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Separable quotients of Banach spaces.

Jorge MUJICA

Abstract
In this survey we shaw that the separable quotient problem

for Banach spac~ in equivalent to several other problema from
Banach space theory. Wc give afro several partial solutiona to the
prob1cm.

1 Introduction

The problem of whether every infinite dimensional Banach space has a
separable infinite dimensional quotient seerns to have been considered
since the thirties, though the earliest explicit reference 1 know of is a
paper of Rosenthal [30] of 1969.

In this survey we show that the separable quotient problem, as it
is known, is equivalent to several other problems from Hanach space
theory. We give also several partial solutions ta the problem.

In Section 1 we introduce the notion of Schauder basis of a Banach
space. After stating the elementary properties of Schauder bases, we
shaw that the separable quotient problem is equivalent to the problem of
whether every infmite dimensional Banach space has an infinite dimen-
sional qnotient with a Sehauder basis. The main results in this section
are due to Bessaga and Pelczynski ¡31, and Johnson ami Rosenthal [141.

lii Section 2 wc introduce the notion of quasi-complemented subspace
of a Banach space. Wc show that every closed subspace of a separable
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Banach apace is quasi-complemented. We prove also that the separable
quotient problem ja equivalent to the problem of whether every infinite
dimensional Banach space has a separable, infinite dimensional, quasi-
complemented subapace. The main resulta iii this section are due to
Mackey [21] aud Rosenthal [30].

In Section 3 we introduce the notion of barrefled space. We show that
the separable quotient problem la cquivalent to the problem of whether
every infinite dimensional Hanach space has a dense, nonbarrelled sub-
apace. The main result in this section is dne to Saxon and Wilansky
[32J.

Finally in Section 4 we show that a real Banach apace has a separa-
ble, inñnite dimensional quotient u ita dual has an inifinite dimensional
subapace which is cither reflexive or isomorphic to co or t~. Thus the
separable quotient problem is closely connected with the problem of
whether every infinite dimensional Banach apace has an infinite dimen-
sional subapace which ja eithcr reflexive nr isomorphic to co or t~. The
last mentioned problem remained open for a long time and was recently
solved lii the negative by Gowers [10]. The maS result in this section is
due to Hagler and Johnson [11].

This survey ja based on the notes of a three-lectnre minicourse de-
livered at the 43rd Brazilian Analysis Seminar, heid at the University
of SAo Paulo during Ma>’ 23-25, 1996. 1 am indebted to the organizera
for their kind invitation. 1 am also indebted to the referee for several
suggestions which bave helped to improve the presentation.

O Notation and Terminology

Unlesa atated otherwise, the letters E aud F always represent Banach
apaces over 1K, where 1K is IR or «. E denotes the algebraic dual
of E, whereas E’ denotes tlie topological dual of E. £(E; F) denotes
the Banach space of alí continuous, linear operators from E into F. If
T E £(E;F), then T’ E £(F’;E’) denotes the dual operator. BÉ de’
notes the closed, unit bail of E, whereas SE denotes the unit sphere of
E. Por a set A C E, apan A denotes the vector subspace of E apanned
by A, whereas [A] denotes the closure of apan A in E.
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1 Schauder Bases of Banach Spaces

A sequence (ea) in a Banach space E is said to be a Schauder basis
if for each x e E there is a unique sequence of scalars (x~) such that
x = >j~Ñ~ ~ where the series converges in norm. The coordinate
functionals

4: Z¾ej CE-. \~ E 1K
j=1

and the projections

00 n
S~: ZAsej E E —~ ZAJCJ E E

j=1 ti

are evidentí>’ linear, and the following result of Banach (2, p. 113] (see
also ¡6, Pp. 32-33] or 120, PP. 1-2]) shows that they are continuous.

1.1. Prapasition. Leí (en) be a Schauder basis of E. Then there ja a
conataní c > 1 such thai flS,.z¡¡ < c¡¡xfl ami 14(x)I < 2cIIxII/IIenII br
everij x cE ami nC IP?.

A sequence (en) iii E is said to be a basic sequence if it is a Sehauder
basis of the closed subspace that it generates in E.

Ever>’ complete orthonormal sequence in a separable Hilbert space
is a Schauder basis. If C~ is the scalar sequence that consists of zeros
acept for a one in position vi, then the sequence (ea) is a Sehauder basis
in cach of the spaces co or O’, where 1 <p < ca. AlI this is easy to prove.

It is much harder to find Schauder bases in spaces like L~¡O, 11 or
C[0, 1]. Sehauder [33][34], who introduced the notion of Sehauder basis,
proved that the Haar system (ha) is a Schauder basis of L~[0, fi whenever
1 =p < ca, whereas the Sehauder system is a Sehander basis of C[0, 1].
The Haar system (ha) is defined by h1 X(o,í], h2 = X10 t~ X(li], h3 =

— X<i¡1, h4 = — X(~1p, etc., whereas the Schauder system

(Sn) is defined by sj = X[o,11 and s~(x) = f h~i(i)dt for ever>’ u =2.

Schauder’s results can be proved with the aid of the following useful
criterion, which can be found in a paper of James [12] (see also 16, pp.
36-37] or [20, p. 2]). A nice, direct proof that the Schauder system is a
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Sehauder basis of C[0, 11 can be fornid in another article of James (131.

1.2. Propasition. A sequence (en) of nonzew vectors in E la a basic
sequence 1/ and only if there u a constant c> 1 such that

m vi

II >3A~e5I¡ < cj¡ >3>.jej¡¡

j=i
Jorall Ai,...,A~in1Kandm<nin1N.

1.3. Corallary. (a) II (en) la a Sehauder basis of a Banach apace E,
tIten (4) la a basic sequence lvi E’.

(b) IJ (en) la a Schauder basis of a reflexlve Banach apace E, tIten
(4) la a Schauder basia of E’.

Clearí>’ ever>’ Banach space with a Schauder basis is neceasaril>’ sep-
arable, and the problem of whether ever>’ separable Banach space has a
Schauder basis was posed by Banach (2, p. 111]. fis problem, known
as the basis problem, remained open for a long time, and was finail>’
solved ir the negative by Enflo [8]. We have however the following pos-
itive result.

1.4. Theorem. Every infinite dimensional Banach apace has a closed,
infinite dimensional subapace with a Sehauder basis.

Theorem 1.4 was stated without proof by Banach [2, p. 238], and
no proofs had been published before 1958, at which time several proofs
appeared; see [3], [41and ¡9]. A proof of Theorem 1.4, basal on ideas of
Mazur, made public by Pelczynski [2fl, can be fornid in [6, PP. 38-391
or [20, p. 4]. That proof rests on the following lemma, and will be the
model for other proofs later on.

1.5. Lemma. Let M be a finute dimensional .subspace oían infinite di-
mensional Banach apace E ,and tetO < e < 1. Then there ezisis y E

5E
such thai Ilz+AvU =(1—e)¡IzII br everyz EM andAEIK.

1.6. Corollary. If E’ has a reflezive, infinite dimensional subapace,
ihen E has a reflezive, infinite dimensional quotiení ‘with a Schauder
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basis.

Proof. By Theorem 1.4 E’ has a reflexive, infinite dimensional sub-
space N with a Schauder basis. By Corollar>’ 1.3 N’ has a Schauder
basis as well. Let S: N —. E’ be the inclusion znapping, let J E ‘—~ E”
be the natural embedding, and let 71 = S’ o J : E —~ N’. Then one can
readil>’ veníS’ that 71’ = S. Thus 71$ has a continuous inverse, and 71 is
therefore surjective, by [36, p. 234, Th. 4.7-q.

In the case of a refiexive Banach space E, Corollar>’ 1.6 is due to
Pelczynski ¡28]. Corallar>’ 1.6 provides a pardal, positive solution to the
following problem, posed by Pelczynski [28],and which seems to remaS
open.

12T. Problern. Does euery infinite dimensional Banach space han an
infinite dimensional quotiení with a Sehauder basls?

The fallowing twa theorems also provide partial, positive solntions
to Problem 1.7.

1.8. Theorem. If E’ has a subspace isovnoqhic lo e0, tIten E has a
complemented subspace isomorphic lo tk

1.9. Theorem. Everg separable, infinute dimensional Banaeh apace
has ait infinite dimensional quotiení with a Schauder basle.

Theorem 1.8 is due to Bessaga and Pelczynski [3], whereas Theorem
1.9 is dueto Johnson and Rosenthal [14]. We follow the proof of Johnson
aud Rosenthal [141to prove both theorems. We flrst prove Theorem 1.8
in detail, and then indicate the neceasar>’ modifications to prove Theo-
rem 1.9.

Proof of Theorem 1.8. Let R : eo ‘—. E’ be an isomorphic embedding,
and let (en) be the canonical Schauder basis of co. Then there are
constants b =a> O snch that

00

a~ sup LAn! =11>3 AnRenII ~ b- sup IAnI
n=1
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for ever>’ (A,.) e co. If we set ‘~,. Ren/IIRe,.II for ever>’ vi, then

00 b
sup ¡A4 =IIrAn~n¡I = sup¡An¡ (Li)

b ___ a

for every (A,.) E c~. Since ELiIw(en)I < ca for every9’ E £~, it follows
that

00>3 ¡rk,,(z)¡<oo forever>’ zEE. (1.2)
n=1

Let e~ > O and consider the quotient mapping

E -. E/’kbij.

Since the closed unit bail of E/’[t1] = ¡4>’]’ is compact, there is a finite
set Ai C Bs such that for each u E [4,~]’with ¡¡ui¡ =1 there is z E A1
such that

Then by (1.2) we can flnd P2> 1 such that

forever>’ zEAi.

Now let (en) be a sequence such that O < ~n < 1 and Z~1En < ca.
Then proceeding inductively we can find a strictly increasing sequence
(pn) iii iv, and an increasing sequence of finite sets A,. c BE such that

(i) Por each u E [4’>, ,4’>,,j~ with ¡¡~¡I < 1 there is z E a4n such
that

u(4’)—4>(x)l = forevery tE [4»,~,...,

(u) j4’p~~1(z)¡ = for ever>’ x E A,..
To simphfy notation we set 4

0n = ,kp~ for everyn.

We next claim that

hp + A~n-~-ifl =(1— en)lhpll for all <,o E ~ . . . , ~ A C 1K. (1.3)

It suifices to prove (1.3) when ¡~¡¡ = 1. Since ll~’n+1Il = 1, (1.3) is
obvious when Aj =2, 50 we assume Al < 2. Given ~ E [9’1, .. ., S~nl
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with 1W! = 1, there is u E [9’i,. . . ,yn]’ such that uQp) = Il’~lI = 1. By
(1) there is z E A,. c Be such that ¡u(so) — 40(zj¡ =e,~/3. By using this
and (u) we get that

¡9’ + A~2n-~-i¡j = (9’ + A9’n± jj(X)¡=¡9’<lz)¡ — IA9’n+í(x)I

_ 3 3

We now use (1.3) to prove that (ip,.) is a basic sequence in E’ in
the same way Lemma 1.5 is used to prove Theorem 1.4. Indeed for
A1 A,. in 1K and m <n in 11V wehavethat

n—1 m oc vn

II Z¾~JlI=fl (1— Ck)ll >3A~~~Il =fl (1— Ck)ll >3A~~~ll.
j1 k=,n j=1 j=i

Thus (y,.) is a basic sequence in E’, by Proposition 1.2. Let (yo) denote
the sequence of coordinate functionals, and let (Sa) denote the sequence
of canonical projections. Thus -

vn -

Sm9’>39’5(SO)9’j forevery 9’E[9’j]
j=1

and ¡¡S,4j < H~~m(1 — ekY’. In particular hm IlSmlI = 1.
Now let 71 E —* [cpj]’be defined by Tz(p) = so(z) for ever>’ z E E

and ~ E ¡~,j].
WeclaimthatT(E) C [<~]~Indeedifz E Eand9’ 2~iiso5(so)soj E

[q~~],then
00

Tz(~) = ~(z) = >3~(9’)9’j(z).
3=1

But since 23&íl9’j(z)I < ca, by (1.2), we conclude that Tx —

2T~í9’j(x)9’5 E [cp5],as asserted.
We next show that [w3c 71(E). lii certainí>’ suifices to show that

given u E span(p[j) with IluIi =1, aud given e> 0, we can find x E BE
such that ¡¡Tx — uI¡ =2e. hideed given u and e, choose n E 11V such

that u E [~‘ 9’~.t IISjll <2 for ever>’ j =n and 23’t,.ej =e. Then

ll9’511 =IlSi — Sj—ill < 4 for ever>’ j =
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By (1) there is z E A,. c BE such that

Iu(w)—~(z)l = ~ forever>’ 9’ EI9’í,...,9’n].

Let 9’ = Zl9’~(z)9’j E [9’~j],with 11w!! =1, and let

n

= ~ = >39’j~(w)wj.
j=1

Observe that ¡¡4’¡¡ < 2. Since u E [pj,...,~], we see that u(~) =

u(Sncp) = u(4’). Thns

00

I(u—Tz)(w)L = IuG~)—w(x)l= Iu(w)—>3w(w)wj(z)l
j=i

n

j=1 ____ 1

= !u(zb)—44z)l+ >3 l9’i~(9’)l !wjC4l

= ~iWií+ >3 4fr<¿1~,.+I~<26.
j=n+i

Thus we have shown that 71(E) = [q,5].Now it follows readil>’ from
(1.1) that

j-ZlAiI =lIZAjwill =
j=1 j=1

for ever>’ (xj) E ¿1, and therefore [w1is isomorphic to L~. Thus wc
have fornid a surjective operator y E £(E;t’). By the open mapping
theorem there is a bounded sequence (z,.) in E such that Vr,. = C~ for
everyn. IfwedefineU EC&’;E) byUen=xnforeveryn, thenVoU
is the identity, and the proof is complete.

Proof of Theorem 1.9. Let E be a separable, infinite dimensional
Banach space. Then there is a sequence (M,.) of finite dimensional
subspaces of E such that M,.CM~+i for every u and M = U~=~1 M,. is
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dense in E. By the Hahn-Banach theorem there is a sequence (4>,.) ir
E’ such that lI4>~II = 1 and 4>,. = O on M,. for ever>’ it. Whence

¡4>n(z)¡<oo forever>’ xEM.

Let (e,.) be a sequence such that 0 < e,. < 1 and >j~ e,. < ca. Since
M is dense lix É, the proofofTheorem 1.8 yields a strictly increasing se-
quence (p,) in IP? andan increasing sequence of finite sets A,. C BzflM
which verify conditions (i) and (ti) there. If we set so,. = 4»,,. for every
it, then it follows as before that (p,,) is a basic sequence ir E’. II (~) is
the corresponding sequence of coordinate functionals, and 71: E —*

is defined by 71x(~) = ~(z) for ever>’ z e E and p E [¿,o,.],then it follows
as before that 71 maps E onto [q4J.

Theorem 1.9 shows that Problem 1.7 is equivalent to the following
problem.

1.10. Problem. Does every injinite dimensional Banach space have a
separable, infinute dimensional quotient?

Problem 1.10 was mentioned by Rosenthal [301tu 1969, but the prob-
lem is probabí>’ much older. Actualí>’ a variant of Problem 1.10 was
mentioned by Banach in [2, p. 244].

2 Quasi-Complemented Subspaces of Banach
Spaces

Let M be a closed subspace of a Banacb space E. Recalí that M is said
to be complemented in E if there is a closed subspace IV of E such that
M riN = {0} and M + N = E. fi>’ using the closed graph theorem one
can readil>’ prove that M la complemented in E II and only if there la a
continuone projection P from E otilo M.

Following Murray [22] we will sa>’ that M is quasi-complemented lix
E if there isa closed snbspace IV of E such that MflN = {O} and M+N
is denso in E. One can readil>’ prove that M is quasi-comp¿emented lix
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E II atid only if there la a closed, densely defined projection P with range
M.

Murra>’ [22] pasal the problem of wbether ever>’ closed subspace of
a Banach space 18 quasi-complemented, and he himself gaye a partial,
positive solution in [23], where he preved that every closed subspace of
a separable ami reflezive Banach space is quasi-complemented. Shortly

afterwards Mackey [211 improved that result as follows.

2.1. Theorem. Everij closed subapace of a separable Banach space la
quasi-complemented.

Before proving Theorem 2.1 we need two auxiliary lemnias.

2.2. Lemma. Leí E be a vector apace, atid leí E’ be a subapace of
E which separates tIte poinis of E. Suppose thai E ami F are al mosí
convitable dimensional. TIten ihere are a Hamel basis (z,.) of E atid a
Hamel basis (p,.) of F vich that som(xn) =

tmn for alt m,n.

Proof. (a) First assume E’ finite dimensional It is well know that if
9’i, . .. , p,., 4> are linear fnnctionals on E such that fl?=iKerw~ C Ker4>,
then 4> isa linear combination of

9’1,..., 9’,.. Now let (9’i p,.) be an>’
Hamel basis of E’. By the preceding remark we can fiud z1, . . . , z,. E E
such that 9’i(Xj) = &~j for 1, j = 1, . . . ,n. Whence it follows that

E kP forever>’ z E E. But since E separates the points

of E, we see that ‘E’ = {0}. Whence (x1, . . . , z,.) and (w1,.. . , p,,) are
Hamel bases of E and E’ with the required property.

(b) Next assume E’ infinite dimensional. Let (y,.) aud (4>,.) be Hamel
bases of E and E’, respectively. Let m1 = 1 aud x1 = Ym1~ Let ni be

the first integer such that 4>,,1(x1) # O and let 9” 4>,.1/4>,.1(zi). Next
let “~2 be the first integer such that 4>,.~ ~ span{~1}, and let

9’2 =

4>n
2 — 4>n2(xi)scx.

Let m~ be the first integei such that w2(ym2) # O, and let

!hn2 — 9’1(ym2)Z1
W2(y.n2)
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Next let m~ be the first integer such that y,.,3 « spati{xi, X2}, and Iet

Za = — 9’l(yma)Xl — 9’2Ú’vn3)Z2.

Let n~ be the first integer such that 4>,,3(x~) ~ O, and let

— 4>,.~(zi»p1 — 4>n3(z2)w2

We continne in this way, by constructing Zk before <p~ iii step k if Iv is

odd, and the other way around if Iv is even. It is clear that 9’j(Zk) —6jk for all j,k. It is also clear that {ml,...,m2p} D {1,. ..,p} and
{itl,...,TZ2p} D {1,...,p}, and therefore

span{zi X2p1 Dspan{yi y>,}

and
Span{9’l,...,9’2>,}DSpait{4,l,...,4,p}

for ever>’ p.
Sorne readers will recognize in the proof of Lemnia 2.2 the proof of a

result of Markushevich (see [20, Pp. 43-44]) on the existence of biortbog-
onal systems.

2.3. Lemma. Leí E be a vector space, and leí E’ be a subspace of
t which .separales Ihe pointa of E. Suppose thai E ami E’ are al mosí
coutitable dimensiotial. TIten br each a(E, F)-closed subspace M of E,
Ihere is a a(E,E’)-closed subspace IV of E such thai M + N = E ami
M’ + N1 — E’ Here M1 denotes tIte orihogonal of M wilh respecí lo
tIte dual pair (E,E’>.

Proof. Let R : —. W be the restriction mapping, and let O = R(F).
By applying Lemnia 2.2 to M and G we can find a Hamel basis (z,.) of
M and a Hamel basis (g,,) of G such that gm(xn) = ‘5mn for alí m, it.
Since O can be identified with F/M’, the sequence (g,.) cl O yields a
sequence (.1,.) c E’ such that

+ spardf,.) = E’ , fm(zn) =

Next let 5: E’ —. (M’~ be the restriction mapping, and let H =

S(E). ]3y applying Lemma 2.2 to M1 aud H we can find a Hamel basis
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(p,.) of M’ and a Hamel basis (It,.) of H such that hm(9’n) = 3m,. for sIl
m,it. Since M is o}E.E’)-closed, M — M11, sud H can be identified
with E/M’-’- — E/M. Hence the sequence (h,.) C H yields a sequence
(z,.) C E such that

M + span(z,.) = E , ~on,(z,.)= Sm,..

Next define
•1

y,. = z,. — >3fj(z,.)zj 4’,. = A. — >3f,.(zj..i)sofri

where z~j = O and ~o = O. Keeping in mmd that wm(z,.)

m,n, it follows easily that 4>m(y,.) = O for all m,n.
Let IV = spav4y,.). Then (4’,.) cl N1 and

E’ — M’+span(f,.)=spaitQo,.)+spait(f,,)

= spanQo,.) + span(4’,.) = M’ + N’.

Likewise we get that

E = M + span(z,.) = spait(z,,) + span(z,.)

= span(zn) + spati(yn) = M + IV.

= O for al]

Since E’ = + Nt it follows that M” fl IV” =
E = M + N = M” + N’, it follows that IV = N”.
o}E, E’)-closed and the proof is complete.

{O}. Since
ThusNis

Proof of Thearem 2.1. Let M be a closed subspace of a separable
Banach spaee E. Since E is separable, the Habn-Banach theorem yields
a sequence (,o,.) ir E’ which separates the points of E. Likewise there
is a sequence (,u,.) in (E¡M)’ which separates tbe points of E/M. Since
(E/M)’ can be identifled with M’, the sequence (y,.) cl (E/M)’ yields

a sequence (4,,.) cl M’ such that

00

M = fl Ker4>,..
n=1

Let
E’

1 = sPan(9’n) + spait(4>,.).
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Since E is separable, there are sequences (z,.) c M and (y,.) c E such
that spav4z,.) is dense in M, whereas spait(y,~) is dense ir E. Let

E1 = span(z,.) + span(yn)

atid let
00

MírMflEí fl(Eifl Ker4’,.),

so that M1 is «(Ei, E’i)-closed. By Lemma 2.3 there isa a(Ei, E’í)-closed
subspace IV1 of Eí such that

Mi+IVí=Ei , Mt+Nt=E’~.

—ELet IV = IV1. Clearí>’ M+N is dense in E. We claim that MflIV = {O}.
—E

Indeedletz EMflN. SinceN = N1 weseetbatq’(x) =0 forevery
~ E IVt. Since we can readil>’ verifr that M = M1, it follows that
~(z) = O for ever>’ ‘,o E Mt. Since E’1 = Mt + Nt, it follows that
~(x) = 0 for ever>’ p E E’í, and therefore z = O, as asserted.

Later on Lindenstrauss [18] gaye another partial positive solution to
Murray’s problem by proving that everv closed subapace of a reflezive
Banach apace la quaai-complemevited. But shortly afterwards Linden-
strauss [191ended up solving Murray’s problem in the negative by prov-
ing thaI if 1 la a’iy uncoutilable set, theti co(I) la nol quaai-complemetited

itt ¿00(f). But the following variant of Murray’s problem, posed by
Rosenthal [30], seems to remain open.

2.4. Problem. Does every infinute dimensional Batiach apace have a
separable, infinite dimensional, quasi-complemented subapace?

The following result of Rosenthal [30] shows that Problenx 2.4 is
equivalent to Problern 1.10.

2.5. Theorem.~ Leí E be a Banach apace. Titen E has a separable,

infinute dimensional, quasi-complemented subapace if atid o,ilv II E has
a separable, infinile dimensional quotiení.
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Praof. First assume that E has a separable, infinite dimensional, quasi-
complemented subspace M. Let N be a closed subapace of E such that
MnN = {0} andM+N isdensein E. LetQ : E —. E/N bethe
quotient mapping. Then one can readily see that Q(M) is dense in E/IV
and Q ¡M is injective. Hence E/N is separable and infinite dimensionaL

Next assume that there is a closed subspace N of E such that E/N
is separable and infinite dimensionaL Let Q E —. E/IV be the quotient
mapping, and let (b,.) be a countable, dense subset of E/N. Choose
(a,.) c E such that Qa,. = b,. for ever>’ ti, and let M = [a,.].

We claim that M +N is dense in E. Indeed given x E E we have that

Qz = lim b,.k for a suitable sequence (n,j. By the open mapping theorem
there is a sequence (zk) C E such that limz~ = x and Qxk = b,,~ for
everyk. ThusQzk=b,.k=Qa,.k, xk—a,.kEN and xkEM+N for
ever>’ Iv.

EM fl N = {O}, the proof is complete, so assume M riN ~ {O}. By
Theorem 2.1 the subspace IV1 = M fl IV ja quasí-complemented in M.
Thus there is a closed snbspace Mi of M such that M1 fl 1V1 = {O} and
M1 + N1 is dense iii M. Hence

E=M+IV=M1+N1+N=M1±N

and

M1 fl N = M1 n M fl N = M1 fl IV1 = {0}.

If M1 were finite dimensional, then E/N would be isomorphic to M1
and hence finite dimensionaL Tlius M1 is infinite dimensional and the
proof is complete.

Let us remark that Rosenthal [30]proved that c~ la quaai-complemented
1,. ¿00~ It follows from Theorem 2.5 that ¿00 has a separable, infinite di-
mensional quotiení. Since £‘~ = C(131N), thís follows also from a result
of Lace>’ [17], who proved thakif X ja any infinute compact, Hausdorff
apace, titen C(X) has a separable, infinite dimensional quotiení. In Sec-
tion 4 we will see that £~ has a quotient lsomorphic lo
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3 Nanbarrelled Subspaces of Banach Spaces

Ever>’ closed, convex, balanced and absarbing subset of a íocally convex
space is calla! a barre?. A locail>’ convex space is said to be barrelled if
ever>’ barrel is a neighborhood of zero. It follows from the open map-
ping theorem that closed subspaces of Banach spaces are always bar-
relled, and the following proposition furnishes a simple procedure for
constructing nonbarrelled subspaces of Banacli spaces.

3.1. Propasition. Let (M,.) be a sequence of closed subspaces of a
Banach apace E auch thai M,.CM,.+í for every ix. Titen tite subapace

M = U~=1M,., with tite i,zduced topology, ja not barrelled.

Praaf. Assume that M, with the induced topology ‘ro, is a barrelled
space. Let r~ denote the inductive limit topoíogy oit M, that is (M, rí)
= md M,..

We first show that (M, 70)’ = (M, Ti)’. Certainly 7e =r~ and there-
fore (M,ro)’ c (M,ri)’. To show the revene inclusion let p E (M,71)’
and let p,. = 9’¡M,. for every it. Thus 9’,. E 1i14 and by the Hahn-
Banach theorem there is ~ E (M, 70)’ such that ~,.¡M,. = ip,. for ever>’
it. Since M = UX~iM,. we see that ~(x) = lim~,.(z) for ever>’ z E M.
Since (M, 70) is barrelled, we conclude that s~ E (M, ro)’, by the Banach-
Stein.haus theorem.

We next show that ro = Ti. Indeed let V be a closed, convex,
balanced neighborhood of zero un (M, rl). Since (M, r1)’ = (M, 70)’, V is

also closed, and therefore a barrel, in (M, ~0). Since (M, ro) is barrelled,

V is a neighborhood of zero in (M, 70).
To complete the proof choose z,. E M,.\M,.<t for every it. Since

(M, re) isa norma! space, the sequence (zk/l¡zk ti) is bounded un (M, re) =

(M, rl). But since (M, rí) = md M,. is a strict inductive limit, the se-
quence (xk/Ilzklt) is contained and bounded in some M,., a contradic-
tion.

The next result is due to Saxon aud Wilan~ky ¡32]. See also [38, p.
255].

3.2. Theorem. A Banach apace E has a separable, infinute dimeit-
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sional quotient uf and or4 uf E has a devise, nonbarrelled subapace.

This theorem shows that Problem 1.10 la equivalent to the following
problem.

3.3. Problem. Does every unfinute dimensional Banach apace have a
dense, nonbarrelled subapace?

Proof of Tbeorem 3.2. We first assume that E has a separable, infi-
nite dimensional quotient space E/S. Let Q : E —. E/S be the quotient
mapping. There is a sequence (IV,.) of finite dimensional subspaces of
E/S such that N,.CN,.~1 for ever>’ ti and U~LiN.. is dense ir E/S. Set

= Q’(N,.) for every it. Clearly M,.CM,.+í for ever>’ it, and thus by

Proposition 3.1 the subspace LJ%L1M,. is not barrelled. We claim that
U~1M,. is dense in E. Indeed given r E E we have that Qz = limy&,
where ¡1k E N,.~ for ever>’ Iv. 8>’ the open mapping theorem there is a
sequence (rk) C E such that r = hin Zk and Qrk = ¡1k for ever>’ Iv. Thus
r~ E M,.k for ever>’ k, as we wanted.

Converse!>’ assume that E has a dense, nonbarrelled subspace M0.
Let fo be a barrel in Mo which is not a 0-neighborliood in M0. Withont

losa of generalil>’ we way assume that fo is closed in E. Indeed if Eo
were not closed in E, then we would consider ?~ instead of fi0. For ~
la a barrel in apan fo, ami TñS la not a O-neighborhood in span fo, since

= ~o fl M0.
Since Mo = span fo is not barrelléd, Mo ~ E, and hence there is

r1 E Se sucli that r1 ~ M0. Since in particular r1 ~ 2B0, the Hahn-
Banach separation theorem yields ~ E E’ such that wí(rí) = 1 and

Iw’l =1/2 no.
Let

fi = fo + {alr~ : lail =1}

and let M1 = span fi1. Then .Bi is closed ix. E, fi1 is a barre! ix. M1 and
fi1 ja not a 0-neighborhood in M1, since ~o = fi1 11 Mo. Whence M1 is
not barrelled, and in particular M1 ~ E.

We claim that Ker 9’í « M1. Indeed Ker ~p’cl M1 and M1 ~ E
wonld impí>’ Ker 9” = M1 and M1 would be banelled. Then choose
X2 E S~ such that z2 E Rer qn and z2 ~ M1. In particular X2
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4W and the Hahn-Banach separation theorem yields 9’2 E E’ such that

9’2(x2) = 1 and I9’21 =1/4 on B~.
Let

fi2 = fi + {a222 : la21 < 1} = ~o + {alzí + a~r~ ¡att =1, ¡a2¡ =1}

and let M2 = span fi2. As before M2 la not barrelled and therefore
M2#E.

We clajm that Ker qn fl Ker 9’2 « M2. Indeed if we assume
Ker9’1fl Ker~2cl M2then

Ker qn = IKr2 ~ Ker (‘921 Ker qn)
— 1Kz2S(Ker p1~ Ker9’2)C1Kr2+M2=M2

but Ker qn cl M2 and Aif2 # E would impí>’ Ker ~pj = M2 and 1v!2
would be barrelled. Then choose Z3 E

5E such that z3 E Ker 9’i fl
Ker ‘92 and r~ « M2. In particular r¿ « Sf2 and the Habn-Banach
separation theorem yields ~ e E’ such that 9’3(z3) = 1 and lwaI =1/8
oit ~

Proceeding inductivel>’ we can fiad sequences (x,.) c E and (p,.) c
E’, and a sequence of closed, convex, balanced sets fi,. cl E such that

= l,~n(rn) = 1,~n,(r,.) = O whenever ni <u, and 1w,.! =2” on
f,.—i. Fnrthermore for it> 1

n
= fi,.

1 + {a4,,: ¡anI =1} = fo + {>3aíri: latí s í}.
1=1

If M,. = span fi,., then z.. « M,.j for ever>’ vi. Moreover

ix
E=II<ríe...SMrnSfl Ker <,o~

t=1

For every it E IP? set

00 00

N,.=fl Ker~¿ , N=UN~
1=n n=1

We claim tbat given b E Ro and ti E IP?, there i~ ¡/,. E IV, such that
Ilyn — bu =2”~’. Indeed if we define a,. = —p,.(b), then ja,.¡ =2”.
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If we next define a,.+l = —son+i(b + a,.z,.), then Ia,.+iI <2n1. Thus
we ma>’ inductível>’ define (aj)51,. by

j—1
aj= —9’j(b+>3a¿zí)

1=n

and ¡a5¡ =2~’ for ever>’ j =vi. If we set y,. = b + >3~,.a1r~ then
¡¡y,. — bj¡ =2n+1. Furthermore y,. E IV,. since for j =it we have that

j—1 00

soj(y,.) = 9’j(b+>3a~rí+ajzj+ >3 a¿r¿) = —a5+a~+O= O
t=j+1

Thus our claim has been proved, and whence it follows that IV is dense
un Mo = span fo. Thns IV is dense in E.

Wc next show that dim (N,./N,.1) = 1 for ever>’ it. To show this
observe that fo ~ Ker p,.~ since M0 = span fo is dense in E.
Let b E ~o such that b « Ka ~ Then the previous daim yieíds
y,. EN,. such that ¡¡Vn — b¡¡ =21~+1. Since y,. = b+ Z~fl,.aez¿ we see
that ~p,.’(y,.) = 9’,.—i(b) # 0. Ihus y,. E IV,. but y,. < N,1, and it
follows that IV,. = N,.q e lKy,, as we wanted.

To complete the proof of the theorem we show that the quotient
E/IV1 is separable. lo see this write IV,. = N,..1 e IKy,. for every u > 2.
Let 4> E (E/Ni)’ and suppose that 4’oQx(y,.) = O for ever>’ vi =2,where
Qi : E -~ E/N1 is the quotient mapping. Since

every z,. E IV,. can be uniquely writ ten as
n

zn = ~ +

with z1 EN1 and >~ E 1K. Whence 4,0 Qi(z,.) = O. Thus 4>0 Qi(z) = O
for ever>’ z E IV, and therefore for ever>’ z E E. 13>’ tlie Hahn-Banach
theorem span (Qiv,,) is dense ix. E/N1.

3.4. Coz-ollar>’. Leí 71 E £(E;E’), avid suppose thai 71(E) is devise uy

E’, bid 71(E) ~ E’. Titen E’ has a separable, infinite dimevisiovial quo-
tiení.
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Proal’. If 71(E) were barrelled, then 71 : E —. 71(E) would be an open
mapping. Thus 71(E) wouid be complete, and therefore 71(E) = E’. We
have thus shown that 71(E) is a dense, nonbarrelled subspace of E’. ~>‘
Theorem 3.2 F has a separable, infinite dimensional quotient.

A Banach-space E is said to be weaIvly compactly generated if there
is a convex, balanced, weakly compact set K C E such that the Banach
space EK is dense ixi E. Reflexive Banach spaces and separable Banach
spaces are weakl>’ compactí>’ generated.

3.5. Cara!lary. Everij infinite dimensional, weakly compactly gener-
ated fanach apace has a separable, infinute dimensional quotiení spaee.

Proal’. Let E be an infinite dimensional, weakly compactí>’ generated
Banach space, and let K be a convex, balanced, weakl>’ campad subset
of E such that the Banach space Ex is dense ix. E. ~>‘a result of Davis
et al [SI (see also [6, Pp. 227-2281) ever>’ weakl>’ compact aperator be-
tween Banach spaces factors through sorne refiexive Banach space. Thns
the inclusion mapping EK — E factors tlnough sorne reflexive Banach
space E’. II the mapping E’ —. E is surjective, then E is also reflexive,
and hence has a separable, infinite dimensional quotient by Carollar>’
1.6. II the mapping E’ —. E is not surjective, then it has a dense image,
and E has a separable, inflnite dimensional quotient by Corollary 3.4.

Corollaries 3.4 and 3.5 can be found in the book of Wilansk>’ [38,
p.256].

4 Other ]3anach Spaces with Separable
Quotients

un this section we prove the following theorems.
4.1. Theorem. ¡fE has a subspace isomorphic to fi, titen E has a
quotient isomorphie to ¿2~

4.2. Theorem. Let E be a real fariach space. ¡f E’ has a subspace
isomorpitie lo £~, titen E has a quotiení isomorpitie toco oré.
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First praafafTheorem 4.1. Since E has a snbspaceisornorphic to ¿1,
it follows frorn a theorem of Pelczynski [29] that E’ has a subspace iso-
rnorphic to L’[O, 1]. Actualí>’ Pelcz>’nski prova! that tbeorem under the
additional assurnption that E be separable, but an exercise in Diestel’s
book [6, Pp. 211-212] allows us to drop the separability assmnption.
Naw L’[O, 1] has a subspace isornorphic to ¿2• This follows from the
Khintchine’s inequalities: If (r,.) is the sequence of Rademacher func-
tions, tben foT each p, 1 S p c ca, there are constants L’,,, =ap> O such
that

ix —1 ~ ix

j=1 o

for al] ¾ . . . A,. E 1K and vi E 11V. The Rademacher functions r,. are
defined b>’ rl = >~í, r~ = It2, r~ = It3 + h4, r4 = Its + h~ + It7 + It8, etc.
where (It,.) is theHaar system. Seo [6,Pp. 105-1071 or [20,p.6

6]. Thus
E’ has a subspace isomorphic to ¿2, and the proof of Corollar>’ 1.6 shows
that E has a quotient isomorphic to ¿2

Second proaf al’ Theorem 4.1. The following, more “modern” proof
of Theorem 4.1 was suggested b>’ the referee. II 1 < p < ca then an
operator 71 E ((E; E’) is said to be absoluiely p-aumming if there is a
constant e,,,> O such that

ix

(Z¡ITrj¡[P)1/P c>,suPfl/,lrkr,)¡,ítV’i¡i.\ip\1/p : r’ E fE’}
ti ti

for al! zi z,~ E E and ix E 1W. B>’ a result of Banach aud Mazur (seo
¡6, pp. 73-741 or [20, p. 108]) thereis asurjectiveoperatorT E

a result of Grothendieck (seo [20, Pp. 69-70]) the operator 71 is
absolutel>’ 1-summing, and therefore absolutel>’ 2-sumrning. B>’ a result
of Pietsch (see[20, Pp. 64651) there is a probability measure ji and
tbere are operators U E £(£1;L00(p)) and 1/ E £(L2(~u);¿2) such that
the following diagram conunutes.

¿1 2
—4 ¿

Ul TV
. L%u)
¡
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Now let 5 e £(£‘; E) be an isomorphic embedding. By a result of Nach-
bin ¡24] the space L00(g) has the Hahn-Banach extension property. Thus
there is an operator U E C(E; L00(p)) such that LI oS = U. Since the
operator 71 6 fl(¿1; ¿2) is surjective, the operator V ol o U E £(E; ¿2) is
surjective as well.

Since £00 has a subspace isornorphic to £~ (tbis follows easily frorn
Proposition 4.5 below), Theorem 4.1 shows that ¿00 has a quotievil iso-
morpItic to ¿2

Let (e,,) and (f,,) be Schauder bases of E aud E’, respective!>’. (e,.)
aud (1~) are said to be equivalení if there is a topological isomorphism
71 : E — E’ such that Te,. = 1~ for ever>’ vi. One can readil>’ seo that
a sequence (z,.) un E is a basic sequence equivalení lo tite canonical
Schauder basis of £‘ if and only if itere are conatavita b > a > O such
thai

n Tv Tv

a>3¡Aj¡ =I¡>3A~rJI¡ =b>3IA~¡
j=1 j=1

for alí A
1... A,. E 1K amI vi ~ IP?. Likewise one can readil>’ seo that

a aequetice (z,,) itt E Ls a basic sequence equivalevil lo tite canonical
Schauder basla of ce if and only uf itere are constanis b > a > O auch
thai

ix

asup¡A~¡ =tI>3AjrjLl =bsup¡AjI

for alt A1...A,.E1K andnClN.

Theorem 4.2 follows from the following two more precise theorems.

4.3. Theorem. Suppose thai E’ contains a normalized basic sequence
(4’,,) sucIt thai

(u) (4>,.) la equivalení lo tite caitovijeal Schauder basis of ¿U
(II) lim4>,,(r) = O for every x E E.

TIten E Itas a quotiení isomorphic to e0.

4.4. Theorem. Leí E be a real fanach apace auch thai
(1) E’ Itas a subspace isomorphic lo ¿U
(II) Wheviever (4’,.) is a basic sequence un E’ which la equivalevil lo

tite canonical Sehauder basis of £% tIten (4,,.(z)) does nol converge lo
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zero br sorne r E E.
Then:

(a) E has a subspace isomorphic lo ¿1•
(b) E Itas a quotient isomorptic lo

Theorern 4.3 is dite to Johnson and Rosenthal [14¡, whereas Theore¡n
4.4 is due to Hagler and Johnson ¡11]. Seo also 16, pp. 219-222].

Proof of Theorem 4.3. We can find sequences (p,.) and (A,.) 38 un
the proof of Theorem 1.8, since there we did not use the fuJi fact that

2~í ¡4>,.(r)~ < ca for ever>’ r e E, but axil>’ the weaker fact that
lixn4,,.(r) = O for ever>’ r E E. If we set san = 4’,,. for ever>’ vi,, then
it follows as before that (so,.) is a basic sequence in E’. Since (4>,.) is
equivalent to the canonical Sehauder basis of £‘, there are constants
b>a>Osuchthat

ix n Tv

j=L j=1 j=1

for all A1 .. . A,. E 1K and u E 11V, and clearí>’ the subsequence «o,.) =

(4>~,,,) satisfies the same inequalities. II (‘4) is the corresponding se-
quence of coordinate functionals, then one can readil>’ seo that

‘sup Ajf =i¡ZAjsaiIi =tupIAj!
b ait:’

for all A,... A,, E 1K and u E IP?. Thus the basic sequence (‘4) is
equivalent to the canonical Schauder basis of co. As before let 71 E
[y,,.]’ be defined by Tr(so) = 9’(x) for ever>’ r E E and ~‘ E [c,o,.].

We claixn that 71(E) cl [q4j. Indeed ifz E Eand~=
E~=í’4(9’)9’n E [9’,.], then

00

Tr(~) = ‘p(r) =>3 ‘4(so)so,.(z)

Thus Tr = ~ sodr)’4 E [‘4I~since (<pn(x)) E co.
Final]>’ the proof of Theorem 1.8 show that [<4]cl 71(E), and the

proof is complete.
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The proof of Theorern ~ is more involved and will be given after
sorne preliminaries. 1 do not know if Theorern 4.4 is true ix. the case of
cornplex Banach spaces.

A sequence (X,.) of nonvoid subsets of a set X is said to be a tree if
for ever>’ ti E 11V, X2,. and X2,.~1 are disjoint subset of X,.. The notion
of treo axid the next result are due to Pelczynski ¡29]. Seo also [6, Pp.
204205].

4.5. Propasition. Leí (Xk)%~Li be a tree of subseis of a set X. Leí
(fn)~o be a bounded sequetice in real £

00(X). Suppose itere is 6 > O
such thai

(~~l)kf,.(r) > 6 whenever r E Xk,2~ =Iv < 2”~’,n > 0. (4.1)

Titen ~ a basic sequence equivalente lo tite canonical Schauder basis

of 1’.

Proal’. Let A
0..., A,. C IR. Then certaixil>’

IIZAJÍJII = nsup¡jfj¡¡>3¡A~¡
j=O j=0

To complete the proof we will show tbat

Tv ix

Il>3A~f~ll =6>3¡A4 . (4.2)
j=O j=O

Since IlE7~oAjfjlI = 27~o(—Aj)fjlI, we ma>’ assume that A0 < O. 13>’
(4.1)

Aofo =lAol6 oit X1.
13>’ (4.1) again, >111 =¡Ai¡6 on one of the sets X2 or Xa. Hence on that
set we bave that

Aofo + Aif1 =(¡Aol + ¡Aí¡)¿.

Similarly we see that ox. one of the sets X4, X5, X6 or we have that

Aofo + A1f1 + A2f2 =(¡A0l + ¡A1¡ + ¡Á2¡)6.

Proceeding inductivel>’ we get (4.2) for ever>’ vi.



322 Jorge Mujica

Let (<.p,.) be a bounded sequence un E’. A sequence (4,,,) in E’ is said
to be a block of (so,.) if for ever>’ vi E IN

= >3 QjSOj
jcA,.

where (A,,) is a sequence of finite subsets of 11V such that A,. < A,.+x
and ZjcA~ lA~I = 1 for ever>’ vi. For A, fi cl lAr, A < fi meaxis that
p < q for all p E A and q E fi. If we define

6(so,.) = sup hm sup
IIxII=1 “~

then

6(4>,.) = sup limsup 1 >3 a39’3(r)¡

< sup limsup sup lwj(z)I
¡¡x¡t—1 n—00

< sup himsup lwj(z)l=6(9’,,)
¡x¡j—1 ix00

Thus we have shown that 6(4>,,) =~«o,.)tvitenever (4>,,) la a block of

4.6. Lemma. Every bouuxded sequevice «o~) itt E’ Itas a block (4,,,) wuih
tite properiy thai 6(6,.) = 6(4>,.) for every blocIv (O,.) of(4>,.).

Proal’. Define

= inf{6(4,,,) : (4>,,) is a block of (~p,,)}.

for each bounded sequence «os) ix. E’. Since the block relation is re-
fiexive aud transitive, it is plain that e(so,.) =6(p,,) for ever>’ «os) and
c(~,.) =e(4,,,) whenever (4,,,) is a block of (‘p,.).

lo prove the lemma, if suifices to find a block (4>,,) of «o,.) such that
e(tP,,) = 6(4’,.). Now let (4>g>) be a block of (son) such that

=e(~’,.) + 1

Next let (42~) he a block of (4>U>) such that

16(4,$~2)) =c(~{’~) +
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Ix. general let (41’~) be a block of (
4’$,k—í)) such that

16(4>(k)) =e(4’tkí>) +
Iv

let (4>,,) be the diagonal sequence (4>$t5. Since the block relation is
transitive, we seo that ~ is a block of (4>Ñk>)~Lk br ever>’ Iv, and
(4>~fl¶L1 is a blóck of (9’n)~?~~. Thus

for every Iv and b>’ our selection of the blocks (4>$k>), we bave tbat

Hm sup ¿(4><k)) =hm sup £(4>$k))

Thns

6(4>,,) =lirnsup 6(4>(k>) =limsup e(4>&k)) =«4>,.) =6(4,,,)
k—.00 k—.00

and 6(4>,.) = 44>,.).

Proal’ of Theorem 4.4. By Theorem 4.1 it suffices to prove (a). 13>’ (i)
there is a basic sequence «o) ix. ~ which 15 equivalent to the canonical
Schauder basis of ¿U Thus there are b> a> O such that

ix ix ix
a>3lAjj =íl>3A~9’~u =b>3lA~j (4.3)
j=1 j=1 ti

for al] A1,..., A,, E IR and vi E 11V. Without loss of generahity we ma>’
assume that b = 1. B>’ Lemma 4.6 there is a block (4,,,) of (sos) with
tbe propert>’ tbat 6(6,.) = 6(4>,.) for ever>’ block (6,,) of (4>,,). Observe
that ever>’ block of «o~)~ and in particular (4,,,), verifies (4.3). Moreover
it follows from (u) that 6(6,,) > O for each sequenee (6,,) in E’ which
verifies (4.3).

Now let 6 = 6(4>,,) > 0; and let O < e < 6. B>’ definition of
6(4>,.), there are zo E

5E and an infinite set N
1 cl lAr such that

j4>n(ro)¡<6—e foralí tiENí.
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Without loss of generalit>’ we ma>’ assume that

4’,.(ro) =—6+e forail nC IV1.

LetO< e’< e/3. WriteIV1 = AuB, whereA= (~) andfi= (it),

with nij < vi~j < mj~ for ever>’ j 6 11V. Since the sequence ((4>~~ —

4>~)) is a block of (4>,.), it follows that 6((4>n,~ —4’,,)) = 6(4’,.) = 6.
Hence there are xí E

5E and an infinite set J C 11V such that

l;(4’m,4,,,.)(xi)l >6—e’ br jEJ.

Without losa of generality we ma>’ assume that

— 4>,fl(rí) >6 — e’ for 1 E J.

Since (4>~.~) and (4>,,) alio are blocks of (4’,.), it follows that 6(4,,,.~) =

6(4>,,) = 6(4>,.) = 6. Hencelimsup¡4,m}rí)¡ <6 and limsupj4>,.
1(r1)l =

2*OO

6. Hence there is j<j E IP? such that

l4>n,~(ri)I =6+s’ for 1 =jo,
i4>,.~(ri)¡ =6+s’ for 1>10.

We claim that

for IEJ, 1=10,

for 161, 1=io.

Indeed

4>n,j(rí) = (4’m,4>,,1)(rx)+4’n1(rí)
> (4>m~ — 4>,.3)(xí) — I4’,.~GnJI
> 2(6—E’) —(6 +s’) = 6— 3e’

and the second ineqnallty is proved similarí>’. We liave tlins found two
disjoint, infinite subsets N2 and 1V3 of N1 suclx that

4>n(zi) >6—E for it EN2,
4’,.(rl)=—6+E for nEN~.
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Next let 0< e’< e/7. Then 1V2 DPUQ and P/3 DRUS, where
P = (pk)~ Q = (q~), fi = (rk) and 5 = (sk), with Pk < qk < r¿, < Sic <
Pk+i for ever>’ Iv E .11V. Then the sequence (

4(4’pk — 4>qk + 4>fl~ — 4>sJ) is
a block of (4>,.) and proceeding as before we can find x2 E Se aud mi
infinite set K cl EV such that

i(4’pk —4’q~+4>r~4>s~) >6—e’ for Iv E

Then as before we can find k
0 E EV such that

4’pk(r2) =6—7e’ for Iv E K,Iv =ka,
4>q~(Z2) =—6+7e’ for Iv E K,Iv =ko,

4>rk(Z2)=67E’ for IvEK,Iv=Ivo,

4’sk(r2) C —6+ 7e’ for Iv E K,Iv =Ivo.

Wc have thus found disjoint infinite subsets IV4 and N~ of IV2 aud IV6
aud IV~ of IV3 such that

4>,,(r2) =6—e for ti EN4UN6,

4,.dr2) =—6+e for it E N5UN7.

Proceeding inductivel>’ we can find a treo (N>,)&~ of subsets of 11V
such that

(—1)”4>,.(rn,) > 6—e whenever ix E N>,,2”’ =p < 2m+i ni >0.

Set IP>, = {4’,, : vi E N~} for ever>’ p E IP?. Then (%,)~i~ is a treo of
subsets of ~e’ such that

(—1$’4>(xrn) > 6—e whenever 4> E 1p2m ~ > < 2m-4-1 ~ > o.

By Proposition 4.5 (zn,) is a basic sequence equivalent to the canonical
Schander basis of £‘.

4.7. Corollary. Leí E be a real Banach space wtich itas a subspace
isomorpitic lo ca. Titen:

(a) E’ has a complemevited subspace iaomorpitic lo £~.

(b) E has a quotiení isomorpitic lo co or

4.8. Corollar>’. Leí E be an infinite dimensional Banacit space. TIten
it ere Ls a sequence (so,.) lvi E’ such that ¡¡p,,¡j = 1 for every vi E 11V ami
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limso,«r) = O for every r E E.

Proal’. First consider the case of a real l3anach space E. There are two
possibilities:

(a) First assume that E’ has a subspace isoinorphic to ¿~. Then
b>’ Theorem 4.2 E has an infinite dimensional quotient E/M with a

Schauder basis (A.). Let (f,~) c (E/M)’ be the sequence of coordinate
functionals, and let Q : E .— E/M be the quotient mapping. Then
Qr = Z~f,’~ o Q(r)f,. for ever>’ r E E, and we ma>’ assurne that
¡jf,,¡j = 1 for ever>’ u. Since Ijf,,¡~ = 1 we can fixid e,. E E such that
Qe,. = f,, and henIl <2. Since f~oQ(e,,) = f,’(f,.) = I,lIf~oQ¡I =
for ever>’ u. Thus it suifices to take so~ = f, o Q/llf,’ o Q¡f for ever>’ u.

(b) Next assume that E’ has no subspace isomorphic to ¿~. Ihen
by a result of Rosenthal [31] (seo [6, Pp. 201-211] or [20, Pp. 99-101]),
ever>’ bounda! sequence in E’ has a weakl>’ Cauch>’ subsequence. Now
b>’ Riesz’ lemnia there is a sequence (r~,) in E’ such that ¡j4j = 1 for
ever>’ u, and t4~ — 4¡j =~ whenever m vi. By Rosenthal’s theorern
we ma>’ assume that (4) is weakly Cauchy. Whence it follows that

nlidi¿c,X”(4~±L—4) = O for each r” E E”. Let «, = 4±~— 4 for ever>’
vi. Then 11y411 =~ for ever>’ vi, and Hm z”(z4) = O for ever>’ z” E E”.

1V400

Thus it suifices to normalize cadi z4. This completes the proof ix. tic
case of a real Banací space.

If E is a complex Banach space, tien there is a sequence (so,.) of real
linear fnnctionalson Esuchthat Ilsonil = lforeveryuandlim

9’,.(zr) = O
for ever>’ r E E. If we define (4>,,) cl E’ by 4,,.(x) = ~,,(x) —

tien lim4,,~(r) = O for ever>’ r E E, and ¡¡4>,,¡¡ > 1 for ever>’ vi. Thus it
suifices to normalize cací 4>,. to complete tic proof.

4.9. Corollar>’. Leí E be a complez, injinute dimensiovial fanacit space.
Titen br eacit r > O ihere la a holomorpitic futiction f : E —~ CV wIticIt
is unbouvided ay ihe batí B(O; r).

Proof. Let O < p < r. 13>’ Corollar>’ 4.8 tiere is a sequence «os.) in
E’ sucí that lI’~~I¡ = l/p for ever>’ vi and lim,.,009’,,(x) = O for ever>’

E E. B>’ a result of Dineen ¡7], tic function f : E — £17 defined by
f(r) = Z~’fi(w,.(z))” is holomorphic on E and is unbounded on the

bali B(0;p +e) for every e> O.
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A set fi D E is said to be bounding if ever>’ holomorphic function
f : E —. (17 is bounded oit fi. A set L cl E is said to be limuted
if lim,,..00

511PXCL lw,.(z)I = O for ever>’ sequence (so,,) ir E’ such that
hm,.~.

00 ~,,(r) = O for every r E E. Let V(E) denote the famil>’ of al]

holomorphic fuxictioxis f : E —-. CV of the form 1(r) =

where «oh) c E’ and hm,.—.00 ~,,(z) = O for ever>’ r E E. Then nne
can prove tbat a set L cl E Ls limuted if and only lf every f E V(E)
Ls bontided on L. Whence every bounding set is limited, and Josefson

¡16] and Schlumprecbt ¡35j have given examples of limited sets which
are not bounding. Moreover the proof of Corollar>’ 4.9 readil>’ >‘ields the
following corollar>’.

4.10. Corollary. Leí E be a complez, ivifinute dimensiotial Banact
space. Titevi bounding seis avid limuted seis irz E are nowhere detise.

Corollar>’ 4.8 is due independentí>’ to Josefson ¡15] and Nissenzweig
[26] (seo also [11! or [6, PP. 219-223]), axid answered a question raised
by Thorp and Whitley [37]. Corollar>’ 4.8 was also the missing link ix.
Dineen’s method of proof [7]of Corollaries 4.9 aud 4.10, which answered
questions raised by Nachbin [25]and Alexander [1].

It follows from Corollary 1.6 and Theorems 1.8 and 4.2 that a real
fanach spaces E itas att infitiute dimensiovial quotiení witt a Schauder
basis if lis dual E’ has ay infinute dimetisiovial subspace whicit ls eitter
reflezive or isomorphic toco or¿’. Thus Problem 1.7 is dosel>’ connected
with the problem of whether ever>’ infinite dimensional Banach space has
an infinite dimensional subspace which is either reflexive or isomorphic

to ca or ¿U This problem, mentioned ir [20, p.1O
41, remained open for

a long time, and was recentí>’ solved ir the negative by Gowers [10].
Actualí>’ Gowers [10]constructa! an infinite dimensional Banach space
E such that neither E nor ~ contain any infinite dimensional subspace
which is reflexive or isomorphic to co or
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