REVISTA MATEMÁTICA de la Universidad Complutense de Madrid

Volumen 9, número 2: 1996

http://dx.doi.org/10.5209/rev_REMA.1996.v9.n2.17570

Denting point in the space of operator-valued continuous maps

Ryszard GRZĄŚLEWICZ and Samir B. HADID

Abstract

In the paper¹ we describe the geometric properties of the space of continuous functions with values in the space of operators acting on a Hilbert space. In particular we show that

$$\det B(\mathcal{L}(H)) = \left\{ \begin{array}{ll} \operatorname{ext} B(\mathcal{L}(H)) & \text{if } \dim H < \infty \text{ and } \operatorname{card} K < \infty \\ \emptyset & \text{if } \dim H = \infty \text{ or } \operatorname{card} K = \infty \end{array} \right.$$
 and $x\text{-ext}\, C(K,\mathcal{L}(H)) = \operatorname{ext} C(K,\mathcal{L}(H)).$

In this paper we consider the geometric properties of the space of continuous functions from a compact Hausdorff space K with values in the space of operators acting on a Hilbert space H. Namely, we deal with the unit ball. We consider such points of the unit ball as strongly extreme, and denting points.

For a Banach space E we denote by $\mathbf{B}(E)$ and $\mathbf{S}(E)$ respectively the unit ball and the unit sphere of E.

Recall that a point q of a convex set $Q \subset E$ is strongly extreme $(\mathbf{q} \in s\text{-ext }Q)$ if $\parallel \frac{x_n+y_n}{2} - \mathbf{q} \parallel \to 0$ for $x_n, y_n \in Q$ implies $\parallel x_n - \mathbf{q} \parallel \to 0$ (or equivalently $\parallel x_n - y_n \parallel \to 0$, since $x_n - \mathbf{q} = \frac{x_n-y_n}{2} + \left(\frac{x_n+y_n}{2} - \mathbf{q}\right)$); exposed $(\mathbf{q} \in \exp Q)$ if there exists $\xi \in Q^*$ such that $\xi(q) = \sup \xi(Q) >$

¹⁹⁹⁰ Mathematics Subject Classification: Primary 47D20; Secondary 46B20 Sevicio publicaciones Univ. Complutense. Madrid, 1996.

¹Written while the author was a research fellow of the Alexander von Humboldt-Stiftung at Mathematisches Institut der Eberhard Karls-Universität in Tübingen.

 $\xi(x)$ for all $x \in Q \setminus \{q\}$; strongly exposed $(q \in s\text{-exp }Q)$ if it is exposed and if $\xi(x_n) \to \xi(q)$ for $x_n \in Q$ then $\|x_n - q\| \to 0$; and denting $(q \in \text{dent }Q)$ if $q \notin \overline{\text{conv}}(Q \setminus \{q + \varepsilon B(E)\})$ for all $\varepsilon > 0$. Point out that $s\text{-exp }Q \subset \text{dent }Q \subset s\text{-ext }Q \subset \text{ext }Q$ and $s\text{-exp }Q \subset \text{ext }Q \subset \text{ext }Q$. Moreover, if Q is compact then dent Q = s-ext Q = ext Q and s-exp Q = exp Q. Note that if $q \in \text{ext }Q$ is a point of continuity for $Q(x_n \to q)$ weakly, $x_n \in Q$, implies $x_n \to q$ in norm) then $q \in \text{dent }Q([10])$.

For an operator $T: E \to E$ we denote by IsDom $T = \{x \in E : || Tx || = || x || \}$ its isometric domain.

Let H be a (real or complex) Hilbert space equipped with the inner product $\langle \cdot, \cdot \rangle$. Obviously ext $\mathbf{B}(H) = s$ -exp $\mathbf{B}(H) = \mathrm{smooth} \ \mathbf{B}(H) = \mathbf{S}(H)$. By $\mathcal{L}(H)$ we denote the space of bounded operators from H into H. The space $\mathcal{L}(H)$ is equipped with the standard operator norm $||T|| = \sup\{||Tx||: x \in \mathbf{B}(H)\}$. Note that $\mathbf{IsDom}\ T$ is a closed linear subspace for all $T \in \mathbf{B}\mathcal{L}(H)$). Moreover, $T(\{x\}^{\perp}) \subset (Tx)^{\perp}$ for $x \in \mathbf{IsDom}\ T$ and $T\left((\mathbf{IsDom}\ T)^{\perp}\right) \perp T(\mathbf{IsDom}\ T)$, $T \in \mathbf{B}(\mathcal{L}(H))$. An operator $T \in \mathcal{L}(H)$ is called isometry if $\mathbf{IsDom}\ T = H$ and $T \in \mathcal{L}(H)$ is a coisometry if its adjoint $T^* \in \mathcal{L}(H)$ is an isometry.

For $y, z \in H$ we denote by $y \otimes z$ the one dimensional operator defined by $(y \otimes z)(x) = y < x, z >, x \in H$.

Let C(K, E) denote the Banach space for all continuous functions from a compact Hausdorff space K into a Banach space E equipped with the supremum norm $||f|| = \sup_{k \in K} ||f(k)||_E$.

It is easy to see that for a convex set $Q \subset E$ if $f(K) \subset \operatorname{ext} Q$ then $f \in \operatorname{ext} \{ f \in C(K, E) : f(K) \subset Q \}$. There is a natural question for which classes of convex sets Q the inverse implication is a characterization of extreme points. Negative example can be easy given for $Q \subset \mathbb{R}^3$ with non-closed ext Q. More complicated negative example of closed symmetric subset Q of \mathbb{R}^4 was presented in [1]. In fact it is presented an example of $f \in \operatorname{ext} \mathbf{B}(C(K, E))$ with $f(k) \notin \operatorname{ext} \mathbf{B}(E)$ for all $k \in K$.

Using Michael's selection theorem ([11]) one can prove that $\operatorname{ext} \{ f \in C(K, E) : f(K) \subset Q \} = \{ f \in C(K, E) : f(K) \subset \operatorname{ext} Q \}$ for any stable convex subset Q of E. Recall that a convex set $Q \subset E$ is said to be *stable* if the barycenter map $Q \times Q \ni (x, y) \to \frac{x+y}{2} \in Q$ in open. Point out that in finite dimensional space a set is stable (see [12]) if and only if all m-skeletons $(m = 0, 1, \dots, n)$ of Q are closed (a m-skeleton od Q is a set of all $x \in Q$ such that the face generated by x in Q has

dimension less than or equal to m).

For the space of operators on Hilbert space we have

$$\operatorname{ext} \mathbf{B}(\mathcal{L}(H)) = \{ T \in \mathcal{L}(H) : T \text{ is isometry or coisometry } \} \qquad ([8], [4])$$

$$\exp \mathbf{B}(\mathcal{L}(H)) = \left\{ egin{array}{ll} \operatorname{ext} \mathbf{B}(\mathcal{L}(H)) & ext{if H is separable} \\ \emptyset & ext{if H is not separable} \end{array}
ight. ,$$

$$s - \exp \mathbf{B}(\mathcal{L}(H)) = \det \mathbf{B}(\mathcal{L}(H)) = \left\{ egin{array}{ll} \det \mathbf{B}(\mathcal{L}(H)) & ext{if } \dim H < \infty \\ \emptyset & ext{if } \dim H = \infty \end{array}
ight.,$$

$$s - \operatorname{ext} \mathbf{B}(\mathcal{L}(H)) = \operatorname{ext} \mathbf{B}(\mathcal{L}(H))$$
 ([5], [7]).

$$smoothB(\mathcal{L}(H)) = \{T \in S(\mathcal{K}(H)) : dim \text{ IsDom } T = 1\}$$

and $dist(T, \mathcal{K}(H)) < 1$ ([9]).

For the space of continuous functions with values in $\mathcal{L}(H)$ we have ([6]) the following results

$$\operatorname{ext} \mathbf{B}(C(K, \mathcal{L}(H))) = \{ f \in C(K, \mathcal{L}(H)) : f(K) \subset \operatorname{ext} \mathbf{B}(\mathcal{L}(H)) \},$$

$$\operatorname{exp} \mathbf{B}(C(K, \mathcal{L}(H))) = \begin{cases} \operatorname{ext} \mathbf{B}(C(K, \mathcal{L}(H))) & \text{if H is separable} \\ \emptyset & \text{if is not separable} \end{cases},$$

$$s - \operatorname{exp} \mathbf{B}(\mathcal{L}(H)) = \begin{cases} \operatorname{ext} \mathbf{B}(\mathcal{L}(H)) & \text{if H is separable} \\ \emptyset & \text{if H is not separable} \end{cases},$$

$$s - \operatorname{exp} \mathbf{B}(\mathcal{L}(H)) = \begin{cases} \operatorname{ext} \mathbf{B}(\mathcal{L}(H)) & \text{if $\dim H < \infty$} \\ \emptyset & \text{if $\dim H = \infty$} \end{cases}.$$

The aim of this paper is to continue investigation giving the characterizations of strongly extreme and denting points of the unit ball of $C(K, \mathcal{L}(H))$. Namely we show that strongly extreme points of $\mathbf{B}(C(K, \mathcal{L}(H)))$ coincides and

$$\det \mathbf{B}(\mathcal{L}(H)) = \left\{ egin{array}{ll} \operatorname{ext} \mathbf{B}(\mathcal{L}(H)) & ext{if } \dim H < \infty \ \operatorname{and } \operatorname{card} K < \infty \ \emptyset & ext{if } otherwise \end{array}
ight.$$

Theorem 1 For any Hilbert space H we have

$$s - \operatorname{ext} \mathbf{B}(C(K, \mathcal{L}(H))) = \operatorname{ext} \mathbf{B}(C(K, \mathcal{L}(H)))$$

Proof. Let $f \in \text{ext } \mathbf{B}(C(K,\mathcal{L}(H)))$. Fix $\varepsilon > 0$. We need to show that there exists $\delta > 0$ such that $\|\frac{g_n + h_n}{2} - f\| < \delta, x, y \in \mathbf{B}(H)$ implies $\|g_n - h_n\| < \varepsilon$.

From the uniform convexity of H ([2]) there exists δ_{ε} such that $\|\frac{x+y}{2}\| > 1 - \delta_{\varepsilon}$ implies $\|x-y\| < \varepsilon$.

Put $K_1 = \{k \in K : f(k) \text{ is an isometry }\}$ and $K_2 = \{k \in K : f(k) \text{ is an coisometry }\}$.

Suppose that $k \in K_1$. For $x \in S(H)$ we have $\|\frac{g_n(k)x + h_n(k)x}{2}\| \ge \|f_n(k)x\| - \|\frac{g_n(k)x + h_n(k)x}{2} - f_n(k)x\| \ge 1 - \delta_{\varepsilon}$.

Thus $||g_n(k)x - h_n(k)x|| \le \varepsilon$. Hence $||g_n(k) - h_n(k)|| \le \varepsilon$ for all $k \in K_1$. Now suppose that $k \in K_2$. Obviously $||f^*|| = ||f||$ and $f^*(k)$ is an isometry if and only if f(k) is a coisometry. Now we consider f^* instead of f and we get $||g_n^*(k) - h_n^*(k)|| = ||g_n(k) - h_n(k)|| \le \varepsilon$ for all $k \in K_2$.

Therefore $||g_n - h_n|| \le \varepsilon . \square$

Proposition 1 If dim $H = \infty$ or card $K = \infty$ then

$$\det \mathbf{B}(C(K,\mathcal{L}(H))) = \emptyset.$$

Proof. At first consider the case dim $H = \infty$.

Fix $f \in \text{ext } \mathbf{B}(C(K, \mathcal{L}(H)))$. Obviously dim IsDom $f(k) = \infty$ for all $k \in K$. Fix $k_o \in K$. Let $\{e_i\}_{i=1}^{\infty}$ be orthonormal system in IsDom $f(k_0)$. Let P_j be an orthogonal projection on $\{e_j\}^{\perp}$. Put $f_j = P_j f$. Obviously $||f_j - f|| \ge ||f_j(k_0) - f(k_0)|| = ||(f(k_o)e_j) \otimes e_j|| = 1$. We have $||I - \frac{1}{n} \sum_{i=1}^{n} P_i|| = ||\frac{1}{n} \sum_{i=1}^{n} e_i \otimes e_i|| = \frac{1}{n}$ and $||f - \frac{1}{n} \sum_{i=1}^{n} f_i|| \le ||I - \frac{1}{n} \sum_{i=1}^{n} P_i|| = \frac{1}{n}$, i.e. $f \notin \text{dent } \mathbf{B}(C(K, \mathcal{L}(H)))$.

Now consider the case when card $K=\infty$. Choose a sequence $\{k_n\}$ of distinct points of K such that $\lim_n k_n = k_o$. We choose the sequence of continuous functions $\gamma_n: K \to [0,1]$ such that $\gamma_n(k_n) = 1$ and $\operatorname{supp} \gamma_{n_1} \cap \operatorname{supp} \gamma_{n_2} = \emptyset$ if $n_1 \neq n_2$. Put $f_j = (1-\gamma_j)f_o \in \mathbf{B}(C(K,\mathcal{L}(H)))$. It is easy to see that $\|f_j - f\| \ge f_j(k_j) - f(k_j)\| = 1$. We have $\|f - \frac{1}{n}\sum_{i=1}^n f_i\| \le \|\frac{1}{n}\sum_{i=1}^n h_i\| = \frac{1}{n}$, i.e. $f \notin \operatorname{dent} \mathbf{B}(C(K,\mathcal{L}(H)))$.

As a consequence of Proposition 1 we get the following characterization of denting points.

Theorem 2 For any Hilbert space H we have

$$\operatorname{dent} \mathbf{B}(C(K,\mathcal{L}(H))) = \left\{ \begin{array}{ll} \operatorname{ext} \mathbf{B}(C(K,\mathcal{L}(H))) & \operatorname{ifdim} H < \infty \operatorname{and} \operatorname{card} K < \infty \\ \emptyset & \operatorname{ifdim} H = \infty \operatorname{orcard} K = \infty \end{array} \right.$$

Proof. If dim $H < \infty$ and card $K < \infty$ then $C(K, \mathcal{L}(H))$ is finite dimensional, so $\mathbf{B}(C(K, \mathcal{L}(H)))$ is compact. Hence exposed and strongly exposed are coincide. In view of Theorem 2 and 3 in [6] we get s-exp $\mathbf{B}(C(K, \mathcal{L}(H))) = \mathrm{ext} \mathbf{B}(C(K, \mathcal{L}(H)))$, which finish the proof.

Question.

In [3] it is shown that the unit ball of $\mathcal{L}(H)$ is stable if dim $H < \infty$. Is $\mathbf{B}(\mathcal{L}(H))$ (and $\mathbf{B}(\mathcal{K}(H))$) stable for infinite dimensional H?

References

- [1] R. Blumenthal, J. Lindenstrauss and R. Phelps, Extreme operators into C(K), Pacific J. Math. 15 (1968), 35-46.
- [2] J. Clarkson, *Uniformly convex spaces*, Trans. Amer. Math. Soc. 40 (1936), 396-414.
- [3] R. Grząślewicz, Extreme operators on 2-dimensional l^p-spaces, Colloquium Math. 44 (1981), 309-315.
- [4] R. Grząślewicz, Extreme Contradictions on Real Hilbert space, Math. Ann. 261 (1982), 463-466.
- [5] R. Grząślewicz, Exposed points in the unit ball of L(H), Math. Z. 193 (1986), 595-596.
- [6] R. Grząślewicz, Extreme operator valued continuous maps, Arkiv för Matematik 29 (1991), 73-81.
- [7] R. Grząślewicz and P. Scherwentke, On strongly extreme and denting points in $\mathcal{L}(H)$, Math. Japonica.
- [8] R. V. Kadison, Isometries of operator algebras, Ann. Math. 54 (1951), 325-338.
- [9] F. Kittaneh and R. Younis, Smooth points of certain operator spaces, Integral Equations Oper. Theory 13 (1990), 849-855.

- [10] Bor-Luh Lin, Pei-Kee Lin and S. L. Troyanski, Characterizations of denting points, Proc. Amer. Math. Soc. 102 (1988), 526-528.
- [11] E. Michael, Continuous selections I, Ann. of Math. 63 (1956), 361-382.
- [12] S. Papadopoulou, On the Geometry of Stable Compact Convex Sets, Math. Ann. 229 (1977), 193-200.

Institute of Matematics
Politechnika
Wb. Wyspiańskiego 27
PL-50370 WROCLAW, Poland.
e-mail: GRZASLEW@im.pwr.wroc.pl
(in internet)
Institute of Mathematics
University of Mu'tah
P.O.Box 7
AL-KARAK, Jordan.

Recibido: 2 de Marzo de 1995 Revisado: 19 de Junio de 1995