
REVISTA MATEMÁTICA de la
Universidad Complutense de Madrid
Volumen 10, número 1:1097

New recursive characterizations of the
elementary functions and the functions

computable in polynomial space.

1. OITAVEM

Abstract

Weforniulate recursive characterizations of the class of elemen-
tary functions and the class of functions computable in polynomial
space that do not require any explicit bounded acheme. More
specifically, we use functions where the input variables can occur
in different kinds of positions - normal and safe - in the vein of the
Bellantoni and Cook’s characterization of the polytime funetiona.

1 Introduction

This paper is concemed with two well-known sub-recursive classes. Firs-
tly, the class E of elementary functions, introduced by Kalmar. (1943) [91
aud Csilag (1947) [6], and which can also be described as the class of the
functions computable in iterated exponential time. Secondly, the class
Pspace of funeticus computable in polynomial space: see, for instance,
[1] for a more detailed characterization.

The usual inductive formulations of e and Pspace use explicit boun-
dat schemes; here our proposal is to establish characterizatinus without
any explicit bounded scheme. In order to accomplish this we use the
techuiques that Bellantoni employed to get a similar resnlt for the class

1991 Mathematics Subject Cisasification: 0311)15, 03D20, 68Q15
ACM Classification: F.1.3.
Servicio Publicaciones Univ. Complutense. Madrid, 1997.

http://dx.doi.org/10.5209/rev_REMA.1997.v10.n1.17500

110 1? Oitavem

of functions computable lii linear time and for the class of fnnctions
computable in polynamial time, [31or [4] (recently and independently,
Bellantoni announced in [41asimilar characterization for the elementary
functions).

In the next section we are going to work in numeric notation, i.e.,
we will be talking about functions defined in cartesian praducts of w
and assuming values in w. However, when studying the class Pspace,
it 18 convenient to abandon the mnneric notation and adopt, instead,
the binar>’ notation. Therefore, we will work with functions defined in
cartesian product of {0, 1} and assuming values in {0, 1}, where jO, 1}
is the set of 0-1 words. This change of notation is not mandator>’. In fact,
we could rewrite all this work in numerical notation, although - in our
opinion - the binar>’ notation is more adequate to express simultaneously
the recursion on x aud the recursion on the length of x. The reasons Lar
which we made this change of notaticus wil become more clear along
the work.

2 Characterizations of E

2.1 Classic characterization

We use a characterization of the elementary functions which can be
easily deduced from tbe characterization given in [10].The class E of
the elementar>’ functions is the smallest class of functions containing
the Projection functions, the Zero and Successor functions and which
is closed under ordinar>’ composition f(~) = h(~(~))’ and the following
scheme:

Bounded primitive recursion
f(0, ~)=

f(y’,~) =

where i is a bounding function and = min{u, v} is the truncation
function. Throughout this section, we mean by a bounding function
a function in r, where T is the smallest class of functions, closed un-
der composition, that includes the projection functions and the sum,
product aud exponential functions.

‘Wc adopt the standard notatioir ~ for a n—tuple of variables and ~ fora k—tuple
of n—ary functions.

New recursíve characterizations of the... 111

It can be proved, by induction on the complexity of f, that if 1 E E
then there exists bf E T such that Wf(~) =b1(~), Le., the “size”
of the £ functions is dominated by the “size” of functions in T. To
obtain this conclusion it 15 essential the presence of the truncate at the
7’ functions in the boanded primitive recursion scheme (otherwise,
would obtain all the primitive recursive funetinus). Observe that the
bounding functions are monotone. We will use this fact several times.

2.2 A new characterization

Following ideas of Bellantoni and Cook, [21or [3], the functions iii E wil
have a “normaí” input and a “safe” input. We separate the two kinds of
inputs by a semicolon, putting the normal ones in the left and the safe
ones iii the right.

The class E is the smallest class of functions containing the follow-
ing initial functions 1’ — 6’ which is closed imder the schemes of safe
composition and safe recursion:

1’) E(;x)=O (Zero)
2’) p!I;m(~, ... XnZn+I •“,xn+m) = x1, 1=i =n +m (Projections)
3’) S(;x) = (Successor)
4’) D(;x) = 2x (Duplication)
5’) P(; O) = O P(; z’) x (Predecessor)

6’) Q(;x,u,z)= { x—O (Conditional)

Safe composition: f(z~;~) = hQ’(t);i(t Y))

Safe recursian:f(O,~;17) =

17) = h(z,t17,f(z,t17))
In the safe composition scheme the absence of some the functions f, i is
allowed.

ALí initial functions can be contructed into E, if we ignore tlie differ-
ent kinds of variables. The asymmetry of the safe composition scheme
allows us “to change” variables from safe positions to normal posi-
tions, but not the opposite. This means that II f(~, tu; z,a) E E then

tu, z; ~) e E but, in general, we cannot sa>’ that if i(t tu; z, a) E E
then f(~i; tu, z, a) E E. Also remark that in the safe recursion scheme,
tbe recursion is done on a variable in a normal position and the recur-
sive value f(z, ~; 17) is substituted into a safe position of h. Finally, note
that oní>’ the safe recursion seheme enables us to introductive into E

112 L Oitavem

functions that grow “substantially” faster than the functions involved
in their deflnitions. For example, we can construct the sum based on
successor -sum(O;r) = x, snm(y’;x) = S(;sum(y;x)) - or the product
basal on sum - prod(O, x;) = O, prod(y’, x;) sum(x;prod(y, x;)) - but
we cannot define something growing “substantialí>”’ faster tban prod
basal on it. More generall>’, functions without safe inputs do not pro-
duce great increasings because, as we have airead>’ pointed out, in the
safe recursion scheme the recursive value is placed into a safe position;
hence, tbe strength of the safe recursion seheme is lost iL h is a function
without variables in safe positions. If we return to the aforementioned
examples, it will become clear that the special constraints of safe re-
cursion prevent us from defining sum(; x, y), and without it e can not
define prod(y; x). Therefore, by safe recursion, we are only able to de-
fine prod(y, x;) and the asynnnetry of safe composition does not allow
us to change any variable from a normal position to a safe one. The
basic idea is that each time we use safe recursion in an essential way we
increase the complexity but we lose a safe position forever. When no
safe position is available we can no longer “increase the growth” of the
class. Therefore, to evaluate how far we can go into this class we just
have to pick the most powerful initial function and apply repeatedly safe
recursion. In this case we obtain f(z;) = 2~ by safe recursion based on
the function D, which is the “strongest” initial funetion of E. Since f
does not have safe inputs, we are airead>’ at the top, i.e., no function ni
E grows “substantially” faster than 2~. At this point it 18 clear that if
if 67’ then there exists r E E such that Vir(~) =tjr(±).

Next, our purpose is to show that the class E aboye coincides with
8, in the sense that the elementar>’ fu.nctions are exactí>’ those functions
of E which only have normal inputs.

2.2.1 E “cantain8” dic class E

In order to prove that E contains £ we need the following lemma:

Lemma 2.1. 1ff E E then

BE E EBtf E 7’s.t.f(I) = F(w;fl WVw : w > t~(~) (*)

New recursive characterizations of the... 113

Proof. The result follows by induction on the complexity of f. For the
initial functions the result is straightforward.

Assumne that f 15 defined by the composition scheme, i.e. f(zt) —

h(~(i)) where, by induction hypothesis, h, ~ satisfy (*). Since ~ belongs
to £ there exists b9 in 7’ such that W~(~) =~ Hence F(tu;E) —

H(tu,G(w;i)) and ti@) = th(bg(~)) + Zt9~(~) satisf>’ (*) trivially.
The most difficult case happens when 1 18 defined by bounded prim-

itive recursion. In this case, we are given O, JI in E and t9, t¡~ in 7’
satis~ing (*) by induction hypothesis. Since 1 E 8, there is b1 in 7’
such that Vy, 4(y, ~)=bj(y,~). The natural course of action would be
to define E by recursion on y, but that 15 not possible because y is not in
a normal position. Hence, we introduce a “new variable” z and use it to
simulate recursion on y. Since f is defined by recursion on y, in order to
compute f(y, ~) we must calculate alí the values 1(0,4 f(1, 41(2, ¡),
until f(y, ~): it 18 thus expected that the simulation we are seeking
reproduces this process.

Preliminaril>’, we define sorne useful functions. We start
with the “modifled difference”, which can be defined into E
by Ti(O;x) =x,Ti(y’;x) = P(;Ti(y;x)) or by T2(y,x;) =Ti(y;x). If
our notation allowed it, we would certainí>’ write z~Zy instead ofTi(y;r)
and T2(y, x;), but as we have to distinguish the positions occupied by
the input variables we must leave the standard notation. We also define
the auxiliar>’ function Y(z,w;y) = Tí(T2(z<w;);y), which gives us the
(w-z)—th predecessor of y or, more informail>’, Y(z,w;y) = y--(w

tz).

Wc should note that, for each tu, y(w > y), whcn z increases fr¿m tu — y
to tu, Y (z, tu; y) increases from O to y and, hence, there are functions
f, tj such that f(z, tu;y,i) = f(Y(z, tu;y), fl, provided tu — y =z tu

and tu =tfty,~). Thus, defining F(tu;y,E) = f(w,w;y4), we have
F(w; y, ~) = f(y, ~), since Y(w, tu;y) = y. This fluishes the argument.

The function, f and tp, can be defined as follows:
f(O,w;y,~) = O

C(w;±) if Y(S(;z),w;y) = O

f(z’,w;y,~) = { H(w;Y(z,w;y),~,f(z,w;y,~)) otherwise
tf(y, ~)= th(u, £, bf(y, ~))+ t

9(~) + y + 1,
which are, b>’ construction, in E and 7’, respectivel>’. Once fixed y aud
~, let tu be such that tu =tfty,~). We must check that foru such that
tu—y =u=tu,wehavef(u,w;y4)= f(Y(u,tu;y),i). This isproven

114 L Oitavem

b>’ induction on u. Take an arbitrar>’ u such that ~ — y <u <tu. Note
that there exists z E tu such that u = z’ (since tu — y =1).

Case 1: If u = z’ = tu — y then Y(S(;z),w;y) = O. Hence, by the
definition of f,f(z’,tu;y,±)= G(tu,i) = f(O,~) = f(Y(S(;z),tu;y)0fl.

Case2: J.fu= z’> tu—y thenY(S(;z),tu;y) # O. Usingthefact
that t~ and th are monotone we have

tu = tj(y,~)
= th(Y(z,tu;Y),x,bf(Y(z,tu;y)),x)

= th(Y(z, tu; y), ~, f(Y(z, u’; y), ~)).

Hence, using the induction h>’pothesis f(z,w;y4) =

we get

H(tu; Y(z, tu; y), i, f(z, tu; y, ~)) = H(w; Y(z, tu; y), ~, f(Y(z, tu;y), i))
— h(Y(z, u’; y), ~, f(Y(z, u’; y), ~)).

It is easy to see that Y(z’,u’;y) = (Y(z,u’;y))’. From this and from the
definitions f and f, we ma>’ conclude that

= H(w;Y(z,u’;y)4,f(z,tu;y’~))

= h(Y(z,tu;y),tf(Y(z,tu;y),z~))
= f(Y(z’,u’;y),i)

as we wanted.

u

The inclusion we want to establish 15 readil>’ deduced from the pre-
vious leinma.

Theorem 2.2. Let f(~) be InC. Then f(~;) is itt E.

Praof. Let f(ñ) be in E. E and t1 satisf>ring (*) are given b>’ the
previous lenima. We have airead>’ observed that there exists r E E s.t.
Wr(~;) =t1e(t). Ihus, defining f(~) = F(r(~;)~), we get the result.

u

New recursive characteñzations of the... 115

2.2.2 £ “contains” the class E

We saw that E is inclusive enough to contain all elementar>’ functions.
Now, we must see that it onl>’ contains the elementar>’ functions. Firstly,
we prove an important lemma, which enables us to bound each function
in E b>’ sorne funetion in 7’.

Lemma 2.3. 1ff e E then

B~ E 7’s.t. W, 17 f(~;17) <qfti). maz{mazj ye, 1} (**)

Proof. We will argue b>’ induction on the complexity of 1. For the
initial functions the result is triviaL

IL f is defined b>’ the safe composition scheme, then
f(± ;17) = hQ~;)~(~; 17)) where, b>’ induction hypothesis, it, f, ¡ satisfr
(**). Therefore, we have qp, ~Ír and ~ bounding it, f and .1 respectivel>’.
Thus,

=

= qh(qrGv)) . maz{maxj(q
31(~) . maz{mazjyj, 1}), 1}

and, thercfore, we can take qy(~) = qh(t7r(E)) . Eq,j~).
If f is defined b>’ the safe recursion seheme then, by

induction hypothesis, we have qg and q¡ in 7’ bounding g and it
respectivel>’. These bounds can be assumed to be positive. Hence, if we
define qf(w,x) = q~(tu,i)’» qg(~) we will have f(O,f;17) = g(t17) <

qgc~) .maz{mazjy1,1} = qj(O,~) . maz{mazeye,1}. Now, let us assume
that f(z,~;17) =qftz,~) . maz{ maz1 ye, 1}. Ihen we lave

S qh(z,x) . maz{ mazí ye,f(z,~;17), 1}

= q«z,x) . maz{mazeye,q>e(z,~). maz{mazj y¿, 1}, 1}
S qh(z,x) .q~(z,~) . maz{ mazj ye,1}
= qhe, ~). qh(z, ~)Z.qg@)• maz{mazj ye, 1}
= q~(z,~~)Z’ qg(~). maz{mazj ye,1}

116 L Oitavem

= fZh(Z, ~)Z’ . q9(~) . maz{mazj y~, 11
= q1(z’,~). maz{ma;yj, i}.

Therefore such qj satisfr (**), as expected.

u
This lemma is alí we need to conclude that EC 8.

Theorem 2.4. Letf(~;17) be mE. Titen i(t 17)is InC.

Proof. Once more, the proof is b>’ induction on the complexit>’ of 1~
There is no problem if 1 is an initial function.

IL .f is defined b>’ the safe composition scheme, x.e.,
f(~;17) h(F(~;);¡Q~;17)), let)L,t,¡ E 8 be given b>’ the induction
hypothesis. At this point we just have to take f(t 17) = h(F(±), ¡(~, 17)).

If ¡ is defined b>’ the recursion scheme, i.e.,

f(z’4;17) =

let g,h e E and q1 E 7’ be given b>’ induction h>’pothesis and the
previous lemma, respectivel>’. Thus, taking

1(0, zI, 17) = g(~,17)
f(z’, ~, 17) =)z(z, i, 17, f(z, ~, 17))¡qj(z’,±).(’+Ey~)

we get the result.
u

3 Characterizations of Pspace

As we have airead>’ remarked, in this section we effect a change of nota-
tion to binar>’ notation. Therefore we will have in our mmd the binar>’
tree and ah standard notation related with it: x for the length of the
sequence/word X, E for the sequence of length zero, zy for the concatena-
tion of the sequence x with the sequence y, the “product” x x y = z. x
(similar in growth to Samuel Buss’ smash function, see ¡51) for the con-
catenation of x with itself ¡ y ¡ times, aud z’for the sequence that fohlows
unrnediatel>’ after x when we consider the binar>’ tree ordered according
to length aud, within the same

length, lexicographically. Finally,x¡~ = { ~ forthe

New recursive characterizations of the... 117

truncature of z to y, where z C x abbreviates By zy = z.

3.1 Classic characterization

It is known that Ptñne (the class of functions computable in polyno-
mial time) is the smallest class of functions containing the Projection,
i-Concatenation and Conditional functions, and that it is closed under
the composition and bounded recursion on notation schemes (see [7]or
[8]). It is also known that if we close Ptime under bounded primitive re-
cursion we will get Pspace. This is the case because the number of steps
that a Pspace machine ma>’ carr>’ is exponential on the length of the
input. In other words, Pspace is the smallest class of functions contain-
ing the initial functions 1-3 and that is closed under the composition,
bounded recursion on notation and bounded primitive recursion:
i)P7(xí,...,z~)=x~, 1=j =it (Projections)
2) C1(z) = xi, i = 0, 1 (1-Concatenation)

tuotherwise

Composition: f(±)=
Bounded primitive recursion (exhaustive):
f(e,~) = y(~)

ft:y’,i) =

Bounded recursion on notation (over the branches):
f(c,~) g(2)
f(yi4) = hí(y,tf(y,~))¡t(~±), i = 0,1
where t is a bounding function, i.e., is a funetion of the smallest class
of functions containing the projection functions and the concatenation
and “product” functions and which is closed under composition and
assignment of values to variables.

It is cas>’ to prove that the bounding functions are monotone and
that for all f E Pspace there exists a polynomial, py (with coefflcients
in ¡TV), such that 1 f@) 1=pí(I ~ 1).

3.1.1 A new characterization

We are going to consider a class of functions, Ps, where the input vari-
ables can, once more, occur in two kinds of positions: “normal” and

118 L Oitavem

“safe”. As we <Ud before we will rite the normal and safe inputs in tbk
arder and separate them using a semicolon as follows: f(~; 17). We sa>’
that Ps in the smallest class of functions containing the initial fnnctions
~ 7’ aud which is closed under the safe composition, the safe recursion
and the sale recursion on notation schemes:

1,) Ppm(xi,... ,z~;x~+x, . . . ,x,~,,1) =

1 =3 n + ni (Projections)
(xiifIzIecIzI

2’) C4z;x) = j th• , = 0,1 (Baunded 1-Concatenation)
3’) D(;e) = E D(;xí) = xi = 0,1 (Deleting)
4’) P(;E) = E P(;x’) = x (Predecessor)

5’) Q(;x,p,z,w) = { ~‘~~“• (Conditionahi)

1 if2yGx : yl=x
6’) U(;x)= { ~ <Conditional2)
7’) x(x,p;)=xxy (Product)

Safe composition: f(~;17) = h(F(~;);i(E; 17))

Safe recursion: f(c,t;17) = 9(x;y)
f(z’,~;17) = h(z,~I;17,I(z,± ;17))

Safe recursion on notation: f(E, ~; y) = gfr; 17)
f(zi, 1; 17) = h1(z, ~; 17, f(z, £; 17)), 1 = 0,1

In the safe composition scheme the absence of some of the functions
r, s IS allowed.

The initial functions do not increase the length of the variables in
safe positions, with exception of the functions C1(z;x), 1 = 0,1; however,
even in this case the increase is bounded b>’ tbe variable in the normal
position. This fact is indispensable, since we have the recursion scheme
involving safe positions, but is limits so rnuch our capabilit>’ to construct
functions into Ps that we need to introduce U as an initial function. The
as>’mmetr>’ of safe composition scheme allows us “to change” variables
ftom safe positions to normal positions, but not the opposite. Regarding
the recursion schemes, WC have the obvious separations between the
positions occupied b>’ the recursion variable and b>’ the values obtained
recursivel>’.

To prove that Pspace=Ps we are going to foflow, almost step b>’ step,
the reasoning used in the precedent section.

New recursive characterizations of...... 119

3.1.2 P8 “contalns” Pspace

Firstly, we show:

Lemma 3.1. 1ff E Papace titen titere exista 9 E Ps ami a po¿ynomia¿
pj such that

WVtu :1 u’ I=Pf(I~ 1) ~ f(~) = F(u’;zI). (*)

Praof. The proof is b>’ induction on the complexity of 1. We oní>’
discuss the case when the function 1 is obtained b>’ bounded recursion
on notation. fle other cases are easy or follow methods alread>’ used in
the previous section.

If f 15 defined b>’ the baunded recursion on notation then, b>’ induc-
tion h>’pothesis, there exists O, H0, JI1 in PS and pol3’nomials p9,P%> Ph1

satisfring (*). We assume, for simplicity, that Ph p>,<, + Ph1• Since
we cannot define F(u’;y, ñ) b>’ recursion on notation on y, we intro-
duce a “new variabe” z and use it to simulate the recursion on y.
To accomplish this, we need to have sorne functions available in Ps.
One of them is Y(z,tu;y) = T1(T~(z,’w;);y), where T1ls defined by
T1(c;x) = x, Tí(yi;x) = D(;Tí(y;x)), i = 0,1 and T2(y,x;) = Ti(y;x).
Informalí>’ we ma>’ sa>’ that Tí(y; x) and T2(y, x;) are x¡~; therefore
Y(z,tu;y) can be kept in mmd as Y¡(wi.» To understand the importance
of Y in the simulation process just notice that, for each tu, y(¡ u’ 1>1 y
when j z ¡ increases from ¡ u’ ¡ — ¡ y ¡ to ¡ u’ ¡,Y(z,u’;y).increases
from c to y. Thus, our goal will be to construct into Fa a function f,
satisfring f(z,u’;yÁ) = f(Y(z,u’;W,~t) when u’ ¡ - ¡ y ¡=1z 1=1u’ ¡
and u’ 1=pft¡ y ¡‘¡ ~ 1). Since f is defined by recursion on nota-
tion, this means that if Y(z,u’;y) = c then f(Y(z,tu;y)<~)
otherwise f(Y(z,tu;y),~i) is given by ha or it1, depending on whether
the last digit of Y(z,u’;y) 15 0 or 1. Therefore, we need to have in Ps
the funetion that picks up the last digit of Y(z, u’; y), That functions is
I(z,tu;y) = U(;Y(zl,tu;y)). Now, we can define
f(E,w;u4)= e

G(w;~)ifY(z1,w;y) = E
f(zj, u’; u,~)= { Ho(w; I(z, w; y), Y(z, w; y), ~, f<z, u’; y, t))) ifl(z, u’; u) = 0

I(z,w;y), Y(z, w;y), ~, f(z,w;y, ~)))lfI(z,w;y) = 1
Or more formalí>’

120 1? Oitavem

¡SE, u’; y, = E

f(zj, u’; y, ~) = Q(; Y(zl, u,; y), e, G(w; ~),
h(w; I(z, tu; y), Y(z, u’; y), ~, f(z, u’; y,

whereh(w;i,a,S,c)=Q(;i,1,Hi(w;a,b,c),HO(w;a,b,cI).
Therefore, we just have to put F(w;y,~) = f(w,w;y,~) aud

pft¡ ~¡ i,¡ ~1) = mndi y ¡, ¡ b1(¡ y [1~ 1)) + pg(I ~I)+ ¡ u ¡ +1, where
bf is a polynomial bounding the lengths of the outputs. It is Cas>’ to
see that when ¡ z increases from u’ — u 1 to ¡ u’ ¡, f simulates the
process of recursion on y in the function f.

Given u aud ~, let u, be such that ¡ u’ 1=‘ftI u 1,1 ~ ¡). We prove,
by induction on 1 u ¡, that ¡fi u, ¡ — ¡ y 1=1u ¡=1w then

f(u, u’; y, ~) = f(Y(u, u’; y), fl.
Ihis implies that

= f(iv,u’;y,~) =

as expected. Let ube such that ¡ u’ — y 1=1u ¡=¡u’ ¡, and take
z E jO, 1} and j E jO, 1} such that u = zj.

Casel: If¡u¡=¡zj ¡=¡w ¡— ¡yjthenY(zj,w;y)=e,andso
f(zj,u’;v,=~)= G(u’,~) = f(e<~) = f(Y(zj,w;y)4).

Case 2: If ¡ u 1=1 zj 1>1 u’ ¡ — ¡ y ¡ then Y(zj,w;y) ~ E. Assuming
f(z,u’;y,~) = f(Y(z,w;y),~) we have

> Ph(I Y(z, u’; y) ¡, ¡ ¡, b1(¡ Y(z, u’; y) LI ~ 1))
= Ph1(I Y(z, tu; u) 1,1 1,1 f(Y(z, u’; y), i) ¡)

and so, b>’ the general induction hypothesis over h1,

Hi(w;Y(z,w;y)j~,f(z,u’;y«~)) = H1(u’;Y(z,u’;y)4,f(Y(z,w;y),~))

— h1(Y(z,w;y),t,f(Y(z,w;y),fl).

Hence, by definition of f and b>’ the observation that Y(zj, u’; y) =

CI(z,w;y)(;Y(z,w;u)), we have

f(zj, u’; y, = H¡(z,w;y>(v)j Y(z, u’; y), ~, f(z, u’; y,
— hI(r,w;y)(Y(Z, u’;y)4, f (Y(z,w;y), ~))
— f(Y(zj,u’;y),~)

New recursive characterizations of the... 121

The proof of the lemma is finished.

u

Thearem 3.2. Let f(~) be itt Papace. Titen f(± ;)la itt Ps.

Proof. Let f(i) be in Pspace and, by the previous lenmia, take F and
p~ satisfying (*). It is eas>’ to show that there exists r E Ps such that

¡ r(~;) ¡=pft¡~ ¡). Thus, just put f(~) =

u

3.1.3 P8pace “contains” Ps

The inclusion Ps ~ Fapace is a simple consequence of the fact that it
is possible to bound pol>’nomiall>’ ever>’ functions in Ps:

Lemma 3.3. 1ff E Ps titen titere exista a polynomiat q~ such titat

W,17 ¡ J(~;17) ¡< maz{qj’(¡ ~ ¡), maz1 ¡ 1/1 ¡}. (**)

Proof. The proof is b>’ induction on the complexity of 1. The initial
functions pose no problems.

1ff is defined b>’ the safe composition scheme, then we have q¡~, qn Qa
satisfying (**) and, therefore, we ma>’ take,

qftl ‘~ 1) = q~(qr(¡ ~ 1)) + ~qs}I ~
e

II f is defined b>’ safe recursion then, considering qj(¡ z 1~
¡ ~ 1) = q~(I z ¡4 ~ ¡) + qg(¡ ~), the result follows by induction
on the recursion variable, since qg, q¡ veriL>’ (**). We have
¡ f(c,t17) 1=maz{qj(¡ c ¡,¡ ~ ¡),mazí ¡ y~ ¡} and, since ¡ f(u,t 17) ¡
=maz{ qf (¡u ¡,¡ ¡), mazj Im ¡}, we get,

< mo.x{qñ(¡ u ¡,¡ ~¡), ma4max¿ ¡ ¡, .«u, ~; ;
< maxfqh(I u ¡4 & ¡), max{mazi ¡ ini, q4¡ u ¡,¡ 2 ¡) + qg(¡ 2
< mo.x{qftfl u¡,¡ 2 ¡>±q9fl2¡),maxi¡ ut

< max{qh(J u’ ¡42 ¡)±q9(¡2 ¡tmaxi ¡ vi I}
< max{q1(¡u’¡,jfj),maxjyí¡}

122 L Oitavem

If f is defined b>’ recursion on notation then, if we set q¡. qp,<, + q¡1
and q1(¡ z LI ~ 1) = q~(I z ¡,¡ ~0 + qgfl i ¡), we ma>’ cany on the result
b>’ induction on variable recursion length, since qg, q’~,, Qh1 satisfr (**).
Thus

If(c,t17)I = IgU~;17)I
S maz{q,(h~ ¡),mazí ¡¡‘1 ¡}

= maz{qf(¡E¡,¡xitmazt¡p¿¡}

Now, since ¡ f(z,~;17) =max{q1(¡ z ¡4 ~ ¡), maxj ¡ y~ }, we get
¡ f(zí,2;~) j = j ht(z,2;9,f(z,2;p)) ¡

< max{qh(¡ z ¡4 2 j), m«maz ¡ 1’1 f~, 2; ~) l)}
< max{qh<¡ z ~¡& ¡),mo4maxj ¡v~ h moz{qf(¡ 21,121), max~ tu I)}}
— maz{qh(I z ¡42 ¡),maz{q1(¡ 21,12 ¡), man j yi

— lnox{qh(I zj,¡2 1)~ ma4qh(I z ¡4±1) + qg(¡ 2 ¡), maz ¡ vi
< max{qh(I 21,121) ±qg(¡2),maxi ¡ yi

< max{qh(¡ a 1,121) ±q9(¡2 ¡),maxi tu I}
< ma4qj(jzi¡,¡2j),mozí¡y1j}

Therefore, W, 17 ¡ f(~; 17)1=max{q1(¡ ±¡), mazj yj
u

At this point is obvious that the length of the functions in Ps is pol>’-
nomialí>’ bounded. It can also be easil>’ shown that, for ah pol>’noniials, p
there exists a bounding funetion t such that p(¡ E 1) =1 t(2) ¡. For exam-
píe, iLp(xi, X2) = xi.x~+2.x2 then, for t(xi, x2) = (x~ xx2xx2)(11 xx2),
WC will have p(¡ x1 4 x2) ¡ t(xi, x2) . Therefore, in order to prove the
following theorem, we just have to checl< that it is possible to bound the
safe recursion sehemes.
Theorem 3.4. Let f(~;~) be itt ¡-‘e. Titen f(2,17) le itt Papace.
Proaf. The proof is standard and need not be reported here in detail.
The key step is when f is obtained b>’ sak recursion or b>’ safe recursion
on notation. In both cases we know, b>’ the previous lemma, that for
sorne polynomial q~ we have

¡ f(z,t17) 1~ maz{qf(¡ z ¡,¡ ~ ¡),maxi ¡ y~

New recursive characterizatione of the... 123

Thus, defining pfl z ¡4 ‘~ Li 17 U = qiu z ~ 1) + E1 ¡ víj, there is a
boundingfunctiontsuchthatp(¡ z ¡‘¡ t ¡4171) =1 t(z,~,17> . Therefore,
WC define f b>’ the correspondent bounded recursion scheme, with bound
t.

u

We havejust established a characterization of Pspace Without bounds.
Te finish this paper sorne final remarks are in order.

Remarks.
Sorne people expressed their concern about our inclusion of the product
funetion amongst the initial functions of Fe. The>’ would prefer te have
¿nl>’ initial functions of linear growth. We observed in subsection 3.1.1
that WC must be ver>’ careful about operations involving safe positions
because - having safe recursion involving safe position - if the>’ increase
the safe input lengths even just a bit, we would get functions of expo-
nential growth, whicb líe outside Pspace. Therefore, in order to remove
the product from the initial functions we seem to have to introduce an
intermediate input pasition, Sa>’ semi-safe, and use it to construct the
product. Therefore, if we start with sixnpler initial functions We will
arrive at a more elaborate characterization. Let us give a brief glance
over tbis alternative characterization of Pspace. Here, there are three
kinds of input positions in the ftmctions: “normal”, “semí-safe” aud
“safe”. We Write the normal, senil-safe aud safe inputs b>’ this order
and separate them b>’ semicolons. We sa>’ that Ps’ is the smallést class
of functions cantaining the follovñng initial functions 1’ — 7’ and Which
is closed under the safe composition, the safe recursion and the deuble
recursion en notation schemes:
1’) P;~”~’(xi,... ,x~;x~+i,•• %Xn+m;Xn+m+1,”~ ,Zn+m+J) = xj,

1=j=n+m+l (Projectiona)
f zise x¡.C¡z¡

2’) C1(z; ;x) = x otherwise ,a = 0,1 (Bounded i-Concatenation)
3’) D(;;E) = ED ;;xi) = x,i= 0,1 (Deleting)
4’) P(;;E) = EP(;;x’) = x (Predecessor)

f zsexg~
5’) Q(;;x,v,.z,w>— ~ otherwise (Conditionahi)

7’) C1(;x;) = xi,i = 0,1 (i-Concatenation)

124 1? Oitavem

Safe composition: f(~; 17; ~)= h(i(~; ;); t(~; 17;); t(~; ;

Safe recursion: f(e, ± ;; 17) = g(t; ; 17)
f(z’ót;17) = h(z4;;17,f(z,± ;;17))

Dauble recursion on notation:
.f(cÁ;17;i) = g(~;17;t)

f(tui,~I;17;~) = it1(tu,t17,f(u’,~;17;fl;~,f(w,<ivfl), 1 = 0,1

Ihe goal of the double recursion on notation scheme is to join two
schemes in one. HoWever, it could be replaced by the two following
schemes:

Semi-safe recursion on notation:
f(E,~;17;) = g(±;17;)

f(u’ió~;17;) = ití(u,,t17,f(wó~;17;);),i= 0,1

Safe recursion en notation:
f(c, ~; ; = g(~; ; i)

f(u’i, 1;; = h1(u’, zt; ; ~,f(u’, ~; ; ~)),1 = 0,1
The basic facts are as folloWs:

Lemma 3.1. 1ff E Pepace titen Itere exista 9 E Ps and a poiynomial
Pi sucit tital

WVu’ :¡ u’ ¡=pj(¡ ~) ==> f(~) = F(u’; ;~). (*)

Theorem 3.2. Let f(i) be itt Pepace. Titen f(~;;) la in 1’?.

Lernma 3.3. 1ff E Fe) titen existe a polynomial q~ aucit thaI

¡ f(~;17;2) 1=maz{q1(¡ ~ U ±maxi ¡ y¿ ¡,mazí 1 z~ ¡}. (**)

Tbeorern 3.4. Let f(z~;17;~) be iii Fe). Titen f(~,17,~) la in Fepace.

Acknawledgments.

1 would like te thank Fernando Ferreira for introducing me to the subject
and for his helpful suggestions.

New recursive cbaracterizations of the... 125

R,eferences

¡1] Balcázar 3., Díaz 3., Gabarró 3. Structural Complexity JI, Springer-
Verlag, 1990.

[2] Bellantoni 8. and Cook 8. (1992). it New Recureion-Theoretic
Citaracterization of Polytime Funcliona, Computational Complex-
it>’, vol. 2, Pp. 97-110.

[3] Bellantoni 8. (1993). Predicative Recurelon and Computational
Complexlty, Ph. D. Dissertation, Universit>’ of Toronto.

[4] Bellantoni 8. (1995). Predicative Recurelon and Tite Folytime HI-
erarchy, Feasible Mathematics II, al. P. Clote and 3. 8. Remmel

[5] Buss 8. Bounded Arititmelle, Ph. D. Dissertation, Bibliepolis
(1986).

[61 Csillag P. (1947). Eme Bemerkung nr Aufioaung der eingeechacitt-
elten Rekuraion, Acta Sed. Math. Szeged 11, Pp. 169-173.

[7] Ferreira F. Polynomial Time Computable Arititmetic and Conserva-
tive Extenalona, Ph. D. Dissertation, Pennsylvania State Universit>’
(1988).

[8] Ferreira F. (1990). Polynomial Time Computable Árititmetic, Con-
temperar>’ Mathematics, Volume 106, Pp. 137-156.

[9] Kalmar L. (1943). E.qyezerii példa eldóntitetellen arltmetikai
problémóra, (in Hungarian With German abstract), Mate és Fizikai
Lapok 50, pp. 1-23.

[10] Rose H. Subrecuralon: funetiona and hierarchies, Clarenden Press,
Oxford, 1984.

CMAF - Universidade de Lisboa Recibido: 30 de Junio de 1995
Av. Prof. Gama Pinto 2 Revisado: 9 de Abril de 1996
1699 Lisboa
Portugal
Fax: 351-1-7954288
e-mali: isarochaCptmat . lmc . U. ul .pt

