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A-realcompact spaces.

Jorge BUSTAMANTE, José It ARRAZOLA aud Raúl ESCOBEDO

Abstract

Relations betweeu homomorphisms on a real funetiorí algebra
aud different properties (sucb as being inverse-closed and closed
under bounded inversion) are studied.

1 Introduction and notation

By a function algebra A un X we mean a family of real-valued functions
un X such that: 1) A is a linear algebra with unit under operations
defined pointwise, 2) A separates points un X and 3) A is closed under
bounded inversion, that is, if f E A and f > 1 then - E A. We1
denote by Ram(A) the family of ah A-homomorphisms, that is, non nuIl
multiplicative real linear functionals on A, endowed with the Gelfand
topology.

Horn(A) has been intensively studied wben X isa completely regular
Hausdorff space aud A is C(X) (see [121). In recent years different pa-
pers hayo been devoted tu stucly homornorphisrns un sorno subalgobras
of 0(X), fur example algebras of differentiable fnnctions have heen con-
sidered in [1]-[5], [14] and ¡151. As can be seen in the quoted papers,
stndying functiun algebras frequently one needs results asserting that a
homurnurphism is the evaluation at sorne point of the supporting space.
This paper is devoted to elaborate a general theory related with this
subject.
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2 Single-set evaluating algebras and
A-realcompactness

2.1.- Let X be a cornpletely regular Hansdorff space, Y G X
and f : Y —* E a continuous map. If f has a continuous extension to
p E X \ Y, this extension will be denoted by .f(p). For 1 : X —+ IR,
Z(f) = {x E X :1(x) = O}. A set S G Y is a zero set if there exists
g E 0(Y) such that S = Z(g) aud 0 is the closure of 9 luX. As usual
IJX denotes Ihe Stone-Cech compactification of X.

2.2.- The elements of any function algebra can be considered as uniforrnly
continuous functions on X iii the following sense. Denote by Ab the
subalgebra of alí bounded functions in A. Let UA be the uniforrnity
generated on X by Ab, that is U¡, is defined by the pseudometrics

djr(x,y) =11(x) — f(y) fE Ab,x,y EX.

Let ~7~Adenote the topology induced by UA on X. Since A separates
points in X , (X, -‘-A) is a completely regular Hausdorff space. Alí topo-
logical notions on X are assumed in the ~A topology.

Denote by XA the completion of the uniforrn space (X, UA), then
XA is a cornpact Hausdorff space and X can be considered as a dense
subspace of XA. It is known that each f E Ab has a uniqile contirnious
extension f to XA. Set A = {f : f E Ab}. Á separates points in XA
([7]) then, by the Stone-Weierstrass theorern, A is a dense subspace of
C(XA) in the unifonn norrn.

2.3.- The following result from [7]will be used in the sequel:

Thearem. Let A be a function álgebra en X, titen

(a) ~ E Hom(Ab) if and only if Ihere exisis a (unique) p E XA snch
that ~p(f)= f(p) for every f E A. Moreover XÁ is (horneomorphic
lo) tite maximal ideal space of Ab;

(b) ‘p E Hom(A) u and only if ihere exisís a (unique) point p E XA
SUC/I thaI, ever7g/ f E A has a finite eontinuous extension f(p) lo
p aud ~c(f) = 1(p). Tite set 1(A) of ah such p, with tite topology
induced by X,~, is (homeomorpitie lo) tite maximal ideal space of
A.
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2.4.- In what follows we associate ta a given function algebra A the
spaces XA and 1(A) deflned aboye. Moreover, we identify Hom(t4) with
1(A) aud X with a (dense) subset of XA. Thus Wc have the inclnsions,

X es ¡(A) C X~.

In studying properties of hornornorphisms it is irnportant to have
conditions to recognize points in ¡(A) \ X. It is easy to verify that for
a point p E XA \ X tbe following assertions are equivalents:

(a) p E ¡(A);

(b) for every f E A, there exists a net {~rx} in X such that zA —~ p
and f(xx) is baunded;

(c) for every f E A, there exisis a neighbourhood y of p in XÁ such
thai f(VflX) 18 bounded.

2.5.- We need sorne definitions: a function algebra A on X is called
single-set evaluating if, for every ~ E A and cadi f E A, there exists
x E X such that ‘,o(f) = f(x). A 18 called inverse-closed if for every
f E A snch that Z(f) = 0, ~ E A. It is easy to prove that mverse-closed
algebras are single-set evaluating. Tbere exist single-set evaluating al-
gebras which are not inverse-closed ¡6].

2.6.- Given a nonernpty set X, (A, B) is called a subordinated pair [7]
on X if: 1) A and B are function algebras an X; u) B es A; iii) every
hornornorphism on B has an extension fo a hornomorphism on A.

2.7.- Theorem. Por a function algebra A mi X tite following conditiona
are equivalent:

(a) A ja single-set evaluating;

(‘b) Por allp E ¡(A) \X, iff E A and 0< f =1, titen Ib’) # 0;

(c) (RA,A) is a sudordinated pair, where RA the smallest inverse-
dosed algebra oit X containing A.
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Praaf.
i) Suppose that (a) holds but (b) does not. Fix p E ¡(A) \ X and

h e A such that O < it < 1 and h(p) = O. Since evaluation at p is
a hornomorpbisrn on A, A is not single-set evaluating.

Ii) Suppose that (b) holds and A is not single-set evaluating. Take
p E ¡¡orn(A), iv E 1(A) and k E A such that cp(g) = ~(p) for every
g E A and q’(k) # k(x) for all x e X. Set h(x) = (k(x) —

and f(x) = j-~y~ Then .1b’) = so(f) O and O < 1(x) < 1. ibis
contradicts (h).

iii) For (a) implies (e) see lemma 16 of 16J.

iv) Since RA is rnverse-closed it is single-set evaluating. !f (RA, A) is
a subordinated pair, then A is single-set evaluating.

u

2.5.- Recail that a completely regular Hausdorff space y is realcompact
[12] ifevery C(Y)-hornornorphisrn is the evaluation at sorne point p iii Y.
This concept can be generalized in the following way: if A is a functioix
algebra on X, X is said to be A-realcornpact if every A-homomorphism
is the evaluation at sorne point p of X. A similar notion was used iii [8],
¡161 and [171.

2.9.- Reniax-ks.

1) If Ab = A, then X is A-realcompact if and only if X is conv-
pact (in the ‘~A topology). When XÁ \ X ~ we can obtaiu
A-realcompactness only when A contains an unbounded functioií.
In particular if (X, ‘r) is a pseudocompact noncornpact, cornpletely
regular Hansdorff space and A = 0(X), tben X is not
A-realcornpact.

2) Notice that if A aud B are function algebras on X, B C A, with
X A-realcompact, then X is B-realcornpact if aud only if (A, 13)
is a subordinated pair.

2.10.- Propasitian. Leí A arzd B be funetion algebras on X with B
uniforrnly dense iii A. Titen (A,B) is a subordinated pair.
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Prao?. Since B¡, is uniformly dense in Ab, the spaces C(XA) and C(XB)
are isornorphic, thus by the Banach-Stone theorem (see [12]) XA and XB
are horneornorphic. Wc rnay identify XA aud XB. Fix a homomorphism

on B and a point p E XÁ such that for every 1 E B, ~(f>= 1(p).
We will flnish our proof by showing that every y E A has a (unique)
continuous limite extension to p. Fix y E A and f e B such
that sup ¡ 1(x) — g(x) 1=1. There exist a neighbonrhood V of p in XA

zeX
aud a positive constant M such that for every yE VflX, ¡ f(v) 1=M.
Then for every y E y flX, ¡ g(y) 1=M + 1, now the assertion follows
frorn 2.4.

u

In [10] (proposition 1.8) was proved the following fact: if X is a
realcornpact space and A C 0(X) is a subalgebra with unit, closed
under bounded inversion, uniformly dense in 0(X), then 1-! orn(A) = X.
Our next result, as an application of proposition 2.10 (see rernark 2.9.2),
provides a natural extension.

211.- Carollary. Leí A mU B befunclion algebras vn X, B c A. IJB is
uniformlv dense tu A and X is A-realcornpaci, ihen X ¿e B-realcompact.

2.12.- Theorem. Let A be a single-set evaluating algebra on X. Titen
X is A-realcornpact if and only X is RA -realcompací (see (e) in 2.7,).
Moreover ifA is inverse-closed, titen X is A-realcornpact if and only if
for every p c XÁ \ X, itere exisis

fEAb, 0<1=1, sucittitatftp)=0. (1)

Proa?. The first part follows from theorern 2.7, the remark 2) in 2.9
ancl the construction of RA.

Por the second part suppose flrst that X is A-realcornpact. Supposc
that p E XA \ X. Taking mio account that p ~ 1(A) = X, there
exists f E A \ Ab such that for every net {xx} in X, with XA —~ iv,
f(XÁ) is unbounded (seo the 1-ant assertion in 2.4). Then ¡¿(p) O miii

1±12(x~
o < h(x) =1 for x EX, where h(x) =

Suppose now thai for ah p E XA \ X there exists 1 E A such that
0<1=1 and Ib’) =o. 1$’ deflning g(x) = 1 wehave thai gEA7~y,
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and for every net {xx} in X, x> —. p, {g(xx)} is not bounded. This
completes the proof.

u

2.13.- Remark. In general condition (1) does not imply A-realcornpact-
ness. For example, let X be the real interval (0,1] aud A the restriction
of continuous functions in [0,1] to (0,1]. In this case the condition holds
but X is not A-realcompact (notice that XA = [0,1]).

2.14.- Thearem. Let A be a function algebra. Titen XA is tite Stone-
Cech compactification of X if and only if for any disjoint zero ate 8
and T in X, itere exisis f E A, sucit titat

0 = f = 1, 1(S) = {0} sud f(T) = {1}. (2)

Proaf. If A satisfles (2) by theorem 11 of (11], Ab is uniformly dense
in the space Cb(X) of all real continuous bounded functions on X, then
13X=XA.

On the other hand if f3X = XA, Ab is dense in Cb(X) and the result
follows again from theorern 11 of [11].

u

From theorems 2.12 and 2.14 we obtain a proof of the foflowing result
due to S. Mrówka (proposition 3.11.10 in ¡91).
2.15.- Carallary. Leí X be a cornpletely regular I-Iausdorff epate. Titen
X ¿e realcornpact if and only if for every p E /3X \ X, titere existe fE
0(X) sucit that O < f(x) =1 , x e X, and f(p) = O.

The next result extends Theorem 2 of [15]. Jaramillo presented in
¡15] different examples of functions algebras for which Theorem 2.16 may
be applied.

2.16.- Thearem. Leí tu suppose tital a function algebra A on X satisfies
tite following conditiona:

(a) for every f,g E A ami p,c >0, if tite sete

14(f) = {x f(x) 1~ 4 ami Qdg) = {x :1 g(x) 1=~}
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are nol empty ami disjoint, itere exisis it E A , O < it < 1 sucit
thai

h(P6(f)) = {0} ami h(Q~(g)) = {1};

(b) given an opera (ira tite TA topology) cover {H~} of X , sucia thai
II,, c H~i, arad f X .-.*R , iJ itere exisis a sequence f,~ ira A
sucia that f,~ ¡u,, = f IR,,, titen 1 E A;

(c) for every p E XA \ X itere exisis y E C(XA) whicit satisjles (1).

Titen X is A-realcornpact.

Proof. Let p be a homornorphisrn on A. There exists p E XA such that
‘,o(f) = ¡(p) for every 1 E A. We wiII shaw that p E X.

Suppose that p E XÁ \ X, take y E C(XA) such tbat O < g =1 and
ñb’) = 0. Set

1

E,,= {x EXA g(x)> ~}, 71 1,2,...

We may suppose that each E~ 13 not ernpty. Since A is dense in
C(XA), there exists a sequence {1,,} in Ab such that

1 -~ 1
II —y 1100=~ and II 1,. — fnn 11~=~

where ¡¡ . jj~ denotes the sup norm in C(XA). Set

1

= {X E XA :¡ ¡n(x) 1=—}.

It is easy to prove that for ra =2, En—í C E’,, C E,,+i.

Now we have that (Xfl U E,.) = flX U F,,, thus {F2nflX} 13
ncIV ncffV

an increasing open cover of X. For each n >2 take g,, E A , 0 =g,~ < 1
such tbat

9,,(F~,,+0flX) = {1} and g~(EY?.~flX) = {0}.

00

Notice that ~,«p) = 1, thus ~ = 1. The function f(x) = E
n

a’ E X is weIl defined. Set k,.Gr) = E gj(x). Since k,. E A, f E A.
j=2
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It is easy to see that for every x E X aud each n, k~(x) =fQr), then
n

so(f) =~p(k,,) = E so(gJ) = n (see 1.4 of ¡13]), this says thaI. cpu) =
j=1

a contradiction.

u
2.17.- Theorem 2.3 gives a representation of the real maximal ideal of A
but, as the following result will prove, we can not expect to obtain a one
to one relation between z-ultrafllters and maxirnal ideals. The notion on
z-fllter is used as in ¡12]. An ideal in A is a proper ideal. For an ideal 1,
7(1) = {Z(f) : f E 1}. If 3 is a z-filter Jj~1 = {f E A : 7(f) E J}.

2.18.- Thearem. Let A be a furactiora algebra witieit satisfies (2,>. Tite
following assertion are equivalení:

(a) for eacit maxirnal ideal 1 ira A, ihere exisis p E j3X such titat

¡=41 EA:pCZ(f) }.

(b) for eacit maxirnal ideal 1 ira A, tit ere exisis a maxirnal ideal .1 ira
0(X) sucit that ¡ c 3;

(e) for each rnaxirnal ideal 1 ira A, 7(1) is a z-ultrafihter;

(d) A is inverse-closed.

Proa?. Since A satisfies (2), for every zero set P in X there exists f C A
such that 7(f) = P.

The assertions (a) implies (h) aud (b) implies (a) follow directly frorn
the Celfand-Kolmogorov theorem ([121, 7.3).

(b) implies (c) Fix maximal ideals 1 and 3 in A and 0(X) re-
spectively, with 1 C J. ZQ(Z(J)) is ah ideal in A. Therefore, 1 =

Zj4’(Z(J)). Since 7(I) = 7(3), 7(1) is a z-ultrafllter.
(c) implies (b) Fix a maximal ideal 1 in A, since 7(I) isa z-ultrafilter

3 = {f E 0(X): 7(f) E Z(1)} is a maximal ideal iii 0(X) containing
1.

(c) implies (d) Take f E A such that 7(f) = 0 and set
1 = {gf :q E A}. Since f El, 1 can not be an ideal, therefore 1 = A.

(d) implies (e) Pix an ideal 1 in A. Since A is inverse closed 0 ~ 7(1).
On tbeotherhand, iff,g El aid it EA, Z(f2+g2) = Z(f)flZ(g) and
7(f) c Z(f y) = 7(g).

u
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3 The sequentially evaluating property

3. 1.- A funetion algebra A 011 X is called sequentially evataating if, for
every ~ E Horn(A) and each sequence {f,.} in A , there exists x E X rnch
that q4f,,) = f,,(x), for n = 1,2,... This property has been intensively
stndied in [2]. As far as we know the use of this property goes back to 5.
Mazur (see the note to stateinent A of [8]). Ifa function algebra A on X
has the sequentially evaluating property, then every homomorphism on
A is sequentially continuous on A~, where A~ is tite algebra A endowed
with the pointwise convergence topology. rrhis fact was noticed for sorne
particular algebras lix (2] and [6].

3.2.- Denote by [A UC(XM] the closed under bounded inversion algebra
on X generated by A aud 0(XÁ). By setting

n

Aí := {Zíkgk: 1k E A,gk E C(XA),n E N},
k=1

we have that ¡A UC(XA)1 = {iti/it2: it1, it2 c A1,it2 =11.

3.3.- Theorem. Leí A be a single-set evaluaiing algebra on X. Tite
following conditioras are equivalení:

(a) A itas tite sequentially evaluaiing property.

(b) Eacit zero set ira XÁ \ X does nol meel 1(A).

(e) [A UC(XA)] is single-set evaluating.

Prao?. Suppose that (a) holds aud (b) fajis, then there exists a zero set
PC XA\X such that PflI(A) ~ ~. Ftx qE PAL(A) aud lot so be
the evaluation at q. Since P is a zero set, there exists f E C(X~) snch
tbat P = Z(f). Since A is denso in C(XA) for tho uniforrn norm, thore
exists {f,~} in Ab, with f.. f uniforrnly on XÁ. Wc hayo that ~(f,,) =

¡n(q) —~ f(q) = 0. Set g~ = fn — so(fn) E Ab. According to the aboye
argurnents ~,. — f íxniformly on XA and y4g,,) = 0. By the sequentially
evaluating property there exists x0 e X such that ‘p(gn) = gn(xo) = 0.
This says that limg,.(xo) = f(xo) = O and we have a contradiction.

n
(b) implies (e) Suppose that (b) bolds and let so be a hornomorphism

on IAUC(XA)]. We will prove that for each it E [AU0(XA)],
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Z(1¿ — so(h)) ~ 0. Since p is a hornomorphisrn on A (C(XA)), there
exists p e 1(A) (q E C(XA)) such that, for each f E A (g E C(XA))

#f) = .fb’) (so(W = ~(q)). Since Ab C AflC(XA), for each f E Ab,
Ib’) = f(q). Taking into account that ~1separates points in XÁ, we have
thatp= q. Nowiff c (AUC(XÁ)), set g~=f—~(f). IfZ(g)flX = 0,
then Z(g)flI(A) = O and this is ijot posible (p E 7(g)flI(A)).

Since for every f E A, has a continuous extension to XÁ,
we have that for any it c Ai (see 3.2), Z(h — so(h)) # 0 In fact, if
fn...,f,,EAandgi gnEC(XÁ),

Qi#z(Z (fk—so(fk))2 + (9k— so(rn3)2)+ (1k — so(fk))2

n
c Z(Z(fk — so(fk))9k + so(fk)(9k — so(gk)))

k= 1
n

= Z(Zfkgk—so(Zfkgk))
k=1

Now if it
1, it2 E Ai with it2 =1, then

ial ial
—. vi—)) = Z(so(it2)hi — so(itl)h2)it2

= Z(so(h2)itl — so(hí)it2 — so(so(h2)itl — so(itl)h2)) # 0.

(c) implies (a) Suppose that [A UC(XA)] is single-set evahiating.
Fix 4’ E ¡¡orn(A). There exists p E ¡(A) such that, for each 1 E A,
~p(f)= f(p). Let us prove that 4’ may be extended to a homomorphisrn
so on [AUC(XA)]. It 15 sufficient to prove that every funetion it E
[A U C(XÁ)l has a (unique) continnaus extension to p.

n
Suppose first that it = >3 f¡~y¡<, with 1k E A and 9k E C(XÁ), for

k=1
n

= 1,2,..., u. Set Ab’) = >3 fkb’)4’k(p). Wc have that, for any net
k=1

{XA}~cA in X, such that x~ — p in XÁ,

n n
lirnit(x>,) = ~1irnfk(x4limgk(xx) = Z¡kb’9kb’) = Ab’).

k=l k=1
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Fina]ly, if it = c [AUC(XA)I. with it1, it2 E A1 ( it2 =1), set

¡ib’) L~21 Then, by deflning so(h) = Ab’) for it E [AUC(XA)1, we
have that so E Horn([A UC(XA)]) aud so(f) = 4’(f) for f E A.

lUn<r»40(In>)2 audNow, fix a sequence {f,,} in A. Set gn(x) = —w
00

y = >3 y,,. Wc have that ~ E C(XA). Lot us prove that ep(y) = O.
ti=1

fl

In fact, notice that the sequence {>3 y¡~,} converges uniformly to g and
k= 1

n n>3 9k =y. Then, given E > O and n such that >3 gb—y IL,<,< e, it
k=1 k=1follows that

n It

O = so(>39k) =sob’) = so(~ — >39k) =Etp(l) = e.
k=L k=1

Taking into account that [A UO(XAU is single-set evaluating, there
exist xo E X such that O = sob’) = ~(xo). Therefore so(f,.) = f~(xo) for
oach n.

u

3.4.- Remark. If A is an inverse-closed algebra on X closed under the
nniforrn convergence, then [A UC(XA)] = A, and A has the sequential
evaluating property. This assertion can be obtained frorn the result
of 5. Mazur quoted in [8] and gives a proof of following fact: X need
not be A-realcornpact when A is a sequentially evaluating algebra oíx
X. For certain class of algebras the sequentially evaluating property
implies A-realcompactness (for example if X is a Lindelbf space in the
r,4 topology), this just was the main reason for studying this property
in [2j.

The last proposition in this sectioncan be proved as theorem 2.16.

3.5.- Prapasition. If a funetion algebra A satisfies conditions (a) arad
(b) ira theorern 2.16 titen A itas tite sequentially evaluating property.

Acknowledgments. The authors thank the referee for several sugges-
tions which have been incorporated into the fina] version.
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