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On completeness of left-invariant Lorentz

metrics on solvable Lic groups.

Mohammed GUEDIRI*

Abst ract

We study geodesic completeness for left-invariant Lorentz met-
rics on solvable Lie groups.

1 Introduction

In [41,we have shown (among other things) that a generie left-invariant
Lorentz metric on Sl(2, R) is non-complete.

The nilpotent case has, as wefl, been stndied in [51.It was shown
that every left-invariant pseudo-riernannian metrie on a 2-step nilpotent
Lie group is complete. However, an example of a 3-step nilpotent Lie
group with a non-complete left-invariant Lorentz metric is given.

In this paper we study completeness for the left-invariant Lorentz
metricx on sorne solvable Lie groups. First, after 3. Milnor ¡6] and K.
Nomizu [71we consider a special class Y of solvable Lie groups. A
non commutative Lie group G belong to Y if its Lic algebra Q has the
property that for any elements z, y in Q the bracket product Lx, y] is a
linear combination of x and y.

For such a group we show that every left-invariant Lorentz metnc is
non-complete. This case is a generalization of the well-known example of
the Lorentz hall-plane (i.e the affine group A(1, It) with its left-invariant
Lorentz metric).
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Alio, we investigate the completeness of left-invariant Lorentz met-
rics on the unimodular 3-dimensional Lie group £(2) (resp. £(1, 1)) of
rigid motions of Eudidean (resp. Minkowski) 2-space. We prove that ah
left-invariant Lorentz metrics on E(2) are complete, while snch a metrie
on E(1, 1) is complete if and only if it realizes a Lorentzian submersxon
011 Minkowski 2-space.

2 Preliminaries

2.1 Geodesics of left-invariant pseudo-metrics.

Let O be a Lie group, and Q its Lie algebra. It is well known .that
the data of a left-invariant pseudo-riemannian metric on O is equivalent
to that of a non-degenerate quadratic form on Q. Fnrtbermore, every
C1-curve ti—. c(±)of O gives rise (np to a left transiation) to the~ curve

Lemma 2.1 The curves of Q assocíated tía geodesie are soiutions of tite
equation

x = ad,x (*)

where ad, stands for tite adjoint of ad~ relative to tite inner product on

g.

Praaf. It is an immediate consequence of the formula (see [2])

vx,Yeg SZxY= ~{[X,Y~—ad1t<Y—a4X}

where V is the Levi-Civita connesion associated to tbe metric.

u

Ihe general study of (*) may he very complicated. If O 18 semi-
simple, it takes the more remarkable form

#(i) =

where 4, stands for the endomorphism on Q which is associated to the
metrie via the Killing form (see [4] for sorne consequences).
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2.2 General fact

Now, the groups we study here satisfy the following property: Titere
exista a codimension arte commutative ideal (so that tite Le algebra is
2-step salvable).

Denote by E this ideal. Consider a left-invariant Lorentz metric on
O, and lel its associate inner product on Q be <., ->.

If Q, )j~ is nondegenerate, let ecj ~ E such that

<eo,E>rtO and Q=Reo@E.

Now, it is easy to check that

ad~eo=O and VyEE ad~,y EF.

Thus equation (*) takes the form

xij = — -i—’--r — _~eo,eo¡ \eo,eo¡

1 = xo(a4,x)

where .9 = !(ad~ + ad~) and L~¿>.¿(t) = xoeo + x, x E E.

3 A remarkable class of solvable Lie groups

In this section, Y denotes a special class of solvable Liegroups. A non
comniutative Lie group O belongs to Y if its Lic algebra Q has the
property that for any elements x, y in Q the bracket product Ix, y] is a
linear combination of x and y.

It is shown in 161 that this is eqnivalent to tbe existence of a codi-
mension one conmniutative ideal E and an element eo ~ E such that

VxEE [eo,xl=x.

The simplest cxainple of such groups is given by

(a O ... b1 3 where a >0, bi,--.,b~iER

The main resnlt of this section is the following.
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Thearem 3.1 ff0 belongs Y, titen every left-invari ant Lorentz metric
on O is geodesically incomplete.

Proof. We sball continue to denote by <.,.> tIme Lorentzian in-
ner product given by the metric, and to further simplify notations
<L4>.¿(t), LiI>~¿(t)> wiIl be denoted by (4k>.
• First, WC assume that <., .>~g is nondegenerate. Then, with the same
notations as lxi 2.2, we have .9 = ‘E• Hence, equation (*) is now{ z-—-—

Next, <x, x,> 4 <4 ¿> — x~<eo, Co>, thus

2 _ ______= ~0 (eo, Co>

Therefore, for a nuil geodesic (that is <4½= O) we have xo —+ ~ as
t —* b with b -c oc’, and the metrie is non-complete.
• We assnme 110W that <•, •>~F is degenerate, which means, 111 geometrie
terms that the subspace E is tangent to tIme nulí cone. Thus, E contajus
a nuil vector b and a (n — 2)-dimensional subspace E1 such that

E = libe E1 orthogonal sum, <b,b> =<b, Eí> = O

and <., .>~g is positive-definite.
Qn the other hand, since the orthogonal complement Ef of E1 is

Lorentzian, we can find a vector e such that

<c,c>=0 and <b,c>=—1.

Therefore, as in 2.2, we may replace c by the vector eo, aud SO WC

obtain the fohlowing orthogonal decomposition

= Sparz {b, eol e E1.

An easy computation shows that, for alí xi E E1, we have

xi, ad~0e0 = eo
adZ,xi = <xi, xí>b, ad~e0 = —b
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Ihe other terms being zero. So that, equations (*) are now

Izo =ñ = <4½1. = ~o~i

Where L~4>,¿(t) = xoeo + yb + x1, and xl belongs to E1.
Consequently, ah geodesic (unless xo O) are incomplete.

u
Remark 3.1 According to [7], if a Lie gronp O is of type Y, then it
adinits left-invariant Lorentz metrics witb positive constant sectional
curvatures.

Clearly, such a group is not unimodular, and therefore has no com-
pact quotients. Qn the other hand, Calabi and Marcus have shoWn (cf.
[1]>that any complete Lorentz manifold of positive constant curvature 18
not comnpact. So it is reasonable to conjecture that tbere is no compact,
complete or not, Lorentz manifoid of positive constant curvature.

4 Unimodular 3-dimensinal Lie groups

It is well knoWn (see for instance [3d) that simply-connected unimodular
Lie groups of dimensión 3 are classified as follows.

1) So(3V3
3

2) .91(2, It).

3) E(2), It) (the universal cavering of the group E(2) of rigid mation
of Encidian 2-space).

4) E(1,1) (the universal covering of thegroup E(1, 1) of rigid motions
of MinkoWski 2-space).

5) H
3 (the Heisenberg group).

6) It
3.

In order to flnish With dimensión 3, WC study here the cases 3) and
4). In these cases the Lie algebra has a codimension one connnutative
ideal. Qur study sil reies on the properties of sorne ad~

012(eo ~ E). Of
conrse noW ód~ ~ Id.
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4.1 The case of E(2)

We look here E(2) as the semi-direct product 0(2) ~ It2 is the group
of orthogonal transforrnations of Enclidean 2-space.

Qur result in this subsection is the folloWing.

Theorem 4.1 Alt left-invariant Loreniz metrica on E(2> are geodesi-
cally complete.

Praoft Let E = [8(2),8(2)] Where 8(2) 18 the Lie algebra of E(2). Wc
denote by <., -> the inner product oyer 8(2) associated to the rnetric on
E(2).

Case 1. Tite subspace E ti non-degenerate, that za <~, ~>¡E is non-
degenerate.

As in 2.2, ~e may choose eo ~ E such that

<eo, E> = O and 8(2) Reo ffi E.

In terms of the infinitesimal representation of 0(2) in tIme vector
space 119 E we can find a basis {e

1, CQ} of E for Which both <., •>¡~
and the usual positive-definite inner product on nY are diagonal. TImus,
a4, is antisyminetric With respect to the basis. That is {eo, e1,C2} ls
an orthogonal basis of 8(2) satisfying

Leo, e~] = —e~, [ea, e2] = e~ and [el, C21 = 0. (1)

We put the inner product <~,.) under tIme form

<Co, eo>wg + Aíw? + A2w~

Wherc wj is the dual form of e~, and A1A2 ~ O. TImen, We get easily

ad~= ( ~
Consequently, equation (*) are{ jo = xia:2

ji = —~xox2
x2 —

>201
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where L~J»&(t) = xoeo + x161 + X262.
When A1 = A2, we shoW by easy trigonometric computation that

the rnetric is complete. Otherwise (i.e when A1 ~ A2) WC have the two
flrst-integrals

<eo,eo>x~+Aíx?+A2x~ = e
22 22 mAixí+A2x2

So, ro, x1 and x2 are bounded, and hence tIme metric is complete.
Case 2. Suppose nom that <~~OjE ti degenerate. Titen inc can find a
vector b such that

VxEE <b,b>=<b,x>=0.

Let {eo, e1, 621 be a basis of type (1). Ihen, by an appropriate
rotation of axis e~, WImlch is in fact and antomorpImisrn of 8(2), we can
take b = e~. This hnplies that ~2 is space-like (Le <e2, e2> > O) srnce a
mill vector is never orthoganal to a time-hice one. Then, by considering
the automorphis

a o )
1

~<e2,e2>

WC can suppose that <62, e2> = 1.
Qn the other hand, We have necessarilly (eo, ci> # O &mce the metric

i~ non-degenerate. Hence, up to an automorpImism of type

(S ~O’
WC can assume that <eo, co> = <Co, 6~> = O.

NOW, tIme metric only depends 011 the value <co, eí>.In fact, by replac-
ing eo by —eo/<eo, e1>, we may assume that {eo,e1e2} satisfies

<60, Co> = <60, 62> = <61,61> = <eí, 62> = 0, and <e2, 62> = —<60,61> = 1,

(it does not change completeness properties).
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An easy calculation sImows that

ad0 co
ad1e0
ad~2e0

— 62,
— ad~e1 = O,
— —e1,

Mohammed Cuediri

ad,,e1 = O
ad1e2 = —e1
ad~e1 = ad~e2 = O

ad 6~ 2 =

Therefore, equations (*) are given by

1 jo = x~jx~
= —(xo+xí)x2
= 2

Where x0, x1, x~ are the componets of
Obviously, WC get

x~—2xoxi=e, xg+x~m

Hence, xo,x~, andx2 are bounded
the metric is complete.

along every baunded interval, and

u

4.2 The case of E(1, 1)

As before, E(1, 1) Will be considered as the send-direct product 0(1,1) oc
It

2, Where 0(1, 1) is noW the group of orthogonal transformations of
MinkoWski 2-space. However, the present case is more delicate because
WC are going to compare tWo indefinite inner products on It2: the first
is the inner product 0 ->is associated to tIme metric, and tIme second is
tIme usual Lorentz inner product on It2 given by

(x,y) = xjy1 — x~y~ Where x = (x
1,x2),y =

Afro, we wilI consider the snbmersion ir : E(1, 1) --. It
2 given by tIme

projection upon the second factor.
We shall now prove the following:

Theorem 4.2 A left-invariant Lorentz metrie on E(1, 1) ti complete if
and’only if it realizes a Lorentz submersionjrom E(1, 1) into (It2, (.,(>).
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Proof. Let E = [8(1,1), ¿(1,1)1, Where ¿(1,1) 18 the Lie algebra of
E(1, 1).
• Suppose that <., ~ is non-degenerate.

TImen, according to 2.2, WC may choase eo ~ E such that

8(1,1) SIteo SE and <ea, E> = O.

Therefore, <-, }E is determined by a (., .)-self-adjoint isornorphism 4’
such that

Vx,y E E, <x,y> = (4’(x),y)

Case 1. 4, ti diagonizable over 11
Since it is (., .)-self-adjoint, 4, is diagonizable lii an (-, -)-orthonormal

basis {eí, C2}, let A1, A2 its elgenvaines. E this ‘basis, ad~0 is now sym-
metric, tImat 18

[60,61] C2, Leo, C21 = el and Leí, C2] = 0. (2)

An easy computation shoWs that

ad~0 = ¡

The equation (*) are 110W

(3)

Whete xo, xi, x2 are respectively components of LiI>~¿(t) with respect
to eo,el,62.

Qn the otImer hand, WC have the tWo first-integrals

<Co, eo>x~ + Aix? — A2x~ = e
A~x?—A~x~ = m.

If A1 = A2, it is straightforward to verify that the metric is complete.
Suppose noto A1 ~ A2. Then, according to the aboye expressions, tIme
flrst equation of (3) is given by

Xo I(Zi6~)2ax~+b) (cx~ +d)
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Where

<60, eo>Aí __ <eo, eo>A2
A1(A1—A2)

the values of b and d have little importance. NOW, obviously

/ <60,60> \2
ac —1 i >0.

A1—A2 /

TImus, there exist solntions for WImich xo —* eo when t —. b, where
b <c oc and t is an affine parameter. Consequently, the metric is non--
complete.
Case 2. 4’ is non-diagonizable.

We choose a basis {X1, X2} for Which

4=(~ :) Wherea#0.

Lemma 4.3 We ¡¿ave (Xi,X1) = O aud (Xí,X2) # O.
Proof. The first equality is the consequence of (4,(X1), X2) =

(Xi, 4,(X2)), as for as te the inequality, it folloWs from the fact that (~,)
is nondegenerate or, equivalently, from the fact that in a Lorentzian
2-space if x is a mill vector then x’ = itt.

u
Replaci~g X2 by X2 + tX1, where t = — WC may assume that

(X2, X2) = O. TImen, by pntting

and X1X2
Ci = 121(Xi,X2)I ~ 121(xí,x2)I

WC may assume that {el, C2} 18 an (., )-orthonorrnal basis. Thus, a4, is
symmetric Witb respect to this basis, and

Hence

a a a
<el, el> = — + A, <t2, 62> = — — A

2 2 ‘ <C1,62> =
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We easily obtain

= a — (a+i) and ad%2 (ff—í)e1+
1e~

Thus, eqnations (*) are given by

2<eo,eo> (4){ :::z~x0xí~+(~í>xox2(~ + ) x~x~ + ~xox2

Furthermore, WC have tIme first-integrals

<eo,eo>x~±~ (x?—4) = m
<eo,eo>x~+ (~+A)x?+ (~—A)x~—axlx2 6.

Substituting these tWo formulas into the first equation of (4), WC SCC

that

jo 7 + e—2m(Coleo>.
So that, at the level e = ni O, such a geodesic 18 never complete.

Case 3. 4’ admits complex eigenvalues.
Let A, A be the elgenvalues of 4,, and set A = a + i/3. If y, i~ are the

eigenvectors associates to A, A, ~e get

(v,v)=(V,i3) aud (v,13)=O.

Taking y = e~ + i62, WC get

(ei,ei) + (62,62) = O and (61,62) = O.

In other words, we may assume (up to an automorphism of 8(1,1)) that
{ e~, e~} is an (., .)-orthonormal basis With (62, 62) = —1.

With respect to this basis, We have

sí
Qn the other hand, ad

60 is symmetric and WC get easily

<el,el> = ú, <62,62> = —a and <61,62> = ¡3.
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Taking
2a/3

a2 + ¡32 and

WC obtain

ad
0e1 = ae~ + be2 and

NOW, equations (*) are given by

{ = x~(ax~ + bx2)
X2 = xo(bxi — ax2)

Wc have tIme two first-integra]s

<eo, eo>xg + a (x? — x~) + 2¡3x1x2
b<eo, eo>xg + 213x1x2

Suppose that a ~ O, and choose the level e

2 2 <eo,eo> 2x0.¡3

ad0e2 = be1 — G62

(5)

= e
= m

= ni = O, WC obtain

Substituting this formula into the first equation of (5), WC get
2

xo +xo.
Ihus, zo tends te oc When t —* b, where b -c oc. Hence, the metric

is non-complete. The case Where a = O is elementary.
• Assume noto that <., •>¡~ ~ degenerate. Ihen, we can find a vector b
such that

VxEE <b,b>=<b,x>rO.

Let {ej, 4> be a basis of E such that

(4,4> = (44) = O and (el,4) = —i.

Then
Leo, eS] = eS,Leo, 41 = —4 and [el, 4] = O.

‘There are tWo cases Which WC may consider:

— a2a2 + ¡32
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Case 1. b is coimear tía e~ ore2.
Assume for example b .= 4, then <4~ 4> > O (since ej

1 coníd not
contain time-hice vectors).

By an appropriate automorphism of 8(1, 1)) (which is an isometry
for the metric) We may assurne that <4~ 4> = 1.

The flrst equation of (*) is then given by

2
= x

0.

TImus, tIme metric is incomplete.
Case 2. b is not colinear to 4, neititer tía 4.

By an appropriate hyperbolic rotation (Which 18 an automorpImism
of 8(1,1)), WC may assume that b = ej. Next, With similar approach as
for the case of E(2) the first equation of (*) gives

= 2

so that, the metric is incomplete, and the concinsion follows.

u
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