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Abstract

In the paper! we describe the geometric properties of the space
of continuous functions with values in the space of operators acting
on a Hilbert space. In particular we show that

| extB(L{H)) if dimH < oo and cardK < o0
dent B(£(H)) = { ¢ if dimH = oo or card K = oo

and z-ext C(K, L(H)) = ext C(K, L(H)).

In this paper we consider the geometric properties of the space of
continuous functions from a compact Hausdorff space K with values in
the space of operators acting on a Hilbert space H. Namely, we deal
with the unit ball. We consider such points of the unit ball as strongly
extreme, and denting points.

For a Banach space E we denote by B(E) and S(E) respectively the
unit ball and the unit sphere of E.

Recall that a point q of a convex set Q@ C FE is strongly extreme
(q € s-ext Q) if || ”—“?ﬂ —q ||— 0 for zp,yn € Q implies | z, —q || = 0
(ot equivalently || zp, — yn |- 0, since =, — q = Zezin 4 | ﬂ;i!nz - q));
ezposed (q € exp Q) if there exists £ € Q* such that £(q) = sup£(Q) >
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£(z) for all z € Q\ {q}; strongly ezposed (q € s-expQ) if it is exposed
and if £(z,) — £(q) for z, € Q then || z, — q ||— 0; and denting
(q € dent Q) if q ¢ conv(Q\ {q+ eB(E)}) for all ¢ > 0. Point out
that s-expQ C dent Q C s-ext Q C ext @ and s-expQ C expQ C ext Q.
Moreover, if Q is compact then dent Q@ = s-ext Q@ = ext Q and s-exp Q =
expQ. Note that if q € extQ is a point of continuity for Q{z, —
q weakly , z, € Q, implies z, — q in norm) then q € dent Q([10]).

For an operator T : E — E we denote by
IsDom T = {z € £ :|| Tz ||=|] = ||} its isometric domain.

Let H be a (real or complex) Hilbert space equipped with the inner
product < -, - >. Obviously ext B(H) == s-exp B(H) =smooth B(H) =
S(H). By L(H) we denote the space of bounded operators from H into
H. The space L(H) is equipped with the standard operator norm || T ||=
sup{|| T’z ||: z € B(H)}. Note that IsDom T is a closed linear subspace
for all T € BL(H)). Moreover, T({z}") C (T'z)L for z € IsDom T and

T ((IsDomT)*) LT(IsDomT), T € B(L(H)). An operator T € L(H)
is called isometry if IsDom T = H and T € L(H) is a coisomelry if its
adjoint T* € L({H) is an isometry.

For y, z € H we denote by y @ z the one dimensional operator de-
fined by (y®=z)(z) =y < z,z >,z € H.

Let C'(K, E)} denote the Banach space for all continuous functions
from a compact Hausdorff space K into a Banach space E equipped with
the supremum norm || f ||= :u}]} I %) Il &

€

It is easy to see that for aconvex set Q C E if f(K) C ext @ then f €
ext {f € C(K,E) : f(K)C Q}. There is a natural question for which
classes of convex sets @ the inverse implication is a characterization
of extreme points. Negative example can be easy given for @ C Rr®
with non-closed ext Q. More complicated negative example of closed
symmetric subset Q of RB* was presented in [1]. In fact it is presented
an example of f € ext B(C(K, E)) with f(k} ¢ ext B(E) for all k € K.

Using Michael's selection theorem ([11]}) one can prove that
ext {f €C(K,E) : f(K)cQ} = {f€C(K,E) : f(K)CextQ} for
any stable convex subset @ of E. Recall that a convex set Q C F is said
to be stable if the barycenter map @ x @ 2 (z,y) — %1 € @ in open.
Point out that in finite dimensional space a set is stable (see [12]) if and
only if all m-skeletons (m = 0,1,---,n) of @ are closed (a m-skeleton
od Q is a set of all x € @ such that the face generated by z in Q@ has
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dimension less than or equal to m).
For the space of operators on Hilbert space we have

ext B(L(H)) = {T € L(H) : T is isometry or coisometry } ([81,[4])

|} extB(L(H)) if H is separable
exp B(L(H)) = { 9 ‘ if H is not separable

ext B(C(H)) if dimH < 00

s ~ exp B(L(H)) = dent B(L(H)) = { ] if dmH =00 '’

s —ext B(L(H)) = ext B(L(H)) (151, D).
smoothB(L(H)) = {T € S(X(H}) : dim IsDom T =1
and dist(7, K(H)) < 1} ([9]).

For the space of continuous functions with values in £{H) we have
([6]) the following results ' '

ext B(C(K,L(H)) )= {f € C(K,L(H)) : f(K) CextB(L(H)}}},
cxp B(C, ) ) = { PO L) LT

_ [ ext B(L(H)) if H is separable

rh

§ 7 eXpBAAAY 1 ? if H is not separable ’
ext B(C(H if dimH < oo
s_e"pB(ﬁ(H))z{w (i) if dimH = o0

The aim of this paper is to continue investigation giving the char-
acterizations of strongly extreme and denting points of the unit ball
of C(K,L(H)). Namely we show that strongly extreme points of
B(C(K, £{H)) ) coincides and

dent B(L(H)) = { ;xtB(C(H)) if dim H < oo and card K < oo .

if otherwise

Theorem 1 For any Hilbert space H we have

s —ext B(C(K, L(H)) = ext B(C(K, L(H)))
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Proof. Let f € ext B(C(K,L(H))}). Fix ¢ > 0. We need to show that
there exists 6 > 0 such that || %h" - f i< 6,z,y € B(H) implies
It gn — hn i< e
From the uniform convexity of H ([2]) there exists §; such that
I 5% > 1 - & implies | z — y ||< e.
Put Ky = {k € K : f(k) is an isometry } and Ko = {ke K : f(k)
is an coisometry }.
Suppose that k € K. For z € S(H) we have | & k)zthn (k)2 1>
| fa(k)a || - || 28250a®z _ g g 1> 1—4,.
Thus || gn(k)z —hn(k)z [|< e. Hence || gn(k) —hp(k) |< eforall k € K.
Now suppose that k € Ko. Obviously || f* H=|l f || and F*(k) is an
isometry if and only if f(k) is a coisometry. Now we consider f* instead
of f and we get || gp(k) — b2 (k) =] gn(k) — hn(k) |< e forall k € Ka.
Therefore || gn — by [|< .0
Proposition 1 Ifdim H = 00 or card K = oo then

dent B(C{K, L(H))) = 0.

Proof. At first consider the case dim H = oc.

Fix f € ext B(C(K,L(H))). Obviously dim IsDom f(k) = oo for all

k € K. Fix ko € K. Let {e;};2, be orthonormal system in IsDom

flko). Let P; be an orthogonal projection on {ej}J'-. Put f; = P;f.

Obviously | J; — £ 121l f;(ko) — £(ko) =]l (F(k)es) @e; = 1. We

have | 7= L 30, Py 1572, ei®ei = L amd | 7~ 25 1 <)
— 2 X1 Pill= Lies ¢ dent B(C(K, £(H))).

Now consider the case when card K = 00. Choose a sequence {kn} of
distinct points of K such that lim, k, = k,. We choose the sequence of
continuous functions v, : K — [0, 1] such that y,(ks) = 1 and SUpp yn, N
SUPP 1n, = Bif ny # na. Put f; = (1—v,)f, € B(C(K, L(H))). It is easy
to see that [ /5 —f 1> fi(ks) — f(k;) |= 1. Webave || f~ 2 %2 £ i<
I 2 5% 1hi = Lie 5 ¢ dent B(C(K, L(H))).

o

As a consequence of Proposition 1 we get the following characteriza-
tion of denting points.

Theorem 2 For any Hilbert space H we have

dent B(C (K, L(H))) = { ;xtB(C(K,E(H))) :ﬁl;nng: 2::::;11;(1(=<moo
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Proof. If dimH < oo and card K < oo then C(K,L(H)) is finite
dimensional, so B(C (K, L(H))) is compact. Hence exposed and strongly

exposed are coincide. In view of Theorem 2 and 3 in [6] we get s-
exp B(C (K, L(H))) = ext B(C(K, L(H))), which finish the proof.

Question.
In [3] it is shown that the unit ball of L{H) is stable if dim H < oo.
Is B(L(H))( and B(X(H))) stable for infinite dimensional H?
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