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Bessel potentials in Orlicz spaces.

N. AISSAOUI

Abstract

It is shown that Bessel potentials have a representation in term
of measure when the underlying space is Orlicz. A comparison
between capacities and Lebesgue measure is given and geometric
properties of Bessel capacities in this space are studied. Moreover
it is shown that if the capacity of a set is null, then the variation

of all signed measures of this set is null when these measures are
in the dual of an Orlicz-Sobolev space.

Introduction

In [4,6,7] a theory of capacity and potential in Orlicz spaces was exten-
sively studied and applications to Bessel kernels were announced. Here
we begin these applications.

We pive a representation of Bessel potentials in terms of measure.
Estimations at two sides for Bessel capacities of a ball are obtained in
term of radii. This uses a representation of Orlicz-Sobolev spaces in term
of Orlicz spaces and Bessel kernels; namely: W™L 4(R") = gm* L 4(R")
when A and A* satisfy the As condition.

We study also the relation between Bessel capacities and Hausdorff
measure and give a condition in term of Hausdorff measure for a Bessel
capacity of a set to be null.

For attaining this geal, we are combining the theory of capaci-
ties in Orlicz spaces and the methods of the nonlinear potential theory,
developed by N. G. Meyers [17] and L. 1. Hedberg [13]. (See also D. R.
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Adams and L. I. Hedberg [1] and W. P. Ziemer [20] for good and com-
prehensive survey of this theory).

On the other hand we show that if the capacity of a set is null,
then the variation of all signed measures of this set is null when these
measures are in the dual of an Orlicz-Sobolev space. This generalizes
the corresponding result in Sobolev spaces by M. Grun-Rehomme [12].

1 Preliminaries

Let A: R ~ R be an N—function, i.e.4 is continuous, convex, with

A(t)>0fort>011m Q—O lim -‘it—(—ﬁ-=+ooandAiseven.

t—+oo

(¢
Equivalently, A admits the representation: A(¢) = f a(z)dz, where
0
a: Rt — R™ is non-decreasing, right continuous, with a(0) = 0, a(t) > 0
for t > 0 and tlig} a(t) = +oo. The N—function A* conjugate to
il
A is defined by A*(t) = / a*(z)dz, where a* is given by
' 0

a*(s) = sup{t: a(t) < s}.

Let A be an N —function and let {) be an open set' in R". We note
La(Q) the set, called an Orlicz class, of measurable functions f, on €,
such that p(f, A, Q) = f A(f{(z))dz < oc.

]

- Let A and A* be two conjugate N—functions and let f be a mea-
surable function defined almost everywhere in €. The Orlicz norm of
Ll £ llan or || flla if there is no confusion, is defined by

| 7 fla= sup { [ 1510 1o 5 € £4-(@) and pls,4°,9) < 1}

The set L4(f2) of measurable functions f, such that || f la< oo is
called an Orlicz space.

When 2 = R", we set L4 in place of L4(R™).

The Luxemburg norm | £ |[| 4. g, ot ||| f ||l 4 if there is no confusion,
is defined in L 4(f2) by:

5 ia=ntfoso: [ a2 (”’]d <1).
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Let A be an N—function. We say that A verifies the Ay condition if
there exists a constant C > 0 such that A(2t) < CA(t) for all ¢ > Q.

We recall the following results. Let A be an N—function and a its
derivative. Then

1) A verifies the A2 condition if and only if one of the following holds
) Vr>1,3k=k(r): (Vt 2 0,A(rt) < kA(2));
ii) 3o > 1: (Vt >0, ta(t) < aA(t));
i) 38 > 1: (Vi > 0,ta*(t) > BA*(t));
iv) 3d > 0: (vt > 0,(A*(t)/t) > da*(t)/t).
Moreover « in ii) and g in iii) can be chosen such that
e t+p =1,
We note o{A) the smallest & such that ii) holds.
2) If A verifies the Ao condition, then
i) Vi > 1, A(t) £ A(1)¢t® and Vit < 1, A(t) > A(1)t*
i) Ve > 1, A*(t) > A*(1)t? and VE < 1, A%(t) € A*(1)¢P.
See for instance {10, 15, 18§].

Let A be an N—function such that 4 and A* satisfy the As condition.
We note a(A) = « and a(A*) = a*. Then we have from 2) below

Vi>0,a*A*(t) > ta®(t) > BA*(2).

Hence 38 < a*.

This implies that there exists a constant C , such that: ¥t > 0, A*(¢t) =
Ct*.

This means that we are in the case of Lebesgue classes L?, which is
treated in the literature.

Hence we suppose in the sequel that § < o*.

Iet A be an N-—function. We put A an N-—function equal
to A in a neighbourhood of infinity and such that (see[3, lemma 4.4}}):

/:[E‘l(t)/tl“/"]dt < o0.
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[A_l(t-)/tl"'l/"]dt = 00, we define a new N —function A4; by
the formula

A = A @

and we let A; to be an N—function equal to A in neighbourhood of
0 and to A1 in a neighbourhood of mﬁmty (see[3, lemma 4.5] for the

constructin of such N—function). If [A*l(t)/tl"”l/"]dt 00, we
1

start again the same construction and we put Ag = (A1), - -
Let j = J(A, n) be the smallest integer such that

+o0
/ [A;l(t)/tl-'-l/n]dt <oo. If {Aﬁl(t)/tl-H/"']dt < 00, we put
1 Jo

J(A,n)=10.

Observe that J(A,n) < n because there exists a constant C, such
that A~1(t) < Ct, vt > 1.

Let m be a positive integer. The Orlicz-Sobolev space W™L 4(f}) is
the space of real functions f, such that f and its distributional deriva-
tives up to the order m, are in L4(Q).

W™L 4(R) is a Banach space equipped with the norm:

LS llma= D2 HID*Sllas f € W™LA(R)

K[ <m

Let W™™L 4.(f2) denote the space of distributions on {2, which can
. be written as sums of derivatives up to order m of functions in L 4+ ().
It is a Banach space under the usual quotient norm.

Recall that if A and A* satisfy the As condition, the dual of
W™L4(R") coincides with W™™[ 4.(R"™).

For more details, one can cosult the classical references [2, 14, 15,
16, 18].

We define a capacity- as a positive set function C given on
a o—additive class of sets 7, which contains compact sets and has the
properties:

(i) c(@)=0.

(ii) If X and Y are in 7 and X C Y, then C(X) < C(Y).
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(ii) If X4,é = 1,2,--- are in 7, then C (U x,-) <Y c(xi).

i>1 izl

Let k be a positive and measurable function in R™ and let A be an
N —function. For X C R", we define

Cra(X) = mf{A(|I flll4) : f€La™ and k* f > 1 0on X}

C;C_A(X)zinf{lﬂffHA:fELA+and kxf>1lon X}

where k * f is the usual convolution. The sign + deals with positive
elements in the considered space. Then Cj 4 is a capacity and Cj 4 is
called A—capacity.

If a statement holds except on a set X where Cra(X) = 0, then
we say that the statement holds Crq—quasi everywhere (abbreviated
Cra—q.e or (k, A)—q.e is there is no confusion).

We call a function f in Lqo ¥ such that k* f > 1 on X, a test
function for C} 4(X ). Moreover, a test function, say f, for Cy 4(X) such
that CLa(X) = ||| f|l| 4 is called a C} 4~capacitary distribution of X
and k * f a Cj 4—capacitary potential of X.

For the properties of Cj, 4 and Ci., see [6], and for the existence and
uniqueness of a C; ,—capacitary distribution of a set, see [7].

M will be the vector space of all Radon measures. The cone of
positive elements of M will be denoted by M*.

M1(R™) will be the Banach space of measures equipped with the
norm || p {|=total variation of x < oo.

Recall that if X is a measurable set in R", then || p || (X) =
sup Z | 1 (Xi), the sup being taken over all decompositions (X;); of

i1
X.

Recall also that if p € M (R"), then p* = (| u || +4) and p~ =
1
(Il &l =)

Bessel kernel is of principal interest in this paper. As classical refer-
ences, see [8, 9, 19}.

For m > 0, the Bessel kernel, g, is most easily defined through its
Fourier transform F(gy,) as :

(F(gm))(z) = (@m) /214 | 2 |P)~™/2,
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where

F(IE) = @0 [ f@)eVay for 1 € 1.

gm 18 positive, in L1 and verifies the equality

Grts = Gr * gs-

We put
Bpna = Cg,a 8ud By s =Cy 4.

2 Representation of potentials and compari-
son with Lebesgue measure

Theorem 1. Let A be an N —function such that A and A* satisfy the
Ay condition. Let m be a positive integer and X a set in R™ such that
0 < B, 4(X) < o0.

Let f be the B, 4— capacitary distribution of X. Then there exists a
positive measure px such that:

1) gm*f = Bl A{X} gm*[a" 10 (gm*px)|, where a is the derivative
of A.

2) supppux C X.

- If in addition we suppose that X is compact, then

8) gm*f <1 onsupppux.

Proof. We follow Hedberg’s method in [13].

1) From [7], for all g € L 4 such that g, * ¢ > 0 on X, we have:

Jwo (/£ otz 20

On the other hand, from [10] there exists T € W ~™L 4+(R™) such
that

ao (f/Mflla)=gm=*T.

Hence
Vg € LA+,f(_9m*T)-gd:c >0.
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Thus T is a positive measure which we note px.

We have the representation f = ||| f ||| s[¢ ™" © (gm * px)), and 1)
follows by convolution with gn,.

2) Let S(R™) be the Schwartz space of C* functions of rapidly de-
crease. Since A verifies the As condition, S{(R™) is dense in L 4.
Let g € §(R™) be such that suppgm *g € °X. Then

ViER, gm*(f+tg)>1on X.
By a similar calculus than the one in [7, Théoréme 1], we obtain
<T,gm*g >=< px, gm*g>=0.

Hence
suppux C X

3) We remark that the set O = {z : (gm* f){2) > 1} is an open. This
implies that for g € S(R™) such that g, *x g C O, we have

gm*(f+tg) > 1 on X for all ¢ such that |t ]| is sufficiently small .

Again, by the same argument than the one in 2) we find that
<px,gm*g9 >=0.

And thus suppux C °0 = {z : (gm * f)(z) < 1}.
This completes the proof.

Remark 1. Let A be an N -function. If X is a compact set, then

Bhoa(X) = sup{p(X)/llgm* g ||| a* s> 0, suppp C X}. (*)

It is a consequence of {6, Théoréme 11].
An application of 3) in theorem 1 gives also (*}, but with the condi-
tion that A and A* satisfy the As condition.

Theorem 2. Let A be an N —function such that A and A* satisfy the
Asg codition. Let m be a positive integer. Then
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1) If m < J(A,n) there exisis a constant C = C(A,n,m) > 0 such
that
Bro(X) 2 ClAm ' (1/m* (X))
for all set X such that m*(X) # 0. (Here m is the Lebesgue
measure on R™ and m* is the outer measure associated to m ).

2) If m > J(A,n), there exists a constant C = C(A,n,m) > 0 such
that
Bpa(X) 2 C

for all set X such that X # Q.

Proof.
1) It is enough to prove 1) when X is a non-empty, bounded and open
set. This implies that By, 4(X) < oo.

Let m < J(A,n). Then from 3] (see also [11] for the case of
a bounded and open set) the space W™L4{R") is embedded in
L pAm. Thus there exists a constant € which depends only on A, n
and m, such that: Yo € W™LA(R™), ||| 2 ||| gm £ C71 15l pos-

We put: gm * LA(R™) = {gm *u:u € La}.
From [10] we have
WTLA(R") = gm*LA(R") and ||| gm*u [||a = lulll4 Ve € L4.

Hence
Vi€ La llgm*flllam <CIFIA-

Let f be a test function for B!, ,(X). Then Holder inequality in
Orlicz spaces gives

m(X) < L (9m * £)dz <l xx lcam) * Nl om * 7 Hlam -

Here (Am)* is the conjugate to A,, and xx is the

characteristic function of X. From the equality || xx ll(am) * =

m(X)Am ~1(1/m(X)), we deduce that )
C < Am HUY/m(X)) - (I1£ lla-

Whence
Bl A(X) 2 ClAm T (1/m(X))
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2) if m > J(A,n), then from [3] the space W™L 4(R") is imbedded in
C(R™)N L™(R"). Then there exists a constant C which depends
only on A, n and m, such that

Vf € La Yz € R™, (gm* f)(z) SC7H|[Fl4-

Thus if f is a test function for B} ,(X) with X # @, then C <
£ 1] 4-

This implies B/, 4(X) > C.

The theorem follows.

The following lemma is proved in [5]. For completeness we give
the proof,

Lemma 1. Let A be an N—function and 0 < § < 1. Let ¢ be defined
on R™ by o(z) = Bx. Then

S NMla < foelila <87 S lia Vf€La.

Proof. We have /A[(focp)(t)/ [l fow | 4ldt < 1. Then

JAUG/ N sopliida <5 <1

This implies that || £ I < fil fow Il 1
On the other hand, let A such that f A(f(z)/X)dz < 1.

Then f BhA((B2)/N)dz < 1.
Hence /A(ﬂ"f(ﬁz)/)\)d:c <1
Consequently I} foplll4 < 8[| £, and the lemma follows.

Lemma 2. 1) Let A be an N—function and let m be such that0 < m <
n. Let S, = B(z,p) be the open ball centred at r and with radius p.
Then there exists a constant C independent of p such that

Bra(Sp) SCp™™ for0< p< 1.
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2) Let A be an N— function satisfying the Ay condition and let m be
such that 0 < m < n. Let C(A) be the smallest constant C' such that:
A(2t) < CTA() VL.

Then there exists a constant C independent of p such that: By, 4(Sp) <
C27 %™ for 0 < p < 1, where q is the greatest positive integer such that
¢ < Logp ™/LogC(A).

Proof. We follow the argument given in [17].

1) Let f be a test function for B, 4(S4). Then fgm(:c—'y)f(y)dy >1
on Sy.

By a change of variable we obtain
_[P_"'gm[(:l: —2)/plf(2/p)dz 2 1 on Sy,

From the following asymptotique behaviours of g,, {see for instance

8, 9, 19])
gmiz) = ?.hm':r_"/zr‘[(n - m)/2)]r(m/2)_1 [z ™™ ++o(lx ™),

O<m<n,asz—o
gm(z) ~ 2‘*(‘m-+-n-—1)/27r—(n—1)/211(m /2) 2 |(m—n—1)/2 el

as r — o0
we deduce the existence of a constant C1, such that

C1 ™ e < glr) < Crr™ e, gm(r) = gm(r,0,- -+, 0).

Therefore
gm(r/p) < Clpn—mrm—ne—r/2p < Clpﬂ—mrm—ne—2r <
< Cfp" Mgm(r), for 0 < p < 1/4.
This implies

Clp_m/p_"gm(z — 2)f(z/p)dz > 1 on Sy, for 0 < p £ 1/4.

Thus, for 0 < p < 1/4, we have

Bl a(Ssp) < Cip ™|l Foullla
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where u(2) = z/p = ¢~1(2).

We put fou = g. Ther lemma 1 gives |||g{||4 < lllgoellls <

" i gill 4
Thus
Iffoullla U Fllla <87l foulll,-

Hence
Bpa(Stp) < C1p™ (|| Filla-

This implies that
By, 4(S4p) < C1p ™ By, 4(Ss), for 0 < p < 1/4.

The desired inequality follows if we replace p by p/4.

In this case we evaluate ||| fou||| 4 in term of || f ||| 4

We have [ ALF(a)/ Il £ llaJd= < 1.

Put 2 = u(t). Then o™ [ Al(fou)(/ 111 llalat < 1.
Whence

[amon@/ il < oy [Alone 15 1l
P [ AllFow) @/ £ 14kt < 1.

IA

This means that [{| fou |||, < 272|| fll 5.
Hence B, 4(S1p) < C1p™™279B] 4(Ss), for 0 < p < 1/4.

The desired inequality follows if we replace p by p/4. This com-
pletes the proof.

3 Relation between capacity and Hausdorff

measure

Lemma 3. Let u(r}, 0 < r < co, be strictly positive, decreasing and
continuous from the right. Let p € Mt such that ju(| z —y |)duly) €
Ly.

Then there exists a function u(r), 0 < r < oo, where
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1) u(r) is sirictly positive, decreasing and continuous from the right,
2) [@lls-yldu) € La,

3) 4(r) > u(r) and y_r{éﬁ(r)u(r)_l = 400.

Proof. We follow Meyer’s idea in [17] in the case of Lebesgue classes.
Define fo(s) = ]{ 802~y Muty) end

=y

(z) = —y Ddply),i=1,2--.
= [ 0% = DnG)

Note that fo(z) = 0 for almost all z, since u({z}) > 0 for at most a
countable number of points .

We will prove the existence of an increasing sequence (a;); of finite
real numbers such that ¥i,a; > 1 and Zai fi € La.
i>1
We remark that z fi — O strongly in L4 as ! — oo,
izl
Therefore there exists a sequence of positive integers, (), 7 =1,---

such that
DoAY Filllg < oo
izl iy
Moreover there exists an increasing sequence of real numbers (b;); such
that Vj,b; > 1 and
Dbl 3 fillla < oo
i1 i>l;
We define a; = b; for I < < l;41. Then

M afilla <D D aafillia< D billl D fillla < 0.

i1 21 il +1)-1 izl izl

This shows that ¥i,a; > 1 and

Zaifi € L.

i>1
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We define % by:
2(0) = o0,
i) =u(r)for2t <r<27i=1,2,-.,
w(r) =u(r) for 1 <r.

Then % verifies properties 1), 2) and 3).

This completes the proof.

Theorem 3. Let A be an N — function such that A and A* satisfy the Ao
condition. Let m be a positive real such that am < n, where o = a(A).
Let u be o positive, decreasing function defined on R, continuous from
the right end such that

gm(7) < u(r) and ]iu(])1’I(1r-)_q,,,,,(r)'1 = +o0.
=3
IfB' = Bi“.A’ then

Li_% B'(Sp)Blna(Sp) ' = 0.

Proof. Since B’ is invariant under translation, the centre of 5, is of no
importante and we can take it to be zero.
Let f be a test function for B,, 4(S,) such that

£ 1ll4 < 2B}, 4(S)).

Let @ be a finite constant greater than one. Then we have

m{zx — dy + m{z — dy>1,z€8,
f{lquﬂ}g (z - v)f(y)dy _[{sze}y (z — v)f(v)dy z €S,

We pose: I = gm(z — y) f(y)dy.
{lul=p0}
Then

I <2inf{x: .[{ly[>p0} A*lgm(z ~ y)/Mdy < 1} || f |4 -

But if A is such that

f A*[gmlz — y)/Ndy < 1,
{ly|>p(0-1)}
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then
: At gm(z —y)/M]dy < 1.
/{Iylzw} lom(= = 3)/]
Hence
I£2inf)\:] A*[gmlz — y)/Mdy <1} Flll4-
Oif o Al ) V11l

We begin by estimate the integral

Im = A*|gm(y)dy.
{Iyl2p(0-1)}

By a change of variable we have
Jm = Cy f A*[om(t)]t™1dt.
[p(9“1),oo}
On the other hand, there exists a constant Cp such that
gm(z) <Co |z |77,
Hence

Jn < C j AT e < Ol + T
[P(B—I),OO[

where J =/ A*(™ ™) 14t and J! :/ At 4,
"= Jopu ) = Juo A

We have supposed that p(6 — 1) < 1.
We must evaluate J), and J)),.
First, note that ™" > 1 for p(§ - 1) < t < 1. So

A:(tm—n) < A‘(l)(tm——n)a"
Since (m — n}a* +n < (m — n}g +n < 0, we deduce that

I € AY) (g™ a
" (o0 1,001
< A (m = n)a* +alll = {p(6 — NI,
On the other hand, since A verifies the Ay condition, we get for ¢ > 1

AT < AT ETE
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Hence

Jh < A*(1) (™At < A*(Q) (@ — 1)(n — em)™ L.

[1,00

Then
Jm £ C1A*(1)(a — 1)(n ~ am)~![p(g — 1)) m—ma"+n,
This shows that there exists a constant K1 > 1, such that
Jm < K1[p(8 — 1)](m—ma’+n,

Put E(8,p) = {| v |> p(6 — 1)} and remark that [p(8 — 1)}(m—mo"+n > 1,
Then

”lgm |I|A*,E(9,p) S Kl [p(g _ 1)](m—n)a‘+ﬂ..

Hence there exists a constant K’ such that
1< K'[p(0 = DTl 114
From lemma 2 we get
I < K"[p(g —1)]|m—me+n 99, m for 0 < p < 1
where ¢ is the greatest positive integer such that
g < Logp™"/ Log C{4).
Put C" = Log2/ Log C(A). Then
g+ 1> Logp™"/LogC(A) implies that 277 < 20"C".
On the other hand, we know that for all ¢ > 0, we have a/t >

a(t)/A(E).
This implies

2t 4(s)

Log AQ20)/A®) = [ 505

ds € aLog2.

Hence A(2t) < 2%A(t)- So 2% > C(A).
This gives p"C' < pe,
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Hence

K”[p(ﬁ _ l)l(m—n)a‘+n. . p-m—i—ﬂ/o:

<
< K”(G _ 1)(m—n)a‘+n . [p—m+n/ap(m—n)a‘+n]_

Choose # such that

6 — 1 = K" p~1+m-n/al/[(m—n)a"+n]

K" will be precise in the sequel.
Then

p(8—1) = Kmp[m—n/a]/[(m—-n)a‘+n] ~0asp—0.
On the other hand we have
1< Kn(Km)(m-—n)a‘-t-n_
We choose K such that
K”(Km) (m—n)a*+n 1/2.

Then [ < 1/2.
This implies that

fﬂ,,kpo} gm(z —y)f(y)dy 2 1/2,z € 8.
We define
(o))t = inf{@(r)lgm(r)] "} : 0 < 7 < p(8 + 1)}
Then there exists a constant D, such that
B'(S,) < Dg(p) By, a(Sy)-

This completes the proof.

Remark 2. We have proved the inequality 279 < 2™/, This implies,
in lemma 2, that there exists a constant C' independent of p such that
BlA(Sp) <Cp ™2 for0< p< 1.
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Hence, if am < n, then

pli}}}} B:n.A(S.o) =0

Definition. Let ¢(r) be a positive, increasing function in some interval
[0,7'[ and such that
lim o(r) = 0.

If X is an arbitrary set, the Hausdorff p—measure of X is given by
Htp(r)(X) = %1_% {ian‘P(ri)} )
izl

where the above infimum is taken over all countable coverings of X by
spheres S(zy,r;) such that r; < s.

Note that Hy(y) is a capacity which has the property

Hor)(X) = Hp)(Y), **)
where Y is a G— set containing X.

Theorem 4. Let A be an N—function such that A and A* satisfy the
Ag condition end let X be a subset of R™. Let m be a positive real such
that am < n, where a = a(A) and let o{r) = B, 4(S:). Then

Bma(X) =0 if H,qy(X) < oo.

Proof. In view of (**) and [4, Théoréme 3}, it is sufficient to consider
the case X = K, K a compact. Assume that B], ,(K) > 0. Then from
. {4, Théoréme 4], there exists 4 € M such that

pu# 0, suppp C K and gy * pu € L 4.

Lemma 3 gives a kernel & with properties 1), 2) and 3). If we set
B' = C’:TA’ by [4, Théoréme 4], we must have

B'(K) > 0.
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Lemma 3 and theorem 3 imply that
lim B'(Sp) Bjna(Sp) ™ = 0.
o—
Now let (Spi(z;)): be a countable covering of K by spheres. Then

B'(K) < 3 B'(Spilws) = Y _IB'(Spi(4)) Bual(Spi(:) ™| Brna(Seilz:))-
21 i>1
Since the ratio B’ (Spi(x:)) Bl A(Spi(zi)) ] can be made as small
as we wish while ) By, 4(Syi(xi)) remains bounded, we must have
izl
B'(K) = 0 which gives a contradiction.
The proof is finished.

Remark 3. As we have noted in the remark 3, we consider the case § <
o*. For LP spaces, theorem 4 is true for ¢(r) = By p(Sr), because Br,  is
a capacity. (Here Bymy(X) = inf{|| f Ib: f € LP* and gm*f > 1 on X}).
In our case, unfortunately we don’'t know whether By 4 is a capacity,
so the theorem is not sharp. The open question is to characterize the
N —function A for which B,, 4 is a capacity.

I am very grateful to Professor L. I. Hedberg for pointing out this
fact.

4 Capacities and measures in Orlicz-Sobolev
spaces

Lemma 4. Let Fi ,(X) = inf{||[¢[||4: ¢ € DY(R") and kx¢ > 1 on
X} and let Fra(X) = A(Fi4(X)). Then

1) ¥X C R™,Cp A(X) < Fra(X).

2) Fra(X) =04 Cra(X)=0.

Proof. 1) It is obvious that
Cra(X) < Fra(X), VX C R™.

This gives
Fra(X)=0= Cra(X)=0.
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2) Suppose that Cxa(X) = 0. Then theorem 3c) in [6] gives a func-
tion f € L4 T such that

k* f=o00o0on X.

On the other hand, there exists a sequence (¢;); C D*(R"} which
converges in modular and almost everywhere to f. By Fatou’s Lemma
we obtain

Lim & * ¢; = oo on X.
1—+00

Hence

VN,3¢ : kx¢py > N on X.

This implies that N "¢y is a test function for Fy 4(X).
Since ||| #n ||| 4 is bounded, there exists a constant C, such that

C/N 2 N7 Y| on ll4 = Fra(X).

Whence
Fra(X)=0.

The proof is finished.

Lemma 5. Let A be an N —function such that A and A* satisfy the Aq
condition and let m be a positive integer such that m < J(A,n). Let
T € W™™LA«(R") N M(R"™) and let K be a compact set such that

BiaA(K) =0 and T"(K) = 0.

Then
| Tl (K)=0.

Proof. Let £ > 0 and O be an open set such that
KcCOand |T| (O\K) <e.
There exists a function £ € D*(R™) such that
0<£<1,£=1o0n K and suppf{ C O.

Since Bra(K) = 0, lemma 4 gives Fra(K) = 0 with
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Fi(X) = inf{|||¢]il, : ¢ € DT(R") and gm *¢ > 1 on X} and
Fra(X) = A(Fi (X))

There exists a sequence (¥;); = (gm * ¢:)i in W™L4(R"™) such that
(¢:)i C D*(R™), and

Vi, i > 1on K,¢¢— 0in WTLA(R™) and ¢; — 0 on L4.
Let the function H € Cy ®°(R™) be defined by

H(t)=t if 0<t<1/2
H(t)=1 if t>1
H(t) <1 Vt.

From [10] we have
Vi, 3f; € L4 such that ¢; = I, x f; and ]| fi|ll4 < C | ¥illlma

where Iy, is the Riesz kernel defined by: I,,(z) =| X [" " and C is a
constant independent of i.

Hence ||| fi IHA — 0.

We put for each ¢, ®; = Ho(Im* | fi |)-

The same calculus that those given in [10] show that there exists a
constant C’ independent of i, such that ||| ®:||},.a < C'IH filll 4-

This implies

11 @4 [{fys — O

Morecver, on K we have
lsIm*fiSIm*lfiI-

Hence .
$®;<land ®;=10n K.

Now, we put ; = £&,.
Then
i lllma < C" 111 i Mma
where C" is a constant independent of .
This implies
wi — 0 in W™L4(R").
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Since T'"(K) = 0, we have

f oidT = / oidT + ] oidT =|| T || (K) + f :dT.
K O-K O-K

We remark that, for all i,p; € W™L4(R™) N L™, y; is continuous
with compact support. By the approximation of unity we obtain

< T, >= /tp,dT.

Hence
| _/wdT 1< M s a1 T Mg — O,

and
[ et <hTHOVK) <
O-K
Hence for sufficiently large i, we have
| Tl (K) < 2e.
This means
| Tl (&) =0.
The proof is finished.

Lemma 8. Let A be an N—function such that A and A* satisfy the Ao
condition and let m be a positive integer such that m < J(A,n). Let
T €W "L (R*)NM(R™) and let X be a || T || ~measurable set such
that

BiaA(X)=0and T (X)=0.

Then
I 71 (X}=0.

Proof. For each compact K C X, we have Bga(K) = 0and T (K) = 0.
From lemma 5 we deduce that

I T | (K)=0.

The inner measure of X is defined by | T | *(X) = sup{|| T || (K) :
K C X and K compact }. ‘
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Hence
| T I +(X)=0.

Since X is a || T' || —measurable set, we conclude that
IT N (X)=IT|+xX)=0.

The proof is finished.

Lemma 7. Let A be an N—function such that A and A* satisfy the Aq
condition and let m be a positive integer such that m < J(A,n). Let
T € W™™LA«(R®")NM1(R™) and K a compact set such that Bya(K) =
0.

Then | T || (K} =0.

Proof. There exists two || T | —measurable sets, E and F, such that
T~ is concentrated on E and T* on F. Hence

T~ (K\E) = 0.
Lemma 6 gives
| T || (K\E) = 0.
On the other hand
TT(K\F)=0.
Lemma 6 is valid if we take T in place of 7.
Hence
I Tl (K\F)=0.
This implies that
1Tl (X)=0.

The proof if finished.

Remark 4. From [6, Théoréme 2] we know that Cx4 and C} 4 are outer.
This implies the following: If X is a set, there exists a G§ set G, such
that X C G and

Cra(X) = Cra(G) and Ciy(X) = Cia(G).
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Theoremn 5. Let A be an N —function such that A and A* satisfy the

Ao condition and let m be a positive integer such that m < J(A,n). Let

T € WML 4.(R®) N M;(R") and let X be o set such that Bxa(X) = 0.
Then | T ]| (X) =0.

Proof. For all compact subset K of X, we have By4(K) = 0.

Lemma 7 implies | T || (K) = 0.

The inner measure of X is defined by | T | *(X) = sup{}| T || (K) :
K C X and K compact }.

The outer measure of X is defined by | 7 |* (X) = inf{|| T || (O) :
X C O and O open }.

Hence

| T |*=(X)=0.

On the other hand, the above remark gives a G5 set G, such that
X C G and Ba(G)=0.

Hence, if K is a compact set such that K C G, we have Bp4(K) = 0.

Lemma 7 implies that

| T |l (K)=0, YK compact such that K C G.

From the definition of inner measure, we have | T | *(G) = 0.
Since G is a Gj set, it is || T || —measurable. Hence

171l (G)=0.
The inclusion X C G gives
TP XTI =IT(G)=0.

This implies
I TP (X)=ITI«X)=0

and X is || 7' || —measurable.
Hence || T | (X) = 0 and the theorem is proved.
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