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Qn the relative Nash approximation of
analytic maps.

Alessandro TANCREDI and Alberto TQGNQLI

Abstract

Let X, Y be real or coxnplex Nash spaces aríd Z a subspace
of X; the paper deals with the approxirnation of analytic niaps

X —* Y, Nash orí Z, with Nash maps 4’ : X —* Y such that
4’Iz = ~Iz.

O Introduction

The problem of the approximation of analytic objects by algebraic ones
has been considered by quite a number of mathematicians (¡BCR], [DLS],
[Sh], ¡TT1 ], [TT2], [12]) and it is one of the main and oldest problem
in the Nash geometry where cohomological methods are not available.
A strong limit of the approximation methods is that they work mainí>’
for the non-singular spaces.

Recentí>’ the use of the so-called Néron desingularization ([Pol, ¡Sp]),
a deep result of comnmtative algebra, has allowed a siguificant develop-
ment in the approximation methods in the real case ([CRSI) and in the
complex case (¡Le]).

LeL X, Y be Nash spaces and Z a subspace of A’; we deal with the
approximation of analytic maps 4’ : X —. Y, Nash on Z, with Nash
maps 4’ : X — Y such that 4’lz = ~Iz. In the past we had given
some results in the non-singular case ([TTl ], [fl72]) aud 110W, using
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the results of [CRS] and [Le], we can consider the singular real case (2.3,
2.5, 2.6) and the singular complex case (4.6, 4.7).

Moreover we point out the unicity, up to analytic isomorphisms, of

the Nash structure of a coherent compact real analytic space. This
suggests the study of Nash structures of some couples of spaces that we
begin in this paper with qúite different methods, unfortunatel>’ available
oní>’ in the non-singular case (3.2).

For the complex Nash spaces, that will be examined more carefulí>’
in a forthcoming paper, we can obtain here weaker results (4.6, 4.7,
4.8). The complex Nash functions are indeed less plastic than real ones
aud the results that are available in the complex case (4.2, 4.3) are less
satisfactory than in the real one (1.1).

1 Preliminary remarks and deflnitions

Let /v be the fleld of real numbers E or the fleld of complex numbers «7
We will consider the strong topology on the algebraic subvarieties of

k”.
Let D be an open domain in 0’; an analytic function f : O —. k

is called a Nash futiction if there exists a non-zero polynomial P E
k¡t1,. . . , t,~± flsuch that P(x, f(x)) = O for ever>’ x E O. A map f
D —. 0’ is called a Nash map if ever>’ component of f is a Nash
function. The composition of Nash maps is a Nash map and the inverse
function theorem holds for Nash maps. We denote by Nkn the sheaf
of Nash functions on 0’: it is a coherent subsheaf of the sheaf O/vn of
analytic functions on 0’.

A Nash (resp. analytic) subapace X of /v~ is a localí>’ closed subset
that is, locail>’, the zero set of a finite number of Nash (resp. analytic)
functions. Nasit (resp. ar¿alytic) furzctions on open sets of X are localí>’
restrictions of Nash (resp. analytic) functions on open sets of 0’. We
denote by Nx (resp. Ox) the sheaf of Nasb (resp. analytic) functions
o,> X.

A Nasit (resp. analytic) space is a k-ringed space that is localí>’
isomorphic to Nash (resp. analytic) subspaces of A?. We recail that a
Nash space is (localí>’) irreducible if and oní>’ if it is (localí>’) irreducible
as an analytic space. A Nasit manifold is a Nash space that is smooth
as an analytic space.
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We speak of real functions (spaces) for /v = IR and of complex func-
tions (spaces) for k = «7.

We sa>’ that a real Nash space is coherent if it is coherent as an
analytic space. Ah the analytic spaces we consider are paracompact
with bounded embedding dimension.

A Nash space X is normal if the ring Nx,~ is integralí>’ closed in its
fulí ring of quotients for ever>’ x E X; X is normal as a Nash space if
and oní>’ if it is normal as an analytic space.

We will use the following deep results of ¡CRSI (Theorem 1.6).

Theorem 1.1. Let X be a coheretit compact real Nasit subspace of IR”.

i) Tite ideal ljy ci NRa of Nash functions vanisiting on X is gener-
ated by finitely many global Nash functions.

u) Every Nasit futiction on X eztends ¿o En.

We recail thaI a diffeotopy 0 on a differentiable manifold X is a
differentiable map 0: X x [0, 1] — X such that the map x i—* 0(x, t)
is a diffeomorphism of X for ever>’ t E [0, 11.

A time-dependent vector fleld on X is a differentiable map x from
X x 10,11 to the tangent bundle T(X) such that x(x,t) E T±(X)for
ever>’ x E X, t E [0, 1]. If we denote by r the canonical projection
X x ¡0,1] —.. X it is easy to see that the time dependent vector fields
on X can be identified with the differentiable sections of the pullback
vector bundle rT(X).

Theorem 1.2. There exista a one ¿o ene correspondence between time
dependent vector fielda x on a compact differentiable manifoid X aud
diffeotopies O en X given by

80
t) = x(0(x, t), t)

Praaf. See lHi]
Lot E be a differentiable vector bundle on X and Z a subset of X.

We sa>’ that a continuous section t of E on Z is a differentiable section
if for ever>’ x E Z Ihere exist an open neighborhood U of x in X aud a
differentiable section 5: U —~ E such that slznu = tlznu.
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Lemma 1.3. ‘Leí X be adifferentiable manifold, Z a closed subsel of
X, E a differentiable vector bundie on X. Any differentiable seclien
¿ : Z —~ E extends to X.

Proof. By a straightforward use of a partition of unity argument.

Let (Si)ic’ be a finite famil>’ of closed differentiable submanifolds of
X. We sa>’ that the submanifoLds S~ are in general pesition if for alí sub-
sets {i1, ... , i,.}, {ii Js} of distinct elements of 1 the submanifolds
Sjifl..nSir and Si1 A . .. n S~í intersect transversally.

The following result generalizes the theorem of extension of dif-
feotopies ([Hi]).

Theorem 1.4. Leí X be a compact differentiable manifold, (S~)~~r a
finute family ej clesed differentiable submanifolds ej X ingeneral position
and let (Oi)jcI be a family of diffeeto pies O~ : S~ >< [0,1] — S~ such thai

en (S~ri S~) x [0,1] for every i,j 6 1. There exisis a diffeotopy
6: X x ¡0,1] —. X such thai

0ls~~ [O i~ = O~ for every i E 1.

Proof. By 1.2 it is enough to prove that if E is a differentiable vector
bundle on X and (si)ieI a famil>’ of differentiable sections s~ of E on
S~ such that s4s~ns

1 = sj[s~nsj for ever>’ i,j 6 1, then there exists a
differentiable section s of E on A’ such that sls~ = s~ for ever>’ i E 1.
Let us consider the continuous section ¿ of E on uS~ defined by tls1 =

for ever>’ i E 1. By 1.3 it is enough to prove that the section t is
differentiable, i.e. that it is localí>’ restriction of differentiable sections
on open snbsets of A’. Since the question is local we can suppose that
the s~ are differentiable functions and the conclusion follows easily by
the transversality condition.

2 Real Nash approximation

Let A’, Y be two real analytic spaces. We will consider on the space
E(X, Y) (resp. O(A’, Y)) of differentiable (resp. analytic) maps from X
to Y the Whitney O’ topology (see e.g. [GMT]) and by approximation
of maps between real aualytic spaces we will mean always approximation
in this topology. Let (Uj)jc,r be a localí>’ finite open covering of A’ and

a locail>’ finite open coveriug of Y such that there exist localí>’
closed analytic embeddings q~j : U1 —~ E”’, 4’~ : 14 — IR

7,’ for every
i 6 1; let (K~)~~i be a covering of A’ such that K

1 is a compact subset



Qn ¿he relative Nash approximation ... 189

of U1 for ever>’ i E 1 and (ej)j~J a famil>’ of positive real numbers. Let
Oo : X — Y be a differentiable map and let us consider the sets

U = U(0o, (U1, ‘i’~)~c~’, (i¡~, ~ (Kí)iej, (ci) íd)

— {e e £(x,Y)Ie(K1) ci 1”1, ¡¡4’.94~1 — 4’í0o~7
1II~,.cK.) < civi e

where II ~ is the 01-norm on ~í(Kj). The Whitney topology on
&(X, Y) (resp. O(X, Y)) is the topology that has as a base all possible
sets U.

Theorem 2.1. Let X, Y be ¿mo ceherent real analytic spaces. Tite set
ej isomorpitisms ja epen in V(X,Y).

Proof. We follow the method of the proof given in ¡Hi] for differentiable
manifolds. Let 6o be an isomorphism and U a neighborbood of Oo in the
Whitney topolo~’. IfH is a compact set in Y there exists a finite mimber
of compact K

2 that covers 01(¡¡) for ever>’ analytic map O : X —. Y
such that 6(K1) ci t”1. It follows that we can lid a neighborbood U
of Oo such that ever>’ O E U is a proper map. Qn the other hand if U
is small enough ever>’ 6 E U is a local embedding of analytic spaces.
Moreover since Oo(Ki) fl 0o(X — U1) = 0 for every i E 1 we can find U
in such a way that 0(Kt) fl 6(X — U1) = 0 and 0j~ is injective for ah
O E U, i E 1. Iherefore, for U small enough, every O E U is a closed
embedding. Since X and Y are coherent there exist decompositions into
irreducible components, X = U~cwXv, Y = U~1V Y”, aud we can
suppose that 6o(Xv) = y” for ever>’ u E 1V. Moreover, since 0(X”)
is a closed irreducible subset of Y, if O is near enough to 6o, we have
6(X”) = yV for ever>’ u E EV and then O is an isomorphism.

Corollary 2.2. Let X, Y be ¿mo coiterent real Nasit apaces. Tite set ej
zsemorphisms is open in tite space N(X, Y) of Nash maps from X to Y
mith tite topolog¿, induced by tite topology of CJ(X, Y).

Proof. A Nash map that is an analytic isomorphism is a Nash isomor-
phism.

Theorem 2.3. Let X be a ceherent real Nash space and Z a closed
Nash subspace of X. Tite follewing conditions are equivalent.

i) Let Y be a real Nash space and E’ : X >< Y —* 1W’ a Nash map.
Every analytic map ~ : X — Y Nash on Z that satisjies tite
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equation F(x, íb(x)) = O en X can be approximated by a Nash map
4> X — Y sucit titat 4’Iz = 4’Iz and F(x,4’(x)) = O br every
x EX.

u) Let Y be a real Nasit space and F : y —. a Nash map. Every
analytic map 4’: X —~ Y Nasit on Z titat satisfies tite equation
F(4’(x)) = O on X can be approximated by a Nasit map 4’ : X
Y such that 4’Iz = 4’Iz and F(4’Qr)) = Ob everij x E X.

iii) Leí Y be a real Nasit space and 4’ X —. Y an analytic map Nash
on Z. Titen 4’ can be approximated by a Nash map 4> X — Y
sucit titat 4’Iz = 4’Iz.

Proof. The implications u) u) and u) =~ iii) are obvious
iii) => u) Let E = {(x,y) E X x Y¡F(x,y) xx 01 aud let us consider

the analytic map O : X —. E defined by x i—* (x,4’(x)). There exists
a Nash map w : X — r arbitraril>’ near to O such that wlz Otz.
Let ir : E — X and r : E —* Y be the Nasb maps induced by the
canonical projectiona and p = irw. If w is near enough to 6 the map p
is near to the identity of X and then by 2.2 p can be supposed a Nash
isomorphism. It follows that the map 4> = ww¡F1 satisfies the required
conditions.

Remark 2.4. In [CRS] it is proved that the equivalent conditions of
the previous theorem hold for Z = ~ when X is a compact coherent
subspace of IR” and Y is a subspace of IR7, zero set of finitel>’ man>’
Nash functions on IR”.

We point out that the previous theorem is quite formal and it can be
stated in an>’ situation, in the differentiable, analytic or Nasli setting,
where the set of isomorphisms is open in some suitable topology.

However we remark that, if Y is singular, differentiable rnaps are
not approximable by analytic ones as we can see by a simple example:

2
let X = IR, or even X = ¡¡‘en), Y = {x E 18214 + x

1 — _ — O}
and let us take two O”’> bump functions A, p : IR — ¡0, 1] such that
supp(A) = [—1,0] and supp(g) = [0,1]. It is easy to check that the
difierentiable map 4’: X — Y defined by q5(x) = (A(x) + g(x), (A(x) —

p(x))(1 + X(x) + g(x))+) for ever>’ x E X is not approximable by an>’
analytic map since for ever>’ neighborhood U of O in X <«U) is never
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contained in oní>’ one analytic branch through the origin of the algebraic
curve.

Theorem 2.5. Let X ci fi” be a cempact coiterent real Nash space, Z a
closed coherent Nash subspace of X, H : IR>’ t, E’ : Xx 18»
Nasit mapa atid Y = {y E R>’¡H(y) xx (0,...,0)}. Everg analytic map
4’ : X —~ y Nash on Z that satisfies tite equation F(x, 4’(x)) xx O on X
can be approximated by a Nasit map 4’ : X —-~ y such titat 4’Iz = 4’¡z
atid F(x,4>(x)) = O for everij x EX.

Proof. 8>’ considering the Nasb map F : A’ x —. r+t defined by
F(x, y) = (F(x, y), H(y)) we can reduce to the case Y = IR7,;

Let 4’ = (4’í,. . .,4’~); we will reduce to the case 4’~¡g = O for ever>’
j = 1,... ,p. 8>’ 1.1 there exist Nash functions Yj E Nx(X) such that
svlz = 4’jlz for ever>’ j = 1 p. Let us consider the Nash map

and the anal>’tic map 4” : X —.-~ IR» where xx 4’j — gj for ever>’
j = 1,... ,p. Let us suppose that there exists a Nash map 4>/ : X —. IR»
arbitraril>’ near to 4” such that 4’(x) =0 for ever>’ x E Z, j= 1 y,
and F’(x,4”(x)) = O for ever>’ x E X. Let us consider the Nash map
4’ : X — 18>’ deflned by 4>~ = 4>5 + 9j for every j xx 1,.. .,p: the map
4, is arbitraril>’ near to 4’ and obviously 4>Iz xx 4’Iz; moreover for ever>’
x EX we have F(x,4>(x)) xx F(x,4>j(x) +gi(x),...4>,(x) +g,,(x)) xx

F’(x,4”(x)) = 0.
Let 7z be the ideal of Nx of the Nash functions vanishing on

since 1z is coherent by 1.1 it is generated as Nx-module by finitel>’
man>’ Nash functions h~ E Nx(X), j xx 1,. . . , t. Lot ¿Jz be the ideal
of 0x of the analytic functions vanishing on Z; we have 1z0x = Jz
([BCR]) and then Jz is generated by ~ hj as Ox-module.

Let O : X x L>’>< JR»< —.
18~~P be the Nash map defined by

Gj(x,y,z) = Fj(x,y) j =1
Oq+i(x,y,z) xx y¡ — Z{~ízititi(x) 1=1,...

8>’ the Theorem 8 of H. Cartan for real analytic spaces ([Ca]) there
exist analytic functions Cj¿ E Ox(X), i xx 1 t, lxx 1 y, such that

xx Z~=í ctihl. Then the analytic map 0 : X —> IR» x 18pt defined by
6(x) = (4’(x),aíi(x) cqp(x)) satisfies the equation O(x,0(x)) xx O
on X. 8>’ the Remark 2.4 there exists a Nash map u> : X —~ x JW><
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arbitraril>’ near to O such that O(z,w(x)) xx O for ever>’ x E X. If ir

is tSe canonical projection IR7, x JRPt ~ IR» the Nash ¡nap 4’ irw
satisfies the required conditions.

Corollary 2.6. Leí X ci 18” be a compací ceiterení real Nasit space,
Z ci A’ a closed cohereu¿t Nash subspace, H : IR» E~ a Nasit map atid
Y = {y E IR”¡¡¡(y) = (O 0)}. Por any analytic map 4’ A’ — Y
Nasit en .3 Itere exista a Nash map 4’ : A’ —. Y arbitran/y near lo 4’
such thai 4>Iz xx 4’lz. Moreover

i) if 4’ is an analytic isornorpitism 4> is a Nash isomorphism;

u) if 4’ isa section of a Nash map ir: Y — A’ and tite approximation
is goed enough ¿ten 4> is a section of ir

Proof. The main assertion is contained in 2.5.

i) It follows from 2.2.

u) If 6 is a Nash map near enough to 4’, with OIz = 4’Iz, the map
p = Oir is near to tSe identit>’ and by 2.2 can be supposed a Nash
isomorphism. It follows that the Nash map 4’ xx 9p<~ is a section
of ir near to 4’ with 4>Iz xx 4’z.

In the smooth case the previous result can be casil>’ improved.

Corollar>’ 2.7. Leí A’ ci IR”, Y ci. Jfl» be tiro compact real Nasit maní-
¡oída atid Z a clesed ceherení Nasit subspace ofA’. Por any differentiable
map 4’ : A’ — Y Nasit on Z Itere exisis a Nash map 4’ : A’ —. Y ay-
bitranily near te 4’ sucit thai 4>lz = 4’¡g. Moreover

i) u 4’ ja a diffeomorphism 4’ is a Nasit isomorphism;

u) u 4’ is a section of a Nash map ir : Y —> A’ and tite approxirnatior¿
is good enough titen 4’ ja a section of ir

Proof. By 2.6 it is enough to find 4’ analytic. By the existence of
tSe analytic tubular neighborhood of Y in IR” the proof follows from a
result on tSe relative approximation of differentiable functions: for an>’
difierentiable function f : X —* IR such that flz is analytic there exists
an analytic function g : A’ —~ IR arbitraril>’ near to f with gjz xx 1 iz
([TI])
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Remark 2.8. Ftom 2.6 it follows that the equivalent conditions of 2.3
hold if Z is a closed coherent subspace of a compact coherent subspace
A’ ci IR” and Y is a subspace of IR» zero set of finitel>’ man>’ Nash
functions 011

By the previous results it is possible to approximate an anal>’tic
tion s of a Nash fiber bundle E on A’ that is Nash on a closed Nash
subspace Z of A’ with a Nash section ~ such that .1z xx sjz when the
total space E is the zero set of finitel>’ man>’ Nash functions on a nu-
meric space. In particular if E is a strongly Nash vector bundle such an
approximation is well-known ([BCR], ¡TT3]).

3 Unicity of structures of Nash couples

The Corollar>’ 2.6 states the unicity of the Nash structure on a compact
real analytic space np te analytic isomorphisms and the Corollar>’ 2.7
the unicity up to diffeomorphisms in the smooth case. They suggest
versions for couples of spaces: let A’, Y be compact real Nash spaces,
S ci A’, T ci Y closed Nash subspaces and 4’ : A’ —. Y an analytic
(resp. differentiable) isomorphism such that 4’(S) xx T. Is there a Nash
isomorphism 4> : X —. Y such that i,b(S) xx T? If the spaces are
coherent, 4’ is analytic on A’ and Nash on S the Corollar>’ 2.6 gives
an affirmative answer. In general the question is more difficult. In the
following we will give a positive answer in the smooth case.

Lot A’ ci IR” and Y ci IR» be two compact real Nash manifolds and
(Sj)j~j, (T¿)~~j two finite families of closed Nash submanifolds S1 ci A’,
T1 ci Y. We sa>’ that (A’, (S1)1ci), (Y, (T~)~~r) are Nash couples if the
families of submanifolds (Sí)~cr and (T1)16¡ are in general position. If 1
is a singleton {i} we write simpí>’ S and T instead of S~ and T1.

A differentiable (resp. analytic, Nash) isomorphism of such couples
is a differentiable (resp. analytic, Nash) isomorphism 4’ : A’ — Y such
that 175(S1) xx T~ for ever>’ i E 1.

Lemma 3.1. Let 4’ : (A’, S) — (Y, T) be a differentiable isornerpitism
of Nash ceuples atid let Z be a closed ceiterent Nash subspace of S such
titat 4’¡g is Nasit. Titere exist:

i) a Nash isomorpitism 4’ : S —* T arbitrarily near ¿o 4’Is such that
4’Iz xx
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u) a d:ffeotopy 6 : T x [0,1] —> T such titat

O(y,O) xxyforeverij yCT,
6(4’(x), 1) = 4’(x) for every x E 5,
0(4’(x),t) xx 4’(x) br every x E Z and ¿ E [0, 1];

iii) a Nash isomor-phism of couples ~ : (A’, 5) — (Y, T) sucit thaI
~lz4’Iz.

Proof. i) It follows from 2.7.
u) Let ir: W —~ T be a Nash tubular neighborhood ([Sh]) of T in

IR>’. If 4’ is near enough to 4’Is we can define a diffeotopy O : Tx [0, 1] —-4

T by putting

6W, t) xx ir(y(1 — t) + 4’Y’(y)t) for ever>’ y E T and t E [0,1]

If x E Z for ever>’ ¿ E [0,1]we have

0(4’(x), t) xx ir(4’(x)(i — t) + 4’(x)t) xx w(4’(x)) xx 4’(x)

Qn the other hand it is easy to see that 6(4’(x), 1) xx 4>(x) for ever>’
x E 5.

iii) E>’ 1.4 there exists a diffeotopy ,j : Y >< [0,1] .—* Y such that
~(4’(x), t) = 6(4’(x), ¿) for ever>’ x E 5 and t E [0,1]. Let us denote b>’
4” the diffeomorphism A’ —* Y defined by x -.--+ ~(4’(x), 1). We have
4”Is xx 4>Is and, as in i) we can find a Nash isomorphism 4’: A’ —> Y
such that ~Is= 4’Is. Of course q~Iz 4>¡z = 4’Iz.
Theorem 3.2. Let (A’, (S~)~~i) and (Y, (T1)1~j) be tiro Nasit couples. 1!
<itere ezists a differentiable isomorpitism 4’ : (X, (S~)~~j) — (Y, (T~)1cí),
titen ¿itere exisís a Nasit isomerphism ej ceuples 4’ : (A’, (S~)~~’) —.

Proot’. For an>’ positive integer tiz let us denote by Pm the set of subsets
im}of!suchthatih#ikforh#k. IfHE’Pmand

~ H let us denote by H(i) the element {i1,.. . , i,,,i} of Pm±1. For
an>’ H xx im} let us denote by Sg (resp. T;¡) the intersection
~ n•.. n Se,,, (resp. T11 fl•~~ fl T~4 13>’ the hypotheses made

5H ¿md
are Nash submanifolds and 4’(Sg) xx T,q for ever>’ 11 E Pm, m E LV;

moreover, by the transversality conditions again, there exist q E 1V,



Qn ¿be relative Nash approximation ... 195

11 E 7% such that 5H # 0 and 8L = 0 for ever>’ L E Pm, m > q, or

Let H E 1% such that S~ # 0; by 3.1 there exist a Nash isomorphism
4>H : SR —.4 TH near to 4’1s

11 aud a diffeotopy
6H : T

1r,r x [0,11 —.4 TH
such that 6(4’(x), 1) xx 4’H(x) for ever>’ x E

8H•

Let L E Pqi aud let us consider the sets L(i) of 1%. Uy 1.4 there
exists a diffeotopy 6L : XL x (0,1] —* TL such that OLITL(.)x(Ólí xx

for ever>’ i E ¡ such that 8L(i) # 0. If XL # 0 aud TL<l) xx 0 for ever>’ i 6 1
as aboye we find a diffeotopy 0L• ~t follows that for every 3, L E P~q,
with T

3 # O and XL # 0 we have Ví xx Oj 011 (Ti 11 TL) x [O,1].
Uy proceeding step by step we flnd a diffeotopy

0H : T
1q x [0,1]

TH br every H E Pm, with m =q such that 6HITi,< [0,1] = 6., for ever>’
3 D H. 8>’ 1.4 there exists a diffeotopy O,>: Y ‘< [0,1! —. Y such that
6qIT~x[o,1] =

6H for ever>’ H E Pm, ni < q.
Let 4’,>: A’ —* Y bethediffeomorphismdeflnedb>’x s—.* 0,>QS(x), 1);

by the construction made 4’,> defines a differentiable isomorphism of Nash
couples (A’, (SJíc’) —* (Y, (T

1)16¡) such that 4’<JISJI is a Nash isomor-
phism for ever>’ H E 7’>.

Let us consider now H E Pq—i such that
5H # 0. From 3.1, applied

to 4’<jIs,
1 with Z xx {USíIJ E 7’,>, .1 D H}, it follows that ihere exists a

Nash isomorphism 4>u : —* T¡,r such tbat 4’H1s3 xx 4’qIS3 for ever>’
3 E 7’,>.

Uy repeating the aboye constructions we flnd a differentiable isa.
morphism of Nash couples 4’,>~i : (A’, (S~)~~,) —.* (Y, (T1)16¡) such thai
4’q—1¡SH is a Nash isomorphism for ever>’ H E P,>—~.

After a finite number of steps we flud a diffeomorphism
ti : (A’, (Si) 161) —---. (Y, (‘fí)ícr) such that 4’íIs1 is Nash for ever>’ i E 1.

13>’ applying 3.1 again to ti with Z xx U~S~ we get the conclusion.

4 Complex Nash approximation

Theorem 4.1. Let A’ be a normal closed complez Nash subspace of an
open set A ci r and f : A’ —-. <LP a Nash map. Titere exist a normal
afflne subvarie¿y N ci ~ a regular map ir : N —~ A’ indueed
by ¿he canonical projection C+>~+t ~ C, an open Nash embedding
a : A’ — N such that ,ra xx idx and a regular map it : N —~ <IY sucit
thai ita xx f.
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Proof. It is a version of the complex Artin Mazur Theorem (see e.g.
[BCR],[TT2]).

Corollar>’ 4.2. Let X be a closed normal complex Nash subspace of an
open set A ci LP, f1,..., 4 E Nx(X) Nasit functions and Z xx {x E
A’¡fi(x) xx... xx f»(x) xx Q}

i) There exists an algebraic subvariety T ci N such thaI uLz is an
open embedding into T.

u) Tite ideal siteaflz ci Nx of tite Nash functions vanishing on Z is
generated by Jinitely many Nash functions on A’ vanisiting oit Z.

Prao?. i) Let f xx (fi,..., 1,~) and h xx (it1 it»); the affine variety
T = {z E N¡ití(z) xx ... xxh»(z) xx 0} has the required properties.

u) 13>’ i) we ma>’ assume that z xx T fl fi where fi is an open set of an
algebraic subvariety N ci LP and T is an algebraic subvariety of /V. Let
RlN be the sheaf of regular functions 011 N and ST ci RiN the ideal sheaf
of the regular functions vanishing on T. Since ¿IT is generated by finitel>’
man>’ regular functions on N vanishing on T it is enough to prove that
JTNN xx

1T• We can assume xx LP aud the conclusion follows using
a classical result of Chevalle>’ as in the analogous statement on the ideal
sheaf of analytic functions vanishing 011 T (see e. g. [Ru!) since the
Nullstellensatz holds for complex Nash germs.

Theorem 4.3. Leí A’ be a normal closed cemplex Nash subspace of a
Runge domain A ci LP and K a holomor-pitically convez compací subsel
of A’.

i) Titere exist Nasit functions fi f
5 on a polynomial polyhedron

UinA, wititKciU,sucitthatA’flU={zEUIfí(z)xx..~
fs(z) = 0}.

u) Por every Nasit funetion f c Nx(X) titere exisí a polynomial
polyitedren U ci A, witit 1< ci U, and E’ E NC(U) sucit thaI
Flunx = flunx.

Prao?. See [TT2]

Theorem 4.4. Let K be a holomorphically cenvez compací subset of un
a/fine algebraic varieíy N, 4’ a complete analy tic map from a neigitboritood
ofK to «Y, O a complete Nash map from a neighborhood of tite graph of



Qn ¿be relative Nash approxirnation ... 197

4’ in 1V xLP to «Y .such that G(x,4’(x)) xx O for every x E 1<. Titen 4’
can be uniformly approximated en K by complete Nasit maps 4> from a
neighboritood of K lo LP sucit thaI G(x,4’(z)) =0 fer every x E K.

Proof. See [Le].

Lemma 4.5. Leí A ci LP be a Runge domain, A’ ci A a normal complete
closed Nash subapace, K a holomorphically convete compací subsel ofA’,
fi ci LP an open set, E : A’ x fi —. «Y a Nash muy, and 4’ : A’ — B an
analytic map such thaI F(lx,4’(x)) =0 for every te E K. Titere exisí an
open neighboritood U ofK in A’ atid a Nasit map 4’ : U —.-* fi arbitrarily
near to 4’ on K sucit ¿¡¿al E(x,4’(x)) = O for everg rE K.

Prao?. 13>’ 4.1 there exist a normal affine subvariety N ci LP±tand
an open Nash embedding a : A’ —+ N such that ira = idx, where
ir : 1V —* A’ is induced by the canonical projection ~ — LP. Since
the open set fi xx o}A’) of 1V is a closed subset of A .x «M tben a(K) is
holomorphically convex in 1V.

Let us consider the Nash map O : fi x fi — «Y defined by G(z, y) xx

EQC’(z),y) and tbe complex analytic map 4’a~1 on a neighhorhood of
a(K).

13>’ 4.4 there exist an open neighborhood y of u(K) in fi and a
Nash map 4>’: V —~ «9, arbitraril>’ near to 4’a1 on u(K) such that
G(z,4>’(z)) xx O for ever>’ z E o(K). The Nash function 4’ = 4/a on the
open set U xx a1(1/) satisfles the condition F(x,4’(x)) xx O for ever>’
te E K and approximates 4’ on K; moreover if 4’ is near enough to 4’ on
K we can suppose 4>(U) ci B.

Theorem 4.6. Let A ci LP a Runge domain, fi ci LP an open set,
A’ ci A a normal closed complete Nash .subspace, K a cernpací set in A’,
g1,~•~,gq E ~c(~) Nash functions and Y xx {y E B¡gi(y) xx ... xx

gq(Y) xx 0}. Everij complete analyjtic ma>’ 4’ from a neighboritood of 1<
rn A’ ¿o Y can be approximated on K by a flash map 4’ defined en a
neighboritood U of K. Moreover U and 4, can be citosen in sucit a way
thaI:

i) if 4’ is un analytic isomorpitism 4> is a Nasit isomorpitism U

ti) if 4’ is a section of a Nasit ma>’ ir : Y —~ A’ titen 4’ is a section of
ir onU.
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Proof. 8>’ considering a neighborhbood of the holomorphic hulí of K iii
A’ we can assume K holomorphically convex and taking the Nash ínap
E’: A’ x B —. «Y defined by (x,y) i—* (91(u) gq(v)) the existence
of 4’ follows from 4.5.

i) It is a standard fact (see e.g. [CMI>) that, if the approximation
is strong enough, 4’ is an injection and a local embedding on a neigh-
borhood of K; since Y is localí>’ irreducible 4> is an open map ([Fi]).

u) It is a consequence of i) as in 2.6.

Remark 4.7. 13>’ the previous theorem it is not difficult to state a com-
plex version, taking. the approximation on a neighborhood of a compact
set K, of the equivalent assertions of 2.3. More difficult is to check when
tbe equivalent assertions hold. Using 4.2, 4.3 and the Theorem 13 of H.
Cartan for complex spaces ([Fi]) the proof of 2.5 can be repeated when
A’ and Y are closed normal subspaces of Runge domains, Z a closed
subspace of A’ and K a compact set in 2%

Moreover from the results of [113] it is also possible to approximate
analytic sections with Nash sections of Nash vector bundíes generated
by finitel>’ man>’ Nash global sections.

Ihe proof of 2.5 can be also repeated iii the setting of affine varieties
as in the following tbeorem that was given in [TTl ] for Y xx <¡Y.

Thearem 4.8. Leí A’ atid Y be tiro affine algebraic subvarieties, Z an
algebraic subvarie¿y of A’, K a holomorphically convete compací set in
A’ and 4’ : A’ —.* Y a complete analytic map algebraic en Z. Títere exisí
Nasit maps en open neighborhoods U of 1< in X, arbitrarily near to 4’
on K sucit that 4>lunz xx 4’Lunz.
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