need for the proof of Proposition 1.

Lemma 1. Under the assumption of Preposition I we have
an:',(Du)Dasaz 0 i=1,..,N (13)

for any p € WH(Q2, RN) with compact support in § and such that

AL(Du)p,  Da(AL(Du))¢', AL(Du)Dagp', (14)
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are in L}(Q) for everyi=1,....N;a=1,.....,n.
Proof. Follows from |[EFL] Lemma 2.

Proof of Proposition 1.

Let us fix Bp(zo) CQ,0<p< Randng € C3(Bg),0<n<1,n=1on
Bp, | D |* + | D*n|< ¢/(R — )% Fix also M > 0 and 9 € C!(R) such
that 0 < <Ly =1ift <M w(t) =0ift > M and | ¥'(t) [< &
Let us define

o(z) = A, [772(:E)D311(:r)¢(| Du(z) | + | Du(z + he,) )], (15)

where we denote, for ¢ € LL_(R") and s € {1,...,n}, by Ap,g (or
simply Apg if no confusion arises) the difference quotient

o(z + hey) = g(z)

Ah,sg(‘z) = =

where e, is the unit vector in the s-direction, h € R. If | & | is sufficently
small, the function ¢{(z) has compact support in Bp. It is easy to
check that conditions (14) stated in Lemma 1 are satisfied by ¢ because
u € Wfo’cl and by a standard difference quotient argument A% (Du) €
W,tc’l (€2, RN), moreover ¢ = 0 whenever | Du(z) |> M. Therefore we
get from (13)

/;}Ah(AQ(DU))nzDasuiw(l Du(z) | +.| Du(x + hes) |) di

=~ L AW(AL(Du)n2D i’ (| Dulz) | + | Dula + hey) |)
-Daf| Dulz) | + | Du(z + hes) |) d=
+2fQA;';(pu)A_,, [1DanDap(| Du(z) | + | Dulz + hey) )] dz.
Now we recall that under the assumption of Proposition 1 « € Wff if

p > 2, while A% (Du) € W&,’: and D2u1{|Du[gM} is in L,. (see lemma
2.5 in [AF]), then we pdss to the limit in the last formula to get:

At . .
L =28 (Du)y? Dast' Dyl 2 | Du(e) 1) e
Z
B
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=2 f aaAg(Du)n?Dsu*‘Dﬁsuw’(z | Du(z) ) Dal] Dulz) |) d=
Q Jdz
B

+2 [ AL(DUDalnDanD ot (2 | Dule) D) d.
Now from (7),(10),(11) we get, summing up with respect to s:
[0+ 1 Du )55 | D% o2 | Dule) |) e
<eh [ 1 Du ) | D% P o? | Du | 02| Dule) |) e

+c[](;ﬂ+ | Du 2% | Da(nDanDu(2 | Du(z) ) | de,

where ¢ does not depend on A or 4. Since | ¥’ |< %I[M/Q,Ml, using
Young inequality we obtain

f(u2+ | Du )5 | D% 2 n%9(2 | Dulz) |) dx
. i1
<ec(A+ ])/ (4 | Du |2)p—;£
{M/2< | Du(z)| <M}
| D?¢ 2 9% | Du |9 (2 | Dulz) |) d
+ [ 2+ 1 D] D1 [P+ | D% 12| Dula) ) d.

From this inequality, letting M — oc (12) follows.

Scalar case.

Proposition 2. Let A : R™ — R™ be a C' function satisfying (7), and
assume that there exist p, A > 0 such that for any z,£ € R™

JAa, | o _:
) 2 | )T e (16)
aAa -
| @ 1S AP |2 ) (17)

thge p>0. Ifu e WHP(Q) is a local solution of (1) in §) then u €

W2 (2) N Wlf)fo(ﬂ). Moreover there exists o constant C depending on
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n,p, L, v but not on A, u or u such that if Br(z,) C R, 0 < p < R, the
following estimates hold

2 282 | 2 |2 ¢ / 2 2,2
‘ (18)

z
sup | Du |P< o(p)C ][ (12+ 1 Du ?)* d. (19)
B, Bg

Remark 2. The proposition above is the counterpart of Proposition
1 in the scalar case, and again the main point is the independence of
(18),(19) of A, u,u. Moreover we observe that in this case, under the
hypothesis of Proposition 2 it is known that Du € L{%(2), and this

implies that u € leof(Q) for any 1 < p < o0.

Proof of Proposition 2.

The proof of (18) may be simplified in this case, because we know that
Du € LL(N, R™) and so we can just take ¢ = A_p, (7?Dsu) instead of
(15). To prove (19) choose ¢ = Dy(n*HPDu) in (9), where

H{Du) = p*+ | Du |?

s=1,.,n,n€CYBR,0<n<,p=1lon Byand | D |? + | D |<
Iﬁ_'c‘;)'y. This is an admissible test function because v € Wﬁf(ﬂ) N
W (9), then we get

f Aa(Du)Do(Do(HPDu))n? de = =2 / nAa(Du)Ds(HPD u) Doy
Bp Bpg

Iniegrating by part the first integral, we have

f 8Aq(Du)

Br Bzg

=2 / nAa(Du)Dy(HP D) Don dz
Br

DopuDo(HP Dyu)n? dz

-2 / nAa(Du)Do(HPD ) Doy dz,
Br
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then using (7) we get

AL (D
/ MDsgquuHﬂn2 dx
Br _ 928

84, (Du)
e

+4 DyguDauDg(| Du |2)HP 1% ds

Br
< eln, p.L)f %y | Dn| [H? | D*u | +8HP" | Du| D(| Du |?)] da.
Now we use (16) to obtain, summing up on s
v | P D2 Pyt dn+ -f HP 12 | D Du ) |2 9% da
Bp
< c(n,p,L)f HA*5 | Dy || D2 | de
Br
+e(n,p, L)B [ HE- R | D(| Du }2) || Dy | 7 d=.
JBy
Now we observe that

f H”ﬁ“—li{hL | D{ Du | )12 7]2 dx < e(n) / I'B+ ID2 [2732
B .

I

and apply Young inequality to get

-2 L
HPYWE D Du ) P de < wc("'?,’ )f HPE | Dy 2 da.
Br _v? JB

Setting y=§ + 5 > 2. the above inequality implies
f | D(H" ) |* dz < c(n,p,L,u)ﬂ[z/ HY | Dy |? da.
Bp Bp
Using now Poincaré inequality we deduce
| Hn | paxapy < e{mp, Lov)y | H7D7 |l12¢8y),
where x = Tf!'i if N > 3, or any number grather then 1 if N = 2. From

this inequality by a straightforward application of Moser’s technique we
get (19).
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Now we state a simple approximation lemma that will allow us to man-

age the case when upper estimates on | DA | are not available and
p=10.

Lemma 2. Let A : R™ — R™ be o continuous function satisfying (7)
and (8) where u > 0. Then there erists a sequence of CY(R™, R™N)
functions Ay, end a constant ¢ = ¢(n, N,p) such that Ay — A uniformly
on compact sets, ‘

1 -1

| An(2) 1S eL(p® + 5+ 12 )T (20)

dA: 1 _2
—2=(2)egel > o + g+ |2 DT € (21)

BZﬁ h

8AL 1 3

| =@ IS AW + g+ 2 )T (22)
“g
Proof. Let us set
Bi(z) = (u%+ | 2 |2)%2zf_., i=1,..N;ya=1.,n

with
B(z) = (B'(2)))

and define for cvery h € N
Wi(z) = (1 — nn(2))A(2) + nn(z) B(2)

where 7 € C2(R™V) is such that 0 < 5z < 1 and

o0 if|z|gh
TEY 1 0f 2|22

It is obvious that
1 -
| Wal2) IS eL(u? + o5+ | = BT, (23)

recall that the vector field B is monotone in the sense that:
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(Bh(21) - Ba(za), 21— 22) = i+ 2 Pt |29 21—z |

so, by the fact that it is the sum of two monotone vector fields, also W),
satisfies:

(Whiz1) = Wh(z2), 21 — 20) = ¢ w(u+ | 21 P+ | 22 )5 | 2 - 20 |2
24)

for every zj,20 € R™. Now we denote by p(z) a positive radially

symmetric mollifier with compact support in B(0, 1) and define

T L
)= [ o, A H (@) de

We can finally verify that Aj satisfies the required conditions. By defi-
nition of Ap and (23) we get

-1
(AN S en [l 1 b e P e

IA

1 27l
L+ ot | )
then (20) is verified. Now from (24) it follows, setting

§ = B(0,1)n{t € R™ : (¢,z) > 0}

{Ap(z1) = An(z2), 21 — 21)
- [ PO Wales + 5) = Walea + S (e2) — (22)) d
B(0,1)

-2
26_1"[ p(e)(u2+|z1+5|2+|z2+—12)% g1z — 2 |2
B(0,1) k

IE 12 . (€ 1) 3 oz)
> f Wt gt |z P4 2o |2 422 42T )27 de x

><|z1—z2|

_ i -2
2wt b gt s P 2 )T o -l

and this implies (21) since Ay, is a C! function. To conclude the proof we
observe that Wg(z) = A(2) if | z |< hy while Wi(z) = B(z) if | z |> 2h;
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then arguing as before we deduce that A, satisfies (22) and Ap — A
uniformly on compact sets. [

In the sequel V (z) will denote the following function

V() = (P | 2 )T s,

where z € R™, p >0, p> L

Next lemma will be useful in the next section and its proof can be found
in [AF]

Lemma 3. The function V (z) satisfies:

| V(z1) — V(z2) 2

(.F.‘zﬁ__l_zﬁ.'z__kh,z_p.)a—_?
3

for any z1, zo0 € R™, where c, depends only on N,n,p, andp > 0,p > 1.

el 21— = |°< Scolz—2z|%  (25)

3 Proof of the regularity results

In this section we prove Proposition 1 and Proposition 2, assuming that
A(z) only satisfies (7) and (8), thus obtaining the existence of second
derivatives for solutions of (1) under fairly general assumption on A.
In the scalar case, we are also able to prove local boundedness of the
gradient of sclutions of (1).

Let us first consider the

Scalar case.

Theorem 1. Let A : R™ — R"™ be a continuous function satisfying (7)
and (8) with p >0, and v € W P(Q) a local solution of (1). Then

V(Du) € Wit (@, R™), Du € Li%(?, R™)

and for any ball Br(z,) CQ,0< p< R

2 ¢ 2 o 12V% dx
L | DV(Du) | de(R_p).z[BR(u-i—iD )3 d (26)

Il

& ,
sgf | P |P< e(p) ]{33 (,u2+ | Du |2) dz. (27)

213
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Before proving the theorem we remark that estimate above implies that
u© € thoc’?(ﬂ) if u> 0.

Corollary 1. Under the assumptions of theorem 1, if u > 0, then
u € Wg,f(ﬂ) and for every ball Br(z,) CQ, 0<p< R

- C
[ @t 1 ou B DA P e < = [ P | Du )
By (R—p) Br

Proof. Let usfix s € {1,.....,n} and 0 < p < R. If | b |< EQZE we get
from (25) and (26)

[ (41 0u@ P+ | Duta 4 he) 1) T | As(D0) [ dz

g'c/ | Aps(V(Du) | dx gf | DV (Du) |° dx
B, Brip

c { 2 2\ &
< (R—P)./Bkw +|Du|) dz

The result then follows, recalling that Du is locally bounded, letting
h— 0.

Proof of Theorem 1.
Let us fix Br(z,) C 2 and denote by uj the solution of the equation

-/; Ai,a(Duh)DaW dz =0 Vo € Wg’p(B[t)
R

where up € u + W2P(Bp), and Ay is the sequence given by lemma 2;
then we have

L (Ap(Dup) — Ap(Du), Du— Duy,) dx =

./;} (A(Du) — Ap(Du), Du — Dup) dz
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Using assumption (7), and inequalities (20), (21) we have
-2
_ 1 =
clj (p2+“—2+|Duh|2+|Du|2) | Du— Duy, P dz <
Bp h
-l
] 1 2 2
SCL/ (,u +—§+[Du|) | Du— Duy | dz
Bg h
From this inequality we can deduce

1 P
f | Du— Duy [P da:SCf (p2+—2+[Du|2) '21|Du-—Duh| dzx.
Bpg Br h

(28)
This is obvious for p > 2. Otherwise, if 1 < p < 2 notice that
| Du = Dup P 1ize | Dup(@) 2241 Dutz)2 442454y}
) 2=2
2
Sc[(u2+ﬁ)+|Duh 12+ | Du |2} | Du — Duy, |
2, 1 2 2,222 2
< (i +h—2-+]Duh[ + | Du )T | Du— Duy |*.
From (28) we obtain applying Young inequality
1
] | Du — Dup, |P d:z:ﬁc[ (,u2+——2-+]Du|2)%d:c
Bp Bp h
and this implies that
/ | Dup [P da € C (29)
Br

From this inequality and Proposition 1 we have that forany 0 < p < R

[ 10Vi(Dun) P dz < () (30)

3
where 1
B2
Vae) = (64 k2 )T,
and c(p) is independent on h. Eventually passing to a (not relabelled)
subsequence, we may assume that:

up — 4 weakly in W LP(Bp)
Vp{Dup) — g weakly in W,ff(BR) (31)
Vi(Dup) — g in LE,(Bg) and a.e. in By
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Now we observe that (31)3 implies that | Dup | converges a.e. and
therefore that Dup converges a.e. in Br. Arguing as in the proof of
(28) we also have for any h

2
| Dup lp 1{m€BR:|Duh(m)P?_y9+Kl¥} <ec | Vh(Duh) | )
and we may assume that
Dup — Di in LY _(BR) and a.e. in Bp. (32)

Using (32) we can pass to the limit as 2 — oo in the equation

A {Ap(Dup), D) dz =10 Vi € W, P(Bg)
jid
to get that
fB (A(D&), Dy} dz = 0 Vo € WIP(BR) (33)
R

IMoreover we have
Vi(Dup) — V(Du) weakly in Wli,c’z(BR).
We now recall that assumption (8) implies the uniqueness of the solution

of (1) and then from (33) we deduce that © = %. Finally from Proposition
2 we have

: . C 1 a2
DV (Duy) |* da < ——------,—-/ ;12 4+ — | Dup |7)2 dx
J, 1PV P s e [ G gy D)

&
sup | Dun P< (o) f, (w4 | Dun )" d,
B, Br

and from this inequalities, passing to the limit as h — 0 we get the
result.

The vectorial case.

In this case we cannot get the local boundedness of Du and we may only
prove the existence of second derivatives.
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Theorem 2. Let A : R™ — R™V be a continuous function satisfying
(2) and (3) wzth p >0, and u € WIP(Q) a local solution of (1). Then
V(Du) € Wtoc (R, R™) and for any ball Bp(z,) CQ,0<p <R

Lp[DV(Du) 2 dz < I—,“,f 2+ | Du )8 d.  (34)

Moreove'r, ifu>0uce€ Wloc (0, RN) when p > 2, otherwise u €
Wi (Q, RY) when 1 < p < 2 and the following estimate holds

- ¢
/{; (¢*+ | Du |2)&2—2 | D% |? de < -(-I-I—_—I)FL (124 | Du 18 da
2 R
(35)

Proof. The first part of the theorem can be proved in the same way
as in the scalar case. To prove the second part of the theorem one may
argue as in the proof of corollary 5 to get

fB (W34 | Du(z) [ + | Due + heo) )T | Apa(Du) P de

SCL | Aps(V(Du)) |25/ | DV(Du) |2 dz

o B(ryp)/2
< pi ] Du )% da,
(R p)? / ( | |

for any BR C, 0 < p < R, s € {1,....,n}. From this estimate, for p > 2,
letting k go to 0 we have(35) while for 1 < p < 2 we deduce

[ 12w p e
B

P
2
2

< UE (24 | Du(z) |° + | Du(z + hes) |2)253 | Aps(Du) |? da:]

2-p
2

. [f (1-42+ | Du(z) |2 A | Du(x + heg) |2)12i d;t:]

_(R )P f(#+|Du|)2dm

and the result again follows letting h — 0.
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