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Mittag-Leffler Methods in Analysis

JORGE MUJICA

Dedicated to the memory of my teacher, Leopoldo Nachbin (1922-
1993)

ABSTRACT. In this survey we present two Mittag-Leffler lemmas and
several applications to topics as varied as the J-equation, Fréchet algebras,
inductive limits of Banach spaces and quasi-normable Fréchet spaces.

1. INTRODUCTION

The classical Mittag-Leffler theorem asserts the existence of mero-
morphic functions with prescribed poles and singular parts. If the pre-
scribed poles form a finite set, then it is clear that the sum of the cor-
responding singular parts is a function with the desired properties. But
in the general case, that is when the prescribed poles form a sequence
without accumulation points, then the corresponding series of singular
parts is not necessarily convergent. But then, by means of suitable cor-
rections of the terms of the series, so as to make it convergent, one
obtains a function with the desired properties.
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Such a procedure has been so widely used in analysis, that has
become known as Mittag-Leffler procedure. Several general results whose
proofs follow such a procedure are often called Mittag-Leffler lemmas or
Mittag-Leffler abstract theorems. In this survey we present two such
lemmas and several applications to topics as varied as the & equation,
Fréchet algebras, inductive limits of Banach spaces and quasi-normable
Fréchet spaces.

This is the essential content of a lecture delivered at the IV Chilean
Symposium of Mathematics, held at the Universidad de Santiago from
September 27 to Qctober 1, 1993. I wish to thank the organizers of the
symposium for their kind invitation and financial support.

1. MITTAG-LEFFLER LEMMAS

Since we will be dealing with projective limits, we recall the defi-
nitions. Let (X;);c; be a family of nonvoid sets, indexed by a directed
set I. Suppose that for each pair of indices 4,7 with ¢ < j there is a
mapping &;; : X; — X; such that §; is the identity mapping on X;
for every 7 and i o {5 = £ix whenever ¢ < j < k. Then the collection
(X, &; ) is said to be a projective system, and the set

X =A{(z:) € HXi : &;(2;) = z; whenever i < 5}
el

is called the projective limit of the sets X; and is denoted by proj X;. The
canonical mapping X — X is denoted by &;. If each X; is a topological
space (resp. a group, a vector space, etc.) and each §;; is continuous
(resp. a homomorphism, linear, etc.), then X is a topological space
(resp. a group, a vector space, etc.) as a subset of the product [[,., X;
and each £; is continuous (resp. a homomorphism, linear, etc.).

The following lemma sharpens results of Arens [1, Theorem 2.4] and
Esterle [6, Theorem 2.1].

1.1. Lemma. Let X = proj(Xm,dn) be the projective limit of a
sequence of complete metric spaces such that

dm(Em,m+1(:r)a 5m,m+1(y)) $ dm+1($, y) fOT all r,y € Xm+1- (1-1)
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Suppose that each X,, contains a nonvoid set T, such that

dnlt,€mmi1(Tms1)) < em forallt e T, (1.2)

where £, > 0 for every m € N and Zxﬂ Em < 00. Then the set

B = ﬁ U &* (Bx,, (t,iek)) (1.3)

n=m teT, k=n

is nonvoid for every m € N and

dm(t, €m(Bm)) < Y & for all ¢ € Ty, (1.4)

k:m

Proof. Fix m € N and ¢,, € T,;,. By repeated applications of (1.2)
we can find ¢, € T, for every n > m such that

dn(tn, €nnp1{tns1)) < &, for every n > m.

We claim that (£,p(2p))5%, is @ Cauchy sequence in X, for every n > m.
Indeed for ¢ > p > n > m we have that

g—1
dn(Enp(tp)s Eng(te)) € D dul€nk(tic), €nkrr(tisn))

k=p

(1.5)
g—1 oo
< E di(te, Ekpr1{tesr)) < ZEk-
k= k=p

P

Let z, = plimc’o Enp(tp) € X, for every n > m. Since £,,0854(tg) = &ng(ty)

for ¢ 2 p > n > m, we see that £,,(z,) = z, forp > n > m. If we
define &, = £,m(2m) for every n < m, we see that ¢ = (2,)52, belongs
to X. By taking p = n and ¢ — oo in (1.5) we get that
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oo
dp(tn,zn) < Z £k for every n > m.

k=n

This shows that z € By, and dp(tm, Em(7)) < 3 jen €5y 28 We wanted.

1.2 Corollary (Esterle [6]). Let X = proj (Xm,dm) be the pro-
jective limit of a sequence of complete metric spaces such that

dm(‘fm,m+1($)s§m.m+l('y)) < dm+1($: y) fOT all z,y € Xm+l'
Suppose that
Az, Emm+1(Xm41)) < €m for all z € X, and m € N,

where € > 0 for every m € N and Y _, ém < 00. Then X is nonvoid
and

A (2,Em(X)) < D g forall 2 € X, and m € N,

k=m

1.3 Corollary. Let X = proj X,, be the projective limit of a

sequence of complete metric spaces. Suppose that each X, contains a
nonvoid set Ty, such that Ty, C €mm+1(Tm41) for every m € N. Then

X is nonvoid and Ty, C £ (X)) for every m € N.

Proof. Let é,, denote the metric on X,, for every m € N and
define

dm{z,y) = max n(bnm(2),&nm(y)) for all z,y € X,

Since each £,,, is continuous, d,, and §,, define the same topology
on X,,. And since (X»,8,) is complete, one can readily verify that
(Xm,dp) is complete. Since d,, satisfies condition (1.1) in Lemma 1.1,
the desired conclusion follows.

The next result, due to Arens [1, Theorem 2.4}, is probably the first
Mittag-Leffler lemma.
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1.4 Corollary (Arens [1]). Let X = proj X, be the projective limit
of a sequence of complete metric spaces. If each & my1 1 Xmy41 — Xm
has a dense range, then X is nonvoid and each £, © X — X, has a
dense range.

The next lemma summarizes results of Palamodov [19, p. 215,
Proposition 11], Komatsu [12, Lemma 1.3], Bierstedt et al. [3, Lemma
2.8} and Galbis [8]. We shall derive this lemma from Corollary 1.3.

1.5 Lemma. Let X = proj X, Y =proj Y, and Z = proj Z,,
be the projective limits of three sequences of abelian groups. Suppose
that for every m € N there are homomorphisms v, : X, — Y, and
Ym ¢ Y, — Z,, such that the following diagram is commutative and
each row is ezacl.

X L @ 2 Zm

T fm,m-}-l T Tm,m+1 T Cm,m+1
Pm Yrm41

Xm+1 25 Y = Zm

Letog: X > Y andy: Y — Z be the unique homomorphisms such
that the following diagram is commutative and each row is eract.

X, vy, ¥ oz
Tém T m T Gm
X = . oz

(a) If each ©p, is injective, then @ is injective.

(b) Suppose that X = proj Xm is actually a projective limit of
complete, abelian, metric groups. Suppose in addition that

Emm+1{Xm41) C &mmi2(Xmi2) for every m e N (1.6)
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Under these conditions, if (;m(Z) C Ym(Yim) for every m € N, then ¢ is
surjective.

Proof. If ¢(z) = (¢m(zm)) for every z = (z,,) € X, and ¢(y) =
(¥m(ym)) for every y = (ym )} € Y, then the only nontrivial assertion in
the lemma is the surjectivity of ¥. Let z = (z,,) € Z. Since {n(Z) C
Y (Y ), for each m € N there exists y,, € Y, such that ¢, (ym) = 2;.
Then (ym) € IIY,, but there is no guarantee that (y,) € Y. The idea

is to find a sequence of corrections z,,, with z,, € X,, for every m € N,
such that (y, — @m(z,)) € Y. Since

Y (Y — Pm(Tm)) = Pm(y¥m) = 2m

for every m € NN, this will complete the proof. Thus we want to find
(zm) € IX,, such that

Nm,m+1(Ums1 ~ Pmi1(Zm41)) = ¥Ym = Pm(Tm)
that is

1r?m,m+1(‘ym+1) — ¥Ym = Tm,m+1 © Pm+1 (Tm+1) — Sf’m(:’»'m) =
(1.7)

= ‘Pm(gm,m+1($m+l) —Zm)

for every m € IN. Now since (2p,) € Z we have that
¢m(nm,m+1(ym+1) - 'ym) = Cm.m+1 o "»bm+1('ym+1) - ";bm(ym) =

= (mm1(Zm+1) = 2m = 0

and therefore Ny m+1(¥me1) — ¥m € ¥ (0) = @m(Xm). Thus for each
m € N there exists a,, € X,, such that

Pm(@m) = Mmms1(Ym+1) = Ym- (1.8)
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Comparing (1.7) and (1.8) we see that to complete the proof it suffices
to find (z,,) € I1X,, such that

em(am) = ‘Pm('sm,m+1($m+1) —Zm) (1.9)

for every m € IN. Now let fm‘mﬂ ! Xm41 — Xm de defined by

Em,m+1($) = Em,m-f-l(z) —apy

for every = € X 41, and let X denote the projective limit of the com-
plete metric spaces X,, with respect to the linking mappings Em,m+l :
Xmt1 — Xm. If we use (1.6), then a straightforward verification shows
that 3 -

Emm+1(Xm41) C Em,ms+2(Xmy2) for every m € N.

If we set Ty, = fm,mﬂ(XmH) for every m € N, then Corollary 1.3 ap-
plies and guarantees that X is nonvoid. If (zm) € X, then E—m’m_*_l(mm.}.l)
= Ty, thatis & mp1(Zm+1) — @m = z,, for every m € IN. This achieves
{1.9) and completes the proof.

Let us mention that Petzsche [20] derives the classical Mittag-Leffler
theorem from Lemma 1.5, whereas Esterle [6] derives the Baire category
theorem and the classical Mittag-Leffler theorem from Corollary 1.4.

1.6. Remark. In all of the preceding lemmas we required that
X = proj X, be the projective limit of a sequence of complete metric
spaces. An examination of the proofs shows that the conclusions remain
true if X = proj X,, is the projective limit of a sequence of pseudometric
spaces with the property that whenever (a,) is a Cauchy sequence in
Xm41, then the sequence (§m,mt1(ap)) has a unique limit in X,,.

2. THE 8§ EQUATION ON POLYNOMIALLY CONVEX DO-
MAINS

If U is an open set in €7, then C;(U) denotes the vector space of
all C* differential forms of type (p,q) on U. If K is a compact set in

C", then C2(K) denotes the vector space of all germs of ¢ differential

forms of type (p, ¢) around K.
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The solution of the & equation around polynomially convex compact
sets is essentially due to Oka [18] (see Hérmander [11, Lemma 2.7.4 and
Theorem 2.7.6]). And then a standard Mittag-Leffier procedure extends
the solution to the case of polinomially convex open sets (see Hérmander
[11, Theorem 2.7.8]). Let us see how this result follows from Lemma 1.5.

2.1. Theorem (Oka [18], Hormander [11]). Let U be a polynomi-
ally convez open set inC. Then for each g € C35,,,(U) with 8g = 0,
there ezists f € C2(U) such that 8f = g.

Proof. Let (K,;) be a sequence of polynomially convex compact
sets such that U = UX., K, and K, C int K4, for every m € N.

(a) Consider first the case ¢ > 1. If Fo(U) (resp. F;3(K)) denotes
the subspace of all f € C2(U) (resp. C(K)) with 8f = 0, then we
have the following commutative diagram of vector spaces and linear
mappings.

;] ]
C;?q-l(Km) - C;?qo(Km) _— -7:;?3;+1(Km)

1 T 1

ce_ vy L ocawy L FrRa)

Then the mappings 8 : Co(Km) — F5op1(Em) and C;’f’q_l(U) —

C3%—1(K ) are surjective. If we endow each of the spaces €35, _;(K:m)
with the discrete metric, then Lemma 1.5 applies and guarantees that

the mapping & : CZ(U) — F£,41(U) is surjective.

(b) Consider next the case ¢ = 0. Recall that if f € C5(U), then
Of = 0 if and only if f is a holomorphic mapping on U with values in
L£*(AL™), the Banach space of all alternating p-linear forms on C* (see
Mujica [16, Proposition 21.6]). Then we have the following commutative
diagram of vector spaces and linear mappings.
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H(Km; L2(C)) > CH(Km) —o FS(Knm)

1 T T

HU; L) < CRU) 2 FR(U)

Then the mapping 8 : CR(Km) — FF(Km) is surjective for every
m € N. If H(K,; L%(AC")) is endowed with the seminorm of the
supremum on Kp,, then a theorem of Oka (see Hérmander {11, Theorem
2.7.7]) implies that the mapping H(U; £*(RT")) — H(Km; L*(PC")) has a
dense range. By Lemma 1.5 and Remark 1.6 the mapping 9 : C35(U) —
FX(U) is surjective.

3. FRECHET ALGEBRAS

If A is a commutative Fréchet algebra, then S{A) denotes the spec-
trum of A, that is the set of all continuous nonzero homomorphisms
@: A —C. All Fréchet algebras are assumed to have an identity.

3.1. Theorem. (Brooks [5]). Let A be a commutative Fréchet
algebra. Let (a;) be a sequence in A such that

({r € S(4): ¢la;)=0}=4¢ (3.1)
j=1

a2
Then there is a sequence (z;) in A such that 3 ajz; = 1.
=
Theorem 3.1 is due to Brooks [5, Theorem 2.2] in the case of infinite
sequences, and to Arens [1, Theorem 4.2] in the case of finite sequences.
Arens obtained the result with the aid of Corollary 1.4 and the following
lemma.

3.2. Lemma. (Arens [I]). Let A and B be two commutative
Banach algebras and let # : A — B be a homomorphism with a dense
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range. Let ay,...,ap € A such that A = a1 A+ - -+ apA. Then, given
€>0andy,...,yp € B such that w(a)y + -+ + n(ap)y, = 1, there
are zy,...,z, € A such that a1z, 4 - -+ a,z, =1 and |[7(z;) —y;|[ < ¢
forj=1,...,p.

In the case of infinite sequences, Corollary 1.4 is not strong enough
to prove Theorem 3.1, and Brooks gave a direct, rather cumbersome
proof (see also Goldmann [9, p. 136]). We now prove Theorem 3.1 with
the aid of Corollary 1.3.

Proof of Theorem 3.1. By a result of Michael [14, Theorem 5.1],
A can be represented as the projective limit of a sequence of commutative
Banach algebras A,,, where each homomorphism =,, : A — A4,, has a
dense range. It follows from (3.1) that

e € S(An) : 9o Tm(a;) =0} = &
=1

for every m € IN. Since the sets §(A,,) are all compact, we can find an
increasing sequence (pp,) in IN such that

({9 € 5(Am) i @omn(a;) =0} = ¢

=1

for every m € IN. Since each 4,, is a Banach algebra, we can find

Pm
Y1s-- o Yp,, € Am such that 3 7n(a;)y; = 1. We will now show the
=1

o0
existence of a sequence (z;) in A such that 3} |[Tm(@j)l|m||Tm(z;}}m <
=1

o0

oo for every m € N and ) ajz; = 1. This will complete the proof. For
i=1 '

each m € IN consider the Banach space

Em={(z;) € Aq: @ )llm = Y |[m(aj)lIml}z;llm < 00}

i=1
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and its subsets

Xm = {(z;) € En : Zwm(a,-)xj =1}

and
T = {(z;) € Xm : z; =0 for every j > pnm}.

Thus X, is a complete metric space, as a closed subset of E,,. Consider
also the Fréchet space

E ={(z;) € AV : {2 )|lm :=

o0
= 2 lImm(@)lallmm(2;)llm < oo for all m € N}
i=1

and its subset -
- X ={(z;)€ E: Za,ja:j =1}
=1
Then E = proj E,, and X = proj Xpm. f &mnmy1 ¢ Xmp1 = X
denotes the natural mapping, then it follows from Lemma 3.2 that T, C
Em,m+1(Tm41) for every m € N. By Corollary 1.3 X is nonvoid.

In a similar manner we can use Corollary 1.3 to prove another result
of Brooks, namely [5, Theorem 2.4].

4, INDUCTIVE LIMITS OF A BANACH SPACES

We recall that if F' is a Fréchet space, then the inductive dual F
of F is the inductive limit of the Banach spaces (F")vo, where (Vy,) is
any basis of convex, balanced, 0-neighborhoods in F'. It follows from the
work of Grothendieck (see {10, Théoréme 6]) that £ is always complete.
We refer to Bierstedt’s survey [2] for information on the inductive dual.

Let F = ind E,, be the inductive limit of an increasing sequence of
Banach spaces. In [15, Theorem 1] we proved that if there is a Hausdorff
locally convex topology 7 on E such that the closed unit ball of each
E,, is T-compact, then E is topologically isomorphic to F! for a suitable
Fréchet space F. In particular F is complete.
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When trying to apply this theorem in concrete situations, it is natu-
ral to seek for a Hausdorff locally convex topology 7., on each F,, such
that:

(a) the inclusion mapping (Em, Tm) < (Emt1, Tm41) is continuous;
(b) the closed unit ball of E,, is r,,-compact.

If the inductive limit (E,7) := ind (E,,,7m) is Hausdorff, then the
preceding theorem directly applies. But in certain situations it may be
difficult to prove that (E,7) is Hausdorff. Hence the following variant
of the preceding theorem is sometimes more useful.

4.1. Theorem. Let F = ind E,, be the inductive limit of an
increasing sequence of Banach spaces. Suppose that for each m € N
there is a Hausdorff locally convez topology T, on E., such that:

(a) the inclusion mapping (Ep, Tm) = (Emt1, Tmt1) 18 continuous;
(b) the closed unit ball By, of Ep, is T, -compact.

If we set
F={pec E': ¢|By, is 7n — continuous for every m € N},

then F is a Fréchet space for the topology of uniform convergence on
each B,,, and E is topologically isomorphic to F!. In particular E is
Hausdorff, regular and complete,

Proof. If we set
Fon ={p € E], : ¢|By is 7, — continuous},

then F,, is a Banach space for the norm ||g|| = sup|y|, and F can be
B

canonically identified with proj F,. Let R, : F — F, and R, :
F, — F,(m < n) denote the restriction mappings. Let J : E — F'
and J,, : E,, — F}, denote the evaluation mappings. By a result of
Waelbroeck [21] and Ng [17], Jn is an isometric isomorphism for every
m € IN. Since F = proj Fy,, it is clear that J is surjective, but it is far
from clear that J is injective. We shall prove that F is indeed injective.
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Since F! = ind F!, it will follow that J : E — F! is a topological

i t
isomorphism. Now since the following diagram is commutative,

E., — Byt

oo R
we see that the dual mapping R}, .41 : Fy, — Fp 4, is injective. By the
Hahn-Banach theorem the mapping Rm m41: Fm4+1 — Frm has a dense
range for every m € IN. By Corollary 1.4 the mapping R, : F — F,
has a dense range as well, and hence the dual mapping R! : F! — F'
is injective. Since the following diagram is commutative,

E, — FE
Im | 1 J
F!, B, F

we see that the mapping J : E — F' is injective, as we wanted.

The following corollary improves a result of Floret [7, Corollary 2].

4.2. Corollary. Let E = ind G}, be the inductive limit of an
increasing sequence of duals G., of Banach spaces G, such that the
inclusion mappings G, — G, are dual mappings. If G := proj Gn,
then E is topologically isomorphic to G|. In particular E is Hausdorff,
regular and complete.

Proof. Apply Theorem 4.1 with 7,,, = 0(G},,G.,) for every m € N.
It follows from Grothendieck’s characterization of the completion that
each F,, coincides with G,,, and hence F' coincides with G.

I obtained these results in 1986, but did not publish them. I com-
municated the results to Klaus Bierstedt, who quoted them without
proofs in his survey on inductive limits (see [2, Theorem 3.15]).
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5. QUASI-NORMABLE FRECHET SPACES

Quasi-normable spaces were introduced by Grothendieck [10]. A
Fréchet space E is said to be quasi-normable if it has a decreasing basis of
closed, convex, balanced 0-neighborhoods Uy, such that for each m € N
and each £ > 0 there is a bounded set B C F such that

Unyr CeUp+ B (5.1)

The following theorem is part of a result of Bonet [4].

5.1. Theorem. (Bonet [4]). A Fréchet space E is quasi-normable
if and only if has a decreasing basis of closed, convez, balanced 0-neigh-
borhoods U,, such that for each m € N, each ¢ > 0 and each n. > m
there exists A > 0 such that

Uni1 C Um + AU, (5.2)

Proof. If B is a bounded subset of E, then B C ﬁ AU, for

n=1

suitable A, > 0, and hence it is clear that (5.1) implies (5.2). Bonet
[4] gave two proofs of the reverse implication. One proof is based on a
result of Meise and Vogt [13, Theorem 7], and the other one is based on
a Mittag-Leffler procedure. We now derive this implication from Lemma
1.1. Fix m € N and £ > 0. By using (5.2) and induction we can easily
find a sequence (#n)32 .41, With pimy1 =1 and p, > 0forall n > m
such that

£ s \
pntiUnyr C '2—nUn + pnp2Ungs forall » > m. (5.3)

Without loss of generality we way assume that £ = proj E, is the
projective limit of a sequence of Banach spaces, and U, = £;1(V,) is
the inverse image of the closed unit ball of E,,. Set Ty, = &n(pint1Un+1)
for every n > m. Since we may assume that the natural mapping {5 n41 :
E.+1 — E, has norm not greater than one, condition (1.1) in Lemma
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1.1 is satisfied. And (5.3) guarantees that condition (1.2) is satisfied too
with £, = ¢/2". Then Lemma 1.1 implies that

Tn C fm(Bm) + &V,

where

o0 o0
B, C n (’-"n+1Un+l +€Un) C n (ﬂu+l +5)Uﬂ-
n=m n=m
Thus B,, is a bounded subset of E and Un4y C By + €U, as we
wanted.
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