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ABSTRACT. In this paper we estimate the crossing number of a flat vertex
graph in 3-space in terms of the reduced degree of its Yamada polynomial.

1. INTRODUCTION

Throughout this paper we work in the piecewise linear category.
For a graph G , we denote the set of all vertices of G by V(G and the
set of all edges of G by E(G). A graph G in the 3-space R is called a flat
vertez graph if for each vertex v of 4, there exists a neighbourhood B,
of v and a small flat plane P, such that GNB, C P,. A flat deformation
of (G is an ambient isotopy ¢ : R® — R®, t € [0,1], hy = idgs such
that k(@) is a flat vertex graph for each t € [0,1].

All graphs in this paper are flat vertex graphs. Two graphs Gy and
(74 are said to be.equivalent if there is a flat deformation A, : R® — R3
such that h;(Gy) = G2. From now on, we do not distinguish a graph
and its equivalence class so long as no confusion occurs.
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Let 7 : R — R? be a projection defined by n(z,y,2) = (z,y). If
each multiple point of 7| is a double point of two transversal edges of G,
then we say that the image TF(G) is a regular projection of G and denote
it by G. A double point of G is called a crossing point. We denote the
number of crossing points in G by ¢(G). The crossing number ¢(G) of a
graph G is defined to be the minimal number of crossing points among
all regular projections of G.

The crossing number of links has been well studied in terms of Jones
polynomial and other polynomials [1] [2] [3] [4] [5] [6] [8] [9] [10] [11] [12]
[13] [14] [15] [16] [18].

In this paper we study the crossing number of spatial graphs in

terms of the reduced degree of Yamada polynomial defined in [17].

Kobayashi [7] studied the relation between the crossing number and
Yamada polynomial but the results in [7] concern some special cases. We
study it in a more general setting.

A regular projection G together with over/under information at

each crossing point of G is called a diagrem of G and we denote it by
G. By the one point compactification R? U {oo} = 5?, we consider that
the regular projections and the diagrams are on the 2-sphere 52.

A state S of G:‘ is a plane graph obtained from & by replacing each
crossing point of G by one of the following spins in Fig. 1.1.

K )C =< X

crossing point plus spin minus spin zero spin

Fig. 1.1

If 5 contains a hoop then we add a vertex and make it a loop. See
Fig. 1.2.
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O_..

hoop loop

Fig. 1.2

Let S = S(G) be the set of all states of G. We have |S(G)| = 35(S)
where | | means the cardinality and ¢(G) = ¢(G).

Let p(§) (resp. m(5),2(5)) be the number of plus (resp.
minus, zero) spins in a state §. Let A be a free variable and {G|§} =
AP(S)~m{S} | Let

H(S)= D (-1)PlS=F)(—g—2-4"")A-R) (1)
FCE(S)

where F' varies over all subsets of E(S5) and § — F is a subgraph of G
defined by V(5 - F) = V(S}and E(S— F) = E(S)— F, and 8; denotes
the -th Betti number.

Yamada polynomial Rz(A}is an element in the Laurent polynomial
ring Z[A, A™'] defined by

R5(4) = S {GIS}HA(S) (1.2)

Ses

where the summation is taken over all states of G.

Yamada proved in [17] that if G and G’ represent equivalent graphs
then Rx(A) = (—A)*Rz (A) for some integer n. Let maz(f(A)) (resp.
min( f(A))) be the maximal degree (resp. minimal degree) of a Laurent
polynomial f(A). Let r(f(A)) = maz(f(A))—min(f(A)) be the reduced
degree of f(A). We use the following convention:
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maz(G) = maz(Rz(A)), min(G) = min(Rz(A)) and rG) =
r(Rg(A)).
Then the reduced degree 7(G) of G is well-defined by r(G) = r(G).
We define a graph I' = I‘(@) for a regular projection G as follows:
(1) The vertices of T correspond to the regions of 5% — G.

(2) For each crossing point z of @G, there are two edges of T’ such
that each of which joins the two regions that are incident at z.

See Fig. 1.3.

r=TI(G)

oy

®

Fig. 1.3

Let s(@) = ﬂg(I‘(@)) and let s(G) be the maximum of s(@) among
all regular projections of (. We will show in Proposition 1.3 that s(G)
always exists. We call s(G) the splitting degree of G.
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The following is the main theorem of this paper.

Theorem 1.1. Let G be a flat vertez graph in R®,G a diagram of
G and G underlying projection of G. Then

r(G) < 3¢(G) - x(G) + 3(G) + Bo(G) - 1

where x(G) = Bo(G) — P1(G) is the Euler characteristic of G.

Let (G be the maximum of Fo(G) among all regular projections
of G. Then the following is an immediate corollary.

Corollary 1.2.

1
o(G) 2 3{r(G) + x(G) - s(G) - v(G) + 1}
We will show the following estimation of s{G).

Proposition 1.3.

s(G) < A(G) + 1.
Therefore Corollary 1.2 implies:

Corollary 1.4,

{(G) > 3{7(G) + X(G) - A1(G) - (G)) =

= %{r(G) —261(G) + Bo(G) - ¥(G)}.

Since Fo(G) > v(G) we have:

Corollary 1.5.

(@) > %{T(G) - 26:(G)}



252 T. Motohashi, Y. Ohyama and K. Taniyama

or eguivalently,

r(G) < 3¢(G) + 26:(G).

Kobayashi proved in [7] that if a planar graph G has no cut edges
and a diagram G of G is obtained from a diagram of G without crossing
points by adding alternating knot diagrams locally, then r{G) = 3¢(G)+
2f;(G). Therefore the inequalitiés in Corollary 1.5 are best possible.

As an example we consider Kinoshita’s theta curve ¢ represented
by a diagram 8 of Fig. 1.4.

Fig. 1.4

Since R;(A) = A® —~ A% —2A7 + A® — 45 1243 + AT 424+ A7 —
A+ A+ A% — A% 1 A77 4+ A% we have r(f) = 17. Then by
Corollary 1.5 we have (@) > 1(17 —2-2) > 4. On the other hand
¢(#) < ¢(6) = 5. Thus we conclude ¢(#) = 5.

We remark here that if the maximum valence of a graph G is less

than 4, then the flat deformation equivalence coincides with the ambient
isotopy equivalence, see [17], therefore ¢(G) is minimal among all regular



Yamada Polynomial and Crossing Number of Spatial Graphs 253

projections of G up to ambient isotopy. In general, this is not the case.
See Fig. 1.5 for an example.

ambient |sotopy
fiat deformatton %

Fig. 1.5

This paper is organized as follows. In section 2 we prove Theorem
1.1 and Proposition 1.3. In section 3 we define adequate diagrams as a
natural generalization of the adequate link diagrams defined in [8} and
determine the reduced degree of the adequate diagrams. As a corollary,
we show that adequate graphs have nonzero crossing numbers. In section
4 we define alternating diegrams and give an estimation of the crossing
number of the graphs that have adequate alternating diagrams. In sec-
tion 5 we give an estimation of s(G) for some graphs which is sharper
than that of Proposition 1.3 and determine their crossing numbers.

All of the authors are very grateful for Professor Shin’ichi Suzuki
for his helpful advices and encouradgement.

2. AN INEQUALITY

Let S = 54(G) be a state of G characterized by p(54) = ¢(G)
and S. = §_(G) characterized by m(5-) = ¢(G).
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Lemma 2.1.

max(G) < ¢(G) +B(5+(G)),
min(G) > —¢(G) - B1(5-(G)).

Sublemma 2.2. For any state § of G, maz(H(S)) < B1(S) and
min(H(S)) > —p1(5).

Proof. By (1.1) it is enough to show that 5,(S — F) < $1(S) for
all subset F of E(S). But this is clear. B

The following sublemma is a Yamada polynomial version of the
corresponding result for the Jones polynomial [5]. The proof is also
similar.

Sublemma 2.3. For any state S of G, maz({G|S}H(S)) < ¢«(G)+
B1(54) and min({G|S}1H(S)) > —c(G) — p1(5-). Moreover, if m(5) #
0 then maz({G|S}H(S)) < c(G) + 51(54), and if p(§) # 0 then
min({G|S}H(S)) > —¢(G) - B1(S5-).

Proof. We will show the inequalities about the maximal degree.
We first note that maz({G|S}H(S)) = maz{G|S}+mazH(S) = p(5)-
m(S) + maz H(S) < p(S) — m(S) + F1(S) and that p(S) ~ m(54) =
p(54) = ¢(G).

Let §,,9m and 5, be a triple of states of G which differ only at a
crossing of G where the spins are plus, minus and zero respectively. Then

we have 31(5:)~1 < 51 (Sp) £ B1(5:) and B1(S:)~1 < B1(5m) < Fi(S>)

by counting the Euler characteristics. Hence we have $8;(5,,) - 1 <
B1(Sp) £ P1(Sm) + 1. On the other hand, p(Sm) = p(S:) = p(Sp) - 1
and m{S,) = m(S,) = m(Sm) — 1. Therefore we can conclude that

p(5:) — m(S2) + B1(5:) < p(Sp) ~ m(S,) + B1(Sp)

and

P(Sm) = m(Sim) + B1(Sm) < 2(S;) = m(Sy) + r(5y).
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For any state § of &, there is a sequence of states of G $; =
54,52,53,...,5, = § such that S;4, is obtained from S; by replacing
a plus spin of S; to a minus or zero spin. Therefore above argument
ensures the conclusion. [ |

The proof of Lemma 2.1 follows immediately from Sublemma 2.3.

The following is a graph version of the dual state lemma for links

in [4] [5] [10) [15).

_Lemma 2.4. Let G be a diagram of G and G underlying projection
of G. Then

Bi(S+) + B1(5-) € () = X(G) + s(G) + fo(G) — 1.

_ Proof. If G = @1 u---u é'n such that eachAai is connected and
GinG; = Bfori # , then s(G) = 8(Gy)+- -+ 8(Gp) —n+1. Therefore
it is sufficient to show that £ (S4) + B1(5-) < ¢(G) - x{(G)+ s(G) for
a connected projection G.

Since x(G) = x(G) — «(G), we have 41(G) = §o(G) - x(G) =
1 - x(G) + ¢(G).

By Alexander duality on $2, we have |V (I')| = 51(G)+ 1. Thus we
have bigskip

V(D) = 2= X(G) + ¢(G). (2.1)

Let [y and I'_ be the subgraphs of I such that V(I'y) = V(I'_) =
V), E(Ty)u E(T-) = E(T), ET+)NnET_-)=0and T4 NS4 =
9, T_nN.S_ =@ See Fig. 2.1.
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% (@) §

- S{G) ® S (G) _
G I +(Q) r-(Q)
Fig. 2.1

By the Meyer-Vietoris sequence
Ho(V(T')) — Ho(T4} & Ho(I'-) — Ho(I') - 0

we have

Bo(T+) + Bo(T-) < Bo(T') + [V(T)]. (2.2)

By Alexander duality we have (1(S4+) = Bo(S% — S4) — 1 and
B1(S-) = Bo(5? — §_) — 1. From the fact that $? — & is a union
of open 2-disks, it follows that Ty, (resp. I'_) is a deformation retract
of 5% — §, (resp. S — S_). Therefore we have

B1(S+) = Bo(T4) =1, Bu(S-) =Bo(T-)~ L. (2.3)
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By (2.1), (2.2) and (2.3) we have 5i(S+) + B1(5-) = Bo(T4) +
Po(T-) =2 < Bo(T) +{V(I)] -2 = e(G) — x(G) + Bo(T} = «(G) - x(G) +
s(G). =

Proof of Theorem 1.1. By Lemma 2.1 we have r(G-) < 2¢(G) +
$1(S+)+ B1(S-)- Then by Lemma 2.4 we have r(G) < 3¢(G) — x(G) +

s{(G)+ Bo(G)-1. m

Proof of Proposition 1.3. We will show the following claim by
an induction on ¢(G):

Claim. If G is a projection of a graph &, then s(é) < A(G)+1.

First suppose that c(é) = 0. Then s(@) = ﬁo(I‘(Q)) = IV’(F(@))l
and is equal to §1(G)+1 by Alexander duality. Thus s{(G) = 51(G)+1 =
Bi(G) + 1.

Next suppose that the claim is true when c(@) = k. Let G be
a regular projection of G with ¢(G) = k + 1. We choose an arbitrary
crossing point z of G. Then by smoothing at z in two directions, we have

new regular projections G; and G of new graphs G and G, respectively.
See Fig. 2.2.

A RANR

G QG2

Fig. 2.2
We will show that at least one of 51(G1) and $1(G;) does not exceed
B1(G). Since x(G1) = x(G2) = x(G), 1(Gi) > B(G) if and only if
ﬁo(G,‘) > ﬂo(G), 1= 1,2.
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Suppose that 8o(G;) > B(G), i = 1,2. Then the pair of smoothed
arcs in (7 lies in different components of G;, ¢ = 1,2. But then the
preimages of z lie in different components in G. Therefore 81(G) =
5(G1) = $51(G,), a contradiction. Thus we may suppose without loss
of generality that 1(G1)} < B1(G).

It is easy to see that Bo(T(G)) < Bo(T(G1)). See Fig. 2.3.

Y
SIS

Fig. 2.3

By the hypothesis of induction, s(Gl) = ﬁo(I‘(Gl)) < GG+ 1.
Therefore s(G) ﬁo(F(G)) < ﬁD(F(Gl)) <Hi(G1)+1 < BH(G)+ 1.
|

3. ADEQUATE DIAGRAMS

We intend to define adequate diagrams so that r(G) = 2¢(G) +
B{5+(G)) + f1{5_(&)) for an adequate diagram G.

An edge e of a graph S is called a cut edge if Sy(S—{e}) = Bo(S)+1.
We denote the set of all cut edges of S by CE(S).

Proposition 3.1. Let S be a state. If S has a cut edge, then
H(§) = 0. If § has no cut edges, then maz(H(S)) = S51(S) and
min(H(9)) = —B1(S) and both of the coefficients of AP (5) gnd A—F1(S)
in H(S) are (—1)Po(5)+5:(5) = (._1)x(5),
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Above proposition in known in [17] and [7]. Therefore we give a
sketch proof here.

Proof. Suppose that a state S has a cut edge e. We divide the
summation in (1.1) by whether or not F contains e. then they cancel
each other and we have H{S) = 0.

Next suppose that S has no cut edges. If F is not empty, then
P1(S — F) < p1(S). Therefore the contribution for the maximal degree
and the minimal degree by the term of F = @ does not disappear. ®

Let §% = §,(G) (resp. §_ = §_(G)) be a subdivision of §4 =
S+{G) (resp. S_ = S_(G)) obtained by adding vertices at each spin as
illustrated in Fig. 3.1.

) (=)«

Fig. 3.1

Let Fy = Fy(G) (resp. F_ = F_(G)) be a graph with V(F,) (resp.
V(F_)) corresponding to the connected components of S\, — CE(S})
(resp. 8~ — CE(S.)) and E(Fy) = CE(S}) (resp. E(F-) = CE(S.))
with a natural incidence induced from that of § (resp. S’ ). We note
that 1 (Fy) = i(F-) = 0.

Let = be a crossing point of G. Let Sy ; (resp. S. ;) be the state
obtained from 5S4 (resp. S_) by replacing the plus (resp. minus) spin
at z to the zero spin. A crossing point z is called plus essential (resp.

minus essential) if B1(S4 ) = B(5+) +1 (resp. B1(5-z) = f1(5-)+1).

We may suppose that each plus (resp. minus) essential crossing
point joins two vertices (that may be the same vertex) of Fy (resp.
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F_). Let Jo = J4(G) (resp. J_ = J_(G)) be a graph obtained from
Fy (resp. F_) by adding the edges that correspond to the plus (resp.
minus) essential crossing points of G. See Fig. 3.2.

R

& \'®
F+ ig. 3.2 o

Let pi (resp. px) be the number of subgraphs Ky (resp. K_) of
J4+ (resp. J_) with the following properties:

(1) K4 D Fy (resp. K_ D F_).

(2) K4 (resp. K_) has no cut edges.

(3) B1(Ky) =k (resp. Bi(K_) = k).

Definition 3.2. A diagram G is plus adequate (resp. minus ade-
quate) if 3577 o(—1)Fpx # 0 (resp. Ykzo(=1)* ux #0).

A diagram G is adequate if G is plus adequate and minus adequate.
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The diagram 4 of Fig. 1.4 is an example of adequate diagram.

If (7 is a link diagram, then S, (resp. §7) has no cut edges. There-
fore Fy (resp. F_) has no edges and all edges of Jy (resp. J_) are
loops. Suppose that J, (resp. J_) has n loops. Then it is clear that

pr = (:) ( resp. px = (:) ) By the binomial theorem we have

0=0"=(1+(-1)" = i p(-1)F (:) Therefore we have that G

is plus (resp. minus) adequate if and only if n = 0. Since # = 0 means
that G has no plus (resp. minus) essential crossings, & is plus (resp.
minus) adequate if and only if G is a plus (resp. minus) adequate link
diagram in the sense of [8].

Theorem 3.3.
(1) Let G be a plus adequate diagram. Then

maz(G) = ¢(G) + H1(5+(G))

and the coefficient of A™*(&) in R&(A) is (1) T (—1)kp;.
(2) Let G be a minus adequate diagram. Then

min(G) = —e(G) — B1(S-(G))

and the coefficient of A™™G) in Rg(A) is (~1)XD T2 (=1)Fpus.
(8) Let G be an adequate diagram. Then

7(G) = 2¢(G) + Bi(S+(G)) + B1(5-(G))-

Proof. We will prove (1). Let a;(f(A)) denote the coefficient of
A" in a Laurent polynomial f{A4). By Lemma 2.1 it is sufficient to show
that

G Gyrmse (& Ra(A)) = (=X Y (~1)kp;.
k=0
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By Sublemma 2.3 and Proposition 3.1, it is sufficient to consider
the states without minus spins and cut edges. Moreover, if a state 5 has
a zero spin at a crossing which is not plus essential, then we can show
that maz({G|S}H(S)) < 1(5+) + ¢(G) by the a;rgument in the proof
of Sublemma 2.3. .

Let S be a state of G without minus spins and cut edges such that
each zero spin of § occurs at a plus essential crossing point of G. Then
it is easy to see that §,(85) = 1(S+) + 2(5). Therefore p(5) — m(S) +
A(5) = p(5) + B1(S) = p(5) + Br(54) + 2(8) = o(G)+ B1(Sy).

Then by Proposition 3.1 we have that
maz({G|S}YH(S)) = maz{G|S} + maz(H(S)) =

= p(8) + Bui(5) = c(G) + B1(S4)

and

ac(G)+ﬁ1(S+)({é|S}H(S)) = (—1)X5) = (—MO+=3),

Let K,(S) be a subgraph of J; which is obtained from F; by
adding the edges that correspond to the zero spins of §. Then K, (5)
has no cut edges and B(K4(5)) = 2(5). By this correspondence, we
have that there are py states of G without minus spins and cut edges and
with k zero spins at plus essential crossing points. Their contribution to
o Gye s (Ra(A)) is (~1)X(+5p,  Therefore we have

Cyinimisy) (Ra(A) = D (=1)XO+kp, = (XD Y (~1)kp,.
k=0 k=0

The following result corresponds to the result in link theory that
adequate links are nontrivial [8].

_ Corollary 3.4. If a graph G has an adequate disgram G with
c(G) > 0, then ¢(G) > 0 i.e. G cannot be deformed into a plane R? in
R3 by any flat deformation.
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Proof. Let G be the underlying projection of G. If B, (@) = Bi(G),
then we easily have that all states of G’ has cut edges. Then G is not
adequate. Therefore we have that 5 (G) > $1(G). Homologically, G is
obtained from S+(G) (resp. S_(G ) by adding ¢(G) edges. Therefore we
have 8, (54(G)) +¢(G) > 81(G) and B (5 (G))+¢(G) > 61(G). There-
fore, by Theorem 3.3 (3) we have 7(G) = #(G) = 2¢(G) + 51(5+(G)) +
B1(5_(G)) > 26,(G) > 26:(G). Suppose that G has a diagram without
crossing points. Then we have r(G) < 26,(G)} by Corollary 1.5. This is
a contradiction. ® .

Examples of adeq;ua,te diagrams are given in section 5.

4. ALTERNATING DIAGRAMS

Definition 4.1. A diagram G of a graph G is weakly alternating if
over crossing and under crossing appear alternately whenever we trace
the image of an edge of G from ils end to its another end.

We remark here that this property is not topological. See Fig. 4.1.

(0} (D)

not weakly alternating weakly alternating

Fig. 4.1
Let G be a regular projection of a graph G. If we forget the position
of G in R® and consider G as an abstract graph, then G is called o

drawing of G. For a drawing G there are QC(G) diagrams that have
G as their common underlying projection. We denote the set of these
diagrams by D(G).

A drawing G is said to be alternatable if D(@) contains an weakly
alternating diagram.
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A graph G is said to be Eulerian if G has no odd-valence vertices.
Theorem 4.2. A drawing G‘ of a graph G is alternatable if and
only if we can oblain a drawing G of an Eulerian graph G' from G by
adding edges to G without introducing new crossing points and vertices.
Proof o G'is a drawing of an Eulerian graph ', then it is easy

to see that G' admits a checkerboard coloring by two colors, say black
and white. We give over/under information at each crossing point of G'

as illustrated in Fig. 4.2.

Then the resultant diagram G' is weakly alternating. Therefore G
is alternatable and therefore G is also alternatable.

Fig. 4.2

Next we will show the converse. Suppose that we cannot obtain any
drawing of an Eulerian graph from G without introducing new crossings
and vertices. Let G’ be a drawing of a graph G’ obtained from G without
introducing new crossings and vertices such that the number of odd-
valence vertices of ' is minimal among all such drawings.

Let v'be an odd-valence vertex of G' and let R, be the component
of (§2 — G')UV(G") that contains v. If R, contains another odd-valence
vertex w, the we choose a simple path from v to w in R,. This path can
be reahzed by some edges that are attached to '. This contradicts to
the minimality of the number of odd-valence vertices of G'. Therefore
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we have that R, contains no other odd-valence vertices. The boundary
cicuits of R, contains four types of crossings as illustrated in Fig. 4.3.

type | type Il type I type 1V

Fig. 4.3

By the handshaking lemma of graph theory we have that the num-
ber of type Il crossing points is odd. Then it follows easily that at least
one of the boundary circuits of R, cannot admit alternating over/under

crossing information. Therefore G' and G are not alternatable. m

An example of non-alternatable drawing is illustrated in Fig. 4.4.

Fig. 4.4
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A diagram G is said to be connected if its underlying projection is
connected.

Let o(G) be the number of odd-valence vertices of a graph G. We
remark here that o(G) is always even.

Definition 4.3. A connected diagram G of a graph G is alternat-
ing if there is a diagram G' of an Eulerian graph G’ obtained from G
by adding 3_%_9 edges without introducing new crossing points and ver-

tices such that the over/under crossing information of G comes from a
checkerboard coloring of G' as in Fig. 4.2.

A diagram G is alternating if each connected component of G is
alternating.

The diagram 6 of Fig. 1.4 is an example of alternating diagram.

. Theorem 4.4. Let G be an alternating diagram of a graph G and
G its underlying projection. Then

B(SHG) + B(5-(E) 2 () +260(8) ~ x(G) - 22,
Proof. It is sufficient to show
B(SHC) + AulS(O) > @) +2 - x(6) - X

for a connected alternating diagram G of a graph G.

Let G’ be a diagram of an Eulerian graph G’ obtained from G by
adding 3(291 edges such that the over/under crossing information of G

(and hence G) comes from a checkerboard coloring of @. Then it is
clear that 31(S4+(G’')) (resp. B1(S-(G))) is greater than or equal to the
number of white (resp. black) regions. It is easy to see that the number

of regions of (§%,G") is equal to ¢(G') — x(G') + 2. Since ¢(G') = ¢(G)
and x(G") = x(G) - ﬂ_g_l we have

BSH(EN) + (S (C) 2 (@) +2 - x(6) + 2.
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It is clear that 81(54+(G)) 2 F(S+(G)) - 2 and 5i(§ - (&) >
Bi(S - (G") - ﬂ;—;z Therefore we have the conclusion. =

If G = § of Fig. 1.4, then we have 51(5,.(G)) = 4 and 8,(5-(G)) =
3. Therefore the inequality of Theorem 4.4 is best possible.

The following corollary follows immediately from Theorem 3.3(3)
and Theorem 4.4.

Corollary 4.5. Let G be an adeguate alternating diagram of a
graph G and G its underlying projection. Then

(6) 2 3¢(G) - x(G) + 260(8) - X&),

Corollary 4.6. Let G be an adequate alternating diagram of a
graph G and G its underlying projection. Then

(G) - e(6) € +(s(6) + ) + X3 (@) - 1).

Proof. By Corollary 4.5 and Corollary 1.2, we have
.y Ay o(G)
3e(G)—x(G) +260(G) ~ =5 < r(G) € 3e(G)-x(G)+ $(G)+v(G)-1.

Therefore we have the result. [ |

Corollary 4.7. If G is an adequate alternating diagram of a non-
splittable graph G, then

o(G)

(G —e(G) < { (G)+ -2}

Therefore if (G} < 4 — %8} then o(G) = ¢(G).

2
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Remark. It is well known that a reduced alternating link diagram
is adequate. But there are many non-adequate alternating diagrams.
See Fig. 4.5 for such an example.

)

Fig. 4.5

5. EXAMPLES

In this section we show some examples of diagrams with minimal
number of crossings.

Some more general statements can be obtained by the same method
in this section. But we only consider some restricted cases for the sim-
plicity.

It seems to the authors that one of the difficulties of deciding cross-
ing numbers of spatial graphs is the difficulty of the estimation of the
splitting degree $(G).

Proposition 5.1. Let G be @ link with v(G) = n. Then 3(G) =
n+ 1.

__Proof. If Gisa connected link projection, then we easily have
s{(7) = Po(T'{G)) = 2 because G admits a checkerboard coloring. There-
fore we have the result. =
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Corollary 5.2. [10](12][6]

If G is a reduced alternating link diagram of a link G, then c(é’ )=
().

Proof. Let G be the underlying projection of G. Let v(G) = n and
Bo(G) = m. Then m < n. Suppose that m < n. Then there is a diagram
G' of G such that ¢(G') < ¢(G) - 2(n — m) and Fo(G') = n where G is
the underlying porjection of G'. A reduced alternating link diagram is
adequate. Therefore by Corollary 4.5 we have r(G) > 3¢(G) + 2m. On
the other hand, by Theorem 1.1 and Proposition 5.1 we have »(G) <
3¢(G") + 2n < 3¢(G) — 4n + 6m. Therefore we have m > n. Thus we
have m = n.

Then by Corollary 4.6 and Proposition 5.1 we have

c(é)—-c(G)S%{n+l+n+0—2n—1}=0.

A theta curve G in R? is said to be globally knotted if G is not
obtained from an unknotted theta curve Gg C R* C B3 by local sum of
knots.

Proposition 5.3. Let G be a globally knotted theta curve. Then
s(G) is less than or equal to two.

Proof. We use the fact that if a projection G, is obtained from a
projection G1 by smoothing a crossing point of Gl, then s(Gl) < S(Gz),
cf. Fig. 2.3.

Let G be a projection of G. Then G necessarily have a crossing
point of different edges. We will obtain the projection Go of Flg 5.1 by
a series of smoothing of G. Then we have s(G) < S(Gg) =
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~

Go

Fig. 5.1

We can eliminate by smobthing all crossings each of which is of one
edge. See Fig. 5.2.

Fig. 5.2

Thus we may suppose that each crossing point of &G = &,U& U&; are
of €; and €; for some i # j, where ¢; is the image of an edge e; of G. Let
V(G) = {v1,v:} and 7; the image of v;,. We may suppose without loss
of generality that & has crossing points and the first crossing point ¢
which we encounter when we trace €; from %y is of € and €;. Then the
arcs from %) to cp bounds a disk 6 on $2. By smoothing and renumbering
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of edges if necessary, we may suppose that €3 runs away from § at %, as
illustrated in Fig. 5.3.

Fig. 5.3

By a series of smoothings of Fig. 5.4 and the innermost argument,
we have that d4 has no crossing points except ¢q.

Fig. 5.4

One of the two smoothings at a crossing point preserves that G is
a projection of a theta curve. Therefore we can eliminate all the other
crossing points and obtain Go. B
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Let G be a diagram of a theta curve G and G its underlying pro-
jection.

Definition 5.4. A projection G of a theta curve is reduced if G has
no crossings of the types illustrated in Fig. 5.5 where T; is any tangle
possibly with vertices in it.

A diagram G of a theta curve is reduced if its underlying projection
ts reduced.

(a) (b)

Fig. 5.5

If Gis alternating, then the vertices of G lie on the boundary of a
region of §% - G.

Theorem 5.5. Let G be a reduced alternating diagram of a theta
curve G in R3. i G has the local part illustrated in Fig. 5.6, then G is
adequate and ¢(G) = ¢(G).
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-

\

Fig. 5.6
Proof. We first show that G is plus adequate.

Let vy,v; and ¢y, ¢y be the vertices and crossing points as illustrated
in Fig. 5.7 (a). Let e; be the edge of 54 (G) illustrated in Fig. 5.7 (b).

C1
V1 Vi/\V2

C2 V2 1

/ N
(a) (b)

Fig. 5.7
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We note that §,(G') - {e;} is a disjoint union of circles. If ¢, is not
a cut edge of §4(G), then v; and v, belongs to a circle of §,(G) — {e1}.
Then we easily have that ¢y is a crossing of the type Fig. 5.5 (a).
Therefore e; is a cut edge of 5, (G).

Similarly, if ¢; is a plus essential crossing point, then ¢, is a crossing
of Fig. 5.5 (b). Therefore we have that F,(G) is a graph with one edge
which is not a loop and some vertices, and all plus essential crossing
points join the vertices that are the ends of the edge. Suppose that
there are n such plus essential crossing points. By the binomial theorem
we have }7_, (1) (:) = —1 as in section 3. Therefore & is plus

adequate.

By the same argument we have that G is ‘minus adequate. Then by
Corollary 4.7 and Proposition 1.3 we have ¢(G) = ¢(G). ®

_ Let 6(t1,t2,t3) be a theta curve represented by the diagram
6(t1,t2,t3) of Fig. 5.8 where £,,1, and 3 are non zero integers and the
box of ¢; represents |t;| right (resp. left) handed full twists when ¢; > 0
(resp. t; < 0).

t t2 ts

N

g (t1, t2, t3)

Fig. 5.8
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If all ¢; is positive or negative, then we can deform 6(2;,%;,%3) as
illustrated in Fig. 5.9.

Fig. 5.9

_ Then we can apply Theorem 5.5 and conclude that ¢(8(t1,12,%3)) =
e(8(ti, 1, t3)) ~ 1.

If not all ¢; is positive nor negative, then we can easily check by a
calculation that 8(t,,ts,t3) is adequate and

B1(S4(B(t1,t2,13))) + Br(S_(8(t1, 2, 13))) = 2lta] + 2tz] + 2Jta] + L.

By Corollary 3.4, 8(t1,t2,t3) is nontrivial. But all the constituent
knots of 8(t1,t;,t3) are unknotted. Therefore 6(t;,t2,t3) is grobally
knotted and s(#(%1,12,%3)) < 2 by Proposition 5.3.

Then by substituting the equality of Theorem 3.3 (3) to the inequal-
ity of Corollary 1.2 we have

1
e(B(t1,t2,t3)) > §{6|t1 | + 6[£3] + 6]ts] — 2}.
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Therefore we have

C(G(tl,tz,t:g)) = 2lt1| + 2lt2.1 + 2|t3l = C(é(tl,tz,t;;)).
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