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Note on oo-superharmonic functions.

Peter LINDQVIST and Juan MANFREDI*

Abstract

The purpose of this note is to show that all viscesity superso-
lutions of

dv v 8%
Ay = _— <0
oo? Za:::g dz; Oz0z; —

are variational. That is, they are limits of p-superharmonic func-
tions, induced by the operator

Ayu= div(|Vv|P~2Vv) ,

as p approaches co. In addition, it is shown that each viscosity
supersolution of A v <0 is Lipschitz continuous.

1 Introduction
The solutions of the differential equation
", 8h dh 9%k

i,jz=1 dz; Ox; Oz;0z;

Axch

il

=0 (1.1}

are called oo-harnionic functions. They play an essential role as the
best Lipschitz extensions of their boundary values, cf. [A ] and [J]. Their
regularity properties are poorly understood, but at least it is known that
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they belong to C(2) N w, ’°°(Q) The mere concept of solution is' diffi-
cult, because the equation ccioes not have an ordinary weak:formulation
containing only the first partial derivatives, while the second ones.needed
to evaluate {1.1) are not even known to exist. There are two options to
overcome this difficulty.

First, one uses the-concept of viscosity solutions.. This has the ad-
vantage that Ao has to be calculated only for smooth test-functions.
Second, one approximates the equation by.equations like .,

div(|Vulf2Vu) =0 , div(|[VufP 2Vu) = £eP71

as p approaches co. Both approaches are needed, so far. A strange
mixture of viscosity and variational methods prevails. . ., . .,

. For the details of the variational method see [DBM]. The viscosity
method is developed in [J] where a remarkable uniqueness result is ob-
tained. It is proven in [J] that, given continuous boundary values in an
arbitrary bounded ‘domainin the n-dimensional Euclidean’ space, there
is a unique viscosity solution attaining thé given boundary values at
every boundary point. As a matter of fact, this viscosity solution is
the uniform limit of the corresponding p-harmonic functions, as p ap-
proaches 00. (The solutions of the equation div(|Vh|P~?*Vh) =.0 are
called p-harmonic.) Although the framework of viscesity solutions is
needed {c prove unigueness, it does not produce any “new” solutions,

The objective of our note is to prove that even the mscoszty super-

solutions of the equation are variational, i.e., they are locally uniform
limits of p-superharmonic functions, .as p approaches 00. We use an ob-,
stacle problem in the Calculus of Variations, a tool that is of mdependent

u}t'e;est. A noteworthy consequence of the variational characterization
is that certain estimates now are automatically extended to the full
class of viscosity supersolutions. As an example we mention Harnack’s
inequality {Corollary 4.5) and Liouville’s theorem (Corollary 4.7).

- I - . TN
2 Some Definitions
The viscosity supersolutions of A, v < 0 are equivalent to ihe co-

superharrionic functions defined via a comparison.principle.. To be on
the safe side, we mention the definitions. Let Q) denote a domain.in R™.
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2.1 Definition. The function v : § — (—00,00] i3 a viscosily superso-
lution, if

(i} v# o0
(ii) v is lower serficontinuous, and

(iil) at any given point T we heve Asp(z) €0, if o € CF(Q), ¢ S v
in Q, and p(z) = v(z).

Notice that A,, has to be calculated only for the test-function ¢,
not for v itself. Analogously, a viscosity subsolution is defined. Finally,
a function that is both a viscosity super- and a viscosity subsolution
is called a viscosity solution. Thus viscosity solutions are continuous
by definition. By the result of R. Jensen the Dirichlet boundary value
problem has a unique viscosity solution, cf. [J]. To be more precise,
suppose that © is bounded and that f : 822 — R is a given continuous
function. Then the equation A,k = 0 has a unique viscosity solution &
in Q with boundary values

gglfh(r) = f{€)

at each £ € 8Q. As a matter of fact, limp.oo hp = h uniformly in
), where hp is the solution to the equation Aph, = 0 with boundary
values f in . (It is known that A, is unique and that hy, attains the
prescribed boundary values, if p > n = the dimension of the space.) To
begin with, it is not clear that different sequences of p’s approaching
00, would yield the same function h. It is here that Jensen’s uniqueness
result is indispensable. Accordingly, the full sequence converges to h.

2.2 Definition. The function v : @ — (—oo,00] is co-superharmionic,

if
(i) v # oo,
(ii) v is lower senjicontinuous, and

(iii) v obeys the condparison principle in any subdordain D with D CC
Q: if h € C(D) is co-harrionic in D end h < v on 8D, thenh < v
wmn D).
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Notice that this definition requires that the concept of:00-harmonic
function has been defined in advance. Here we take the co-harmonic’
functions as the v1scos:ty solutions. This mixture of two concepts in one
definition is not esthetic.! 2

2.3 Proposition. The viscosily supersolutions and-the co-superharnionic
functzon& are the samg functtons

Proof. The v150031ty supersolutlons satisfy the comparxson prmczple by
{J, Theorem 2.1} and hence they are co-superharmonic.

Suppose;pow, that v.is co-superharmonic. Given Tp € 2 and ¢ €
c), such that gp(:c) < v(z), when z €5}, and gp(a:o) = v(zg), we have
to show that Amv,b(.ro) < 0. Suppose on the contrary, that Aoo(p(:co) >
0 for some . By contmulty Aootp(:c) > 0, when |z — Iol <.r. Denote
B= B(:ro, r).. Con31der the amuhary. function

SRR TR T Y w(m) = {p(;c) —s]:.: — zol? .

l;-

A clu'ect calculatlon ylelds , o
A ow (:c) = Agp(z) - 2£|th(n:) 2e(x — zo)]?

- 2e(z — z0) - V| Ve(z)|? + 4€2 Z(:L',_ — Zpi)

1,7

3290.(I') ( )
3_5__,—_ :l:;r L0z

= Buoplz) +0().

Hence Aoow(.r) > 0 in B when € > 0 is small enough This means,
that w is a classical subsolutlon to the equatmn and as such it sat1sﬁes a
companson p?'mc:lple w<hinB,h denotmg the oo-harmonic functlon
havmg the same boundary values on 8B as w. In particular, v(zg) =
w(z0) —w(zo < h(zo). .

On the_qthe; hand
,  hlop = vlap = vlop — er® < v[gp —er® .
By the assumption v(z) > h(z) + er? in B (the translation by the con-
stant er? does not matter). Thus v(zq) > k(o) +er?, which contradicts
the inequality v(zg) < h(zo) above. Hence the assumption Ao (xg) > 0
was false. This proves that v is a viscosity supersolution.

IWe do not know whether one may further restrict the k’s in (m) to those having
second partial derwatwes, so that the condition Agh =0 could be dlrectly verified,
at least at almost every point. .
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3 The Obstacle Problem

We will prove that the solution to an obstacle problem in the Calculus
of Variations is co-superharmonic. Suppose that 9 : Q- Risa given
Lipschitz continuous function and that v € W1°°(Q). For simplicity,
assume that € is a bounded domain. The function ¥ will act as an

obstacle: all admissible functions are forced to lie above v¥. We aim 7

at constructing a function ve, € C(S_l) A WL (Q) such that vy > 9,
v|62 = ¢|8, and for each subdomain D C £

HV”DOHOO,D < "V”[IOO.D (3.1)

whenever v € C'(B) NWLee(D), v > ¢ in D, and v|8D = ve|8D. In
other words, one can characterize vy, as the best Lipschitz extension to
Q of the boundary values of 7, under the constraint that the admissible
functions are forced to lie above the obstacle.

The solution to the obstacle problem is unique. Fortunately, we need
not deduce that from {3.1). For our purpose it is enough to construct one
solution as the limit of p-superharmonic functions, which solve the same
obstacle problem for the integral [ |Vv|Pdz. To this end, we minimize
the variational integral [ [Vu|P dz in the class

Fp= {vEC(ﬁ)nWl"’(QHvzw inQ, v=yonaR). (32

There is a unique minimizer in this class, say vp. Thus

L|Vup|pdx§L|Vv|pdm (3.3)

for each v € Fp. We refer to [L} about this obstacle problem. Notice
that the class of admissible functions is not empty, since ¢ € F,. (We
tacitly assume that p > n, so that the boundary values certainly are
attained in the classical sense.)

Using the familiar inequalities

“v'l’p“p,ﬂ < |Q|1/p“v'¢'”oo,ﬂ s

[vp(x) — vp()} < 2njz — y|' 7 | Voplipa

5
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and some compactness arguments; we deduce that:a subséquence of v,'s
converges uniformly to a function v, and that ve, € Fiy Actually, the
full- scquence converges, see Remark 3.5 below.. . .-

3. 4 Theorem. The constructed solulion Voo, to the obstacle probleni is
co- superharmomc m Q It is 00- harm.omc in the set {vgo | > )

D cC Q ,and,supposeg_that hoo E,G(Q) is an Qo;ha_ljmomc function such
that ho < veo on the boundary 8D.. By Jensen’s uniqueness theorem
hy, is variational, i.e., it is the uniform limit of p-harmonic functions
with the same boundary values as ko on.8D. Given £ > 0, we have
Vp > g, — € for (a subsequeunce of) large p’s. On the boundary D we
have h, < wo <ivp + € for large p's. By. the comparison principle for
p—supcrharmonic functions, the inequality hp < Yp, + ¢ holds in D. At
that vy, 2 h in D Thusrv00 satlsﬁes the comp_arlson.prmmp,l_e. This
proves, that Uoo.18,005superharmonic. . .

.. .To,prove that Voo 18 co-harmonic in the set where the obstacle does
not hinder, we proceed as_ follows., Gwen e >0, ,conmde;r, the open set.

De = {z € Q| veo(z) > ¥(z) t e} .

provided that it is not empty When p > Pe vp(:c) > Voolr) — € and
vp(:c > (2) in'D;. Strictly ‘speaking, this holds' for a subsequence
of p’s. It is known that v, is p-harmonic in the set {v, > ¥}, cf. [L].
Especially, vp is p- ‘harmotii¢ in D¢, when p is large: This'méans that Voo
is the uniform limit in D, of p-harmonic functions. It is easily seen that
the uniform limit of p-harmonic functions, as p approaches oo, always is
oo-harmonic. Thus we have established that v, is 0o-harmonic in each
D¢, when € >'0. This is the desired resuit.

S o =
3.5 Remark. A subsequence of p's was used in the construction of v,.
Indeed, the full sequence converges. To see this..suppose: that we have
two functions vl and v2, in the previous theorem, perhaps resulting
from different subsequences. If the set {vl, > v&} is not empty, v},
is co-harmonic in this set, because vl > v2 > # so that the obstacle

does not hinder. ‘But;:on the boundary of the same set, v., = v2.. By
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comparison, vgo > the co-harmonic function vl a fact that contradicts

the definition of the aforementioned set. This proves that v}, < vZ, in

1. By symmetry, v

2
oo Z Voor

Finally, it is worth our while mentioning that the minimization prop-
erty (3.1) follows rather directly from the construction. (We will not
need it.) :

4 Viscosity Supersolutions Are Variational

We will show that every viscosity supersolution is variational. In other
words, it is locally the uniform limit of p-superharmonic functions. To
prove this we will solve the obstacle problem with the supersolution itself
acting as obstacle! Therefore we had better first prove that we encounter
a Lipschitz continuous obstacle.

4.1 Lemma. The co-superharmonic funclions are Lipschitz confinuous
on comdpact subsets. In particular, they are locally bounded and belong

to W™,
loc

Proof. Although a direct proof is not difficult, we will deduce the
result from Corollary 3.10 in [J], according to which bounded viscosity
supersolutions are Lipschitz continuous. Thus we have only to show
that the co-superharmonic function v is locally bounded. Since this is
a local question we may as well assume that v > 0 in 2, v being lower
semicontinuous by definition.

If v{zp) == 0o at some point zp € 2, then we would have that v = o0
in ©, a situation excluded by definition. Indeed, choose a ball B{zq,7) C
§). Then the inequalities

v(z) > k{r — |z — z0]) . k=1,23,... (4.2)

hold, when = = zg and when |z — zgf = 7. The function A{x) = k(r -
|z — zp|) is co-harmonic in the domain 0 < |z — zg| < 7, so that (4.2)
holds in B(zg,r) by the comparison principle. This means that v =
o0 in B(zg,r). Continuing like this, with a chain of balls, we get the
contradiction.

If v is locally unbounded, we can always select a sequence of points

x1,9,3,... such that v{zg) > k and z¢ = limzy is an interior point.
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| For a\suffiuently small r; all ‘Blzg, 7y CQyand 0 - .
. - - N

R N A S 12,3200 (43)

»

wheui z,5 zk.and when |z — xg| = r. Again the inequality holds in

B(zkyr) by, companson .Thus v(m) > "2", when !z - zkl < . This
certamly yields that v(:z:o) o0 and so we are back to the first case.

i‘fi‘-x"‘-;"} ﬂgl‘ -“‘,-s" ey B i ot <."'¢- ".'\"..'T-.:—“ et e .'..‘ N
4.4 Theorem Any oo-superharnionic funclion i variational, i.e., it is
a locally uniforni Izmzt of p superharmomc Sfunctions.

ST E LA LA S LR R E v Pt
Proof Suppose that wc,o is an arb:trhry oo—superhar’momc function
in, Q .. By. Lemma 4 1 it is, locally Lipschitz continuous, Let D cc Q
denote a subdomam By Rademacher § theorem Vwoo; exlsts a.e. in Q
and W € W1°°(D) et

We solve the obstacle problem in the domam D w1th weo as obstacle.

The solution v is obtained as the uniform limit'in D of pisuperharmonic
fiiiétiofis." By the donstruction ve' > we,. We refer to Section 3. In the
(components of the) open set where the obstacle does not hinder vi, is
o9=harmonic,; that is, v is co-harmonic in {veo > Woo};: But on the
boundary; ; of this, set, vo, T Woo (recall that both functlons c0111c1de on
8D, by, the constructlon) wheuce the. comparlson pnnmple ylelds that
Woo: = um in the set where Woo < Yoo, Thls is a clear Fontrad:ctmn,
except if the aforemeutloned set is, empty We have proved that veo, =
Weo 1N D. e et
- Usmg an exhaustlon of Q w1th bounded subdomams DJ, D1 C Dg C
e and a dlagonallzation procedure we obtam that Moo, = Jim vy in Q.
The convergeuce is uniform on each subset D_,, but i may happen that
vp is defined in Dj only when p > a certain index dependmg on j. For

J-H-

I,
the diagonalization one hasi to observe that vp > vp’ in Dj, where

an obvious notation has been used.
‘T'his proves:the'theorem. : TR

AT ;.”.

L Voo o, : t;

e T L . Y PERY .
] s Fatriier e . . v i Tl

45 COTOH"-I'Y The' Harnack mequalzty holds for all non- negatwe o0-
superharm;omc functions:

S ETELH AR PR L N A N T AT co st aar i

I o e . '!}(:1'.‘) Sej-%lv(y) , S B BT (46)
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when z,y € B(zg,r) and B(xg,R) C, 0 < r < R.

Proof. This was proved for variational co-superharmonic functions in
[LLM] and by Theorem 4.4 they are all of this kind.

4.7 Corollary (Liouville) The only 0o-superharmonic functions bounded
fromd below in the whole R™ are the constants.

Proof. Adding a constant to the function, we may assume that it is
non-negative in R™. Let R — oo in (4.6).
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