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On the Variational Inequality Approach to
Compressible Flows via Hodograph Method

LISA SANTOS

ABSTRACT. We study the flow of a compressible, stationnary and irrotational
fluid with wake, in a channel, around a convex symmetric profile, with assigned
velocity g, at infinity and ¢,<{q, at the wake. In particular, we study the regu-
larity of the free boundary (for a problem which has non-constant coefficients),
in the hodograph plane.

Using variational inequalities, we obtain the solutions of some known cases as
limit of this one, namely the solutions of the problems of an incompressible fluid
in a channel without wake, in the plane with and without wake and the problem
of a compressible fluid in the plane.

We also study the convergence of the free boundary of the new problem to the
free boundaries of the limit corresponding problems.

1. INTRODUCTION

We study the flow with wake of a stationnary, irrotational, compress-
ible fluid, with non-constant density g, in a channel with semi-height #,
around a convex symmetric profile, with given velocity g.. at infinity and
q4.<4g. on the wake.

A change of variable of Baiocchi type in the physical formulation of
the problem, after a hodograph transformation, leads us to a variational
inequality; we also prove that its solution converges to the limit cases of a
fluid
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-in the channel, without wake, when g,—0, [(e, h, 0)]
-in the plane, with wake, when h— + =, (e, +=, g)]
-in the plane, without wake, when h— + , ¢ —0, (o, +=, 0)]

-incompressible, in each of the three situations
above, when the density o— 1, {(1, *, **)]
being *=h, + o and **=¢q_, 0.

The problem (1, + <, 0) was studied by Brézis and Stampacchia ([7]),
the problem (1, + %, g,) by Brézis and Duvaut ([5]), the problem (1, &, O
by Tomarelli ({21}) and the problem (g, +o°, 0) by Brézis ([4]). These
problems were also regarded from the numerical point of view, namely by
Bourgat and Duvaut ([3]) and by Bruch and Dormiani ([8]). These kind of
problems were also studied by Diaz ([9]), Diaz and Dou ([10]), by Hum-
mel ([13], for non-symmetric convex profiles) and extended by Shim-
borsky ({191, [20]) to plane channels, Venturi tubes and flow around a
Joukowski airfoil.

We are going to extend the formulation of these problems to the com-
pressible case (@, h, g,), in a channel, with wake, establishing that each of
the previous cases is a (variational) limit in the hodograph plane, of this
more complex case. We shall also prove the convergence of the free bound-
aries. These results for the incompressible case can be found in [18] and
some of the results for the compressible case were announced in [17]. A
new result is the study of the convergence of the solution of the problem
of a compressible fluid to the solution of the problem of the incompress-
ible one, when the density of the fluid o becomes constant.

In section 2 we formulate the physical problem and introduce the
hodograph transformation. In section 3, after a Baiocchi type change of
variable ([2]) in the hodograph plane, we present the variational formulation
of the problem, for which we know there exists a unique solution. In
section 4 we study the regularity of the solution and free boundary of the
solution of the variational inequality, concluding that it is possible to turn
back to the physical plane and we establish the existence and uniqueness
of solution of the physical problem. In section 5 we study, firstly the con-
vergence of the solution of the problem with wake to the solution of the
problem without wake, when the velocity at the wake goes to zero and
afterwards the convergence of the solution of our problem to the solution
of the problem in the plane, when the height of the channel becomes arbit-
rarily large. In section 6 we extend the convergence results of sections 4 and
5 to the free boundaries. In the last section we prove the convergence of
the solution and free boundary of the compressible problem to the solution
and free boundary of the incompressible problem, when the density of the
fluid goes to one.

2. FORMULATION OF THE PROBLEM

Let &7 be a strictly convex profile with height 2H, symmetric with re-
spect to the OX axe. Consider the flow of a fluid around this profile in a
channel of semi-height A>H>0. We suppose the flow is uniform at infi-
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nity, with assigned velocity q. parallel to the OX axe. The fluid has a
given density g, being

o=glq) (1)

where g is the velocity of the fluid and g is a non-increasing C' function,
bounded below by a strictly positive number m.

Let S be the (unknown) boundary of the wake. We assume § is a line,
decreasing when x grows, which intersects the profile in its descending
part. Let G be the exterior of the profile and wake in the channel.

By symmetry reasons, it is enough to work in the region y=0. We de-
note by G* and &° " the intersections of G and .5 with the region {y=0}.

k ©

¥4

B

Fig. 1. The physical plane.
Let 1y be the stream function defined as follows:

¢x=_942s ¢y=941-

Notice that |V y|=gg(g) and we can consider ¥ as a function of x
and y. Our problem can be formulated as follows:

YyECHGH)NC' (G7),
q; ) ( 4 ) a0, .
1— +l1-—2 Jy -2 _=0in G,
( a2 (q) 1/)'“ a2(q) wyy a2(q) w 34 n
| Vy|=4q,8(q,) on S, (2)
Yx, h)=hq.g(q.), ¥ xER,
®=0o0n % TUS or if y=0,

Jm p(x, y)=yq.g(g-), uniformly in y,
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8(q)
g'(q

being a’(q)=—¢

Consider now v as function of ¢ and 6, instead of x and v (g, =¢g cos 9,
g,=gq sin 6), Then

()=
Nag@ /7" Ng@ ),

Suppose that the equation a{g) =g has a positive solution. Denote by g,
the least positive solution of the equation a{g) =gq;q. is called the velociry
of the sound (later on, we will allow ¢g,=+ %, a(g)=g¢ has no positive so-
lution). :

Notice that the second equation of problem (2) is elliptic in the sub-
sonic domain (g<¢g.) and hyperbolic in the supersonic domain (g>-gq,).
Our study is restricted to the first case.

Define
73
0=J 50 o 3)
and " : t ,
aw=I 8D 4. 5=J ¢@ o,,=J LU @)
4o T G T a4 T

where ¢,=max|q(x, h)|.

Assuming the fluid is totally subsonic, following Brézis ([4]), the pro-
file 577 is transformed in a curve = (which is a free boundary) contained
in the region o>0 that will be denoted by o= [(6).

1
Let R(O)=—[(X")Y(&)+(Y')*(0)]2 the curvature radius of 65" on the
point (X(8),Y(8)), being (X(6),Y(8)) the unique point P of .5 "where the
tangent at P to 357 * makes an angle 8{f<x/2) with the axe OX. We sup-
pose

X, YEC(04,0,), 0<a<l.

We are going to work now in the hodograph plane, i.e., our coordi-
nates are now (f,a) instead of (x,y). We still denote our function, now on
the variables 8 and o, by 1. The figure below shows how the hodograph
transformation acts.
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.8 S R

Fig. 2. The hodograph plane.

The angle between the wake and the profile in the point where both in-
tersect is denoted by #,. The region G~ is transformed in a region £, de-

fined as follows:

g = {(#,0) : 8,<6<0, (P<o<s} U {(8,0): 0<8<b,, <o}

U {(0,0) : l(0)<0<0,}.

Since 6-71=0 on S, we conclude that 1»=0 on §.

Define

Q,=16,.01X10,5[U10, 6,[xR*,  I,={(8,0):6,<0<0},

z,={(0,0):0,<0<0.}, (5)
2.={(0,0):0.<0<+ o},

Problem (2) is equivalent to the following one:

To find y defined in £}, and &2 CQ, such that:

being

k(o)w09+waa=0 in -@’
¥=0
RO
T 1+ ko) HB) (6)
y=0onTl,,
$Y=0on2,,

Y=hg. g(g.) on %,
Pp—0 when o0— + =, >0,
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4 (0) ) o

k=1
8*(q(0)) a*(g{o)

3. THE VARIATIONAL INEQUALITY

In this section we assume the existence of a regular solution i of the
problem in the physical plane, verifying the following physically natural
assumption:

«(*) The line in the physical plane, correspondent to 8=0, intersects
each line paralell to the axe OX at most in one point»,

Remark 3.1. Tomarelli established in [21] that the solution to the

problem of the incompressible fluid in a channel verifies this property.

Let us make now a change of variable of Baiocchi type:

J MO 6. var it @.0eT
«ey q(T) (8)

0 if (8,00€Q N\ &7

wb, o=

Proposition 3.2. The function u verifies the following properties:

1
u>0o0n &, —

2
(q—ua) t gyt u=—R(0) on &,
q o

k

u=ug=u,=0on L, u,=00nrl,

=H ifo=zao,,
w(0,0) | =H- g(qw)hq,,I :g &t ifo,<o<a.,
J ” k() .
=H—-g(q.)hq. dr ifl0)<o <o,

o q(1)
Proof. For the proof of the three first properties, see [4].

k(o)
Since ua=(—)1p, we have u,(#, s)=0, and so u,=0 on I,.
glo
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If c=0,, following [4] we conclude that u(0,0)=H.

Notice that a point (0,0) of X, is image, by the hodograph trans-
formation, of a point (x, k), and y(x, R)=hg.g(q.) (see (5)). If o
is such that I(0)<o<g, (0,0) is image of a point of G,
As =0 on 4ZFTUSU{y=0}, vix, hy=hg(g.)q. and
im0, ¥Y)=y8(9-)4.=hg(g.)q., by the maximum principle (since
Y satisfies an elliptic equation in G*), we conclude that

Y(0,00<hq.8(q.)-

Let o<o,. Then

u(0,0) = J Mo ¥(0,7)dr
) g(r)
AR B J k)
- LO) q(v) ¥(0, 7yde . Y0, v)dr

_p_ [ k@
=H Jo (}(T,-') 1/)(0, T)dl',

which concludes the proof. O
Let I'=18,, 0] X {s}. Define

V,= {v:qv€LHR), qv,ELYQN), — v EL (), v|gor=0}, (9)

Vi

v

1
I‘E,:: Jﬂqz(k Vi+ V:;+ vz)dedo. (10)
Define on V, the following bilinear symmetric form
1
a(u, v)= 24 o u,v,tugy,—uv |dddo, (11

and the convex set

K={vEV,.v=0, v(0,0)=H if c=0., v0,0)=n(0) if 0<0.}, (12)

where
™k
n(a)=H—hqmg(qm)J O 4 (13)
o Q1)
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Lemma 3.3 a is coercive in K, that is,

1a>0 vu, uoeKa(u—uo,u-—uo)za”u—u()“ﬁ; (14)

Proof. The proof is analogous to the one found in [4] for the prob-
lem in the whole plane, without wake, so we omit it. O

Lemma 3.4 uck.
Proof. Results directly from Proposition 3.2.

Lemma 3.5.
u,(07,0)—u,(07,0)=0 if 0,<0<0..

Proof. Reasoning as in [4], we conclude that
1
u(0,0)=—— 1 +s5inb{x(0,0) — X (0)] — cosB[v(8,0) — Y(0)]
oq

where (x(6,0), y(8,0)) is the point of the physical plane applied by the
hodograph transformation in (6,0) and (X(6), Y(8)) is the parametrization
of the profile indicated in the previous section.

Since

1 1
sin 8= ———1v, cos f=—m,,
g eq

we conclude that

u(0,0)= QL (w—xy . —yyp)—X(@)sinf+Y(#)cosb,
q

and as

d(y —xyp,.—yy,)=—xdy,—ydy,,

we have
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1
u(6,0) = —Q-q-{—x(w,)e—y(wy)e] +[—X(&)sind + y(B)cos 0], =

1
= Q——[xgqcos 0+ yogsin8] + [—X(#)sinB + Y() cos 0] ,.
q

Then
ug(O_, 0) - u6(0+ ’ C}') =x(0_9 0) _x(0+a 0)-
The property (*) imposed to the solution of the physical problem

sponds, in the physical plane, to a one-to-one line that joins the unique
point of the profile where =0 (the point of the profile of maximum
height), to a point of the line y=h where the velocity is maximum. The
complement of this curve in G* has two connected components, one the
set of the points where <0 in the hodograph plane and the other the set
of the points where >0 in the hodograph plane. It is now obvious that
x(07,0)=—x(0*,0)=0. O

Theorem 3.6 u is the unique solution of the variational inequality

{MEK, (15)
alu, v—u)zjn G(OR(6)(v—u)dbdo, v vEIK,
Proof,

a(u, v—u) = L q° [—é——u,,(v—u),ﬁ uv—u),—u(v—u) |[dodo

-J

=

--|

=

¢ [_]lc_u"(v_ Uy, +u(v—w,—u(v—u) }a’@da

{(una) (v—u)+qu,(v—u)

2

+q2u(v—u)}d0do+J (u,,, una)-r_f(v—u),
g

where 0 & = UZX_UZ,UT, and 7 is the exterior normal vector to 42/ .

2

Let f(u, v)=(u,,, "T

J flu, v)=0. On Z_, since v(0,0)=uf{0,0) =H we have J
&

x

uo)-ﬁ(u——v). On ¥ we have u,=u,=0, so

fu, v)=0.
On I,, 7 =(0, 1) and u,=0, so [, f(u, v)=0. )
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On X, flu, v)=(ug(0",0) — uy(0*,0)) (v(0,0) — u(0,0)). Using the pre-
vious lemma we know that u,(07,0)—=u,(0",0)=0. On the other hand,
v(0,0)2%(0)=u(0,0) on Z,,50 [ flu, v)=0.

Then

((q—ua) +q2um+qzu) (v—u)dbdo =

a(u,v—u)Z—J .

&
=J G R(O)(v—u)dbdo,
g

by one of the properties of u proved in Proposition 3.2. Since v=0 in
Q.,u=0in O 2, R<0, we have

I g R(O(v—wydbdo= [ q*R(O)(v—u)dbdo,
= a
concluding then that

alu, v—u)= J g’R(6)(v—u)dbdo.

Lo

The uniqueness of solution is a direct consequence of the fact that a is
a symmetric bilinear coercive form. O

Remark 3.7. Related with this problem are the problems of flows of
a compressible fluid with prescribed velocity g. at infinity, around a con-
vex symmetric profile &7, in the three situations below:

(i) in a channel with semi-height £, without wake, [(h, 001,
(i) in the plane, with wake, [(+ =, g)l,
(iii) in the plane, without wake, [(+ oo, 3],

The physical formulation of these problems corresponds to omit in
(2) the references to the wake, the channel or both.

Concerning the variational formulation, we have in each problem the
variational inequality (15), being the space V, defined by (9) with the norm
(10), being s=+¢ and [,=0 in the cases (i), (iii). The convex for each
one of the three problems are the following ones:

— in case (1):

K,={vEV.:v=20,v(0,0)=H if o=0, v(0,0)=n(0) if o<0c,}; (16)
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— in case (ii):
K,={vEV,:v=0, v(0,0)=H if 0=0_}; an

— in case (iii):
K.={veV,.:v=0, v(0,0)=H if 6 =0_}. (18)
If we need to distinguish among the four diferent problems refered
here, we put a subscript %, s, h or sh on the solutions, functions or con-
vex sets related with the problems (o0, 0), (%=, g,), (h, 0) or (k, ¢q,), re-

spectively.

The problem treated here and in the next section is the case (4, ¢,) but
all the results are easily ajustable to the other three cases.

4. REGULARITY OF THE SOLUTION

We are going to look now to (15) as a variational inequality in itself,
independently of its origin, being g(o) and k(o) defined by

9'(0)___
q(0) glq(o)

( G2 HCIC)) )
g'(glo)) glg(o))

assuming from now on that gEW>~(0, ¢.), in order to garantee the
boundedeness of the first and second derivatives of & and gq.

» (=T, (19)

k(o)= (20)

Notice that o, is given and g.=¢(0.); s is equally given, s>0,.,
g,=q(s).

Since the variational inequality (15) has a unique solution we conclude
that the physical problem has at most one solution physically natural, i.e.,
satisfying the property (*); if we prove that # has enough regularity we can
turn back to the physical plane, establishing the existence of a physically
natural solution of the initial problem.

We begin with some important properties of the solution of (15), de-

noted in this section just by u, omiting the subscripts, since there is no
risk of confusion.

Proposition 4.1. Let u be the solution of (15). Then
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0=u@,0)<H, v (8,00, 21

lully, =C, C constant independent of s and h. - (22)

Proof. Let v=u~(u—H cos@)". It is easy to verify that vEI and
a(u—v, u—v)=0, vsing the fact that 1 is solution of problem (15) and di-
rect calculations. Then

1
(e — H cosB)*||*=lu—v|*< —a(u—v, u—v)=0,
a

and so, u=Hcosf0=<H in (},.

To prove (21) consider pEC*Q,)NV,, ¢0,0)=1 if o=g,, 0=¢=1,
and let w(f,0)=Hg(0, o). Obviously weElK.

Noticing that, for wE&K we have
, 1 1 1
[l < —a(u, u)= —a(u, w)— —a(u, w—u)
a o o
and
—alu, w—u)<s— LR(B)qz(w-—u)deos—- LR(G)q wdbdo=C ,
C, positive, since

l
at, w1 [ g (egmt wamtwon =Nullvl,

we have
C 1
2 L4 ©
L L4 ]
concluding then that
u||=C, epending only on a, C, and w. ]
el =C, C depending only , and

Define
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2 ={(6,00€0,:u(0,0)>0}, (£ is an open set);
0, =inf {0€18,, O[:u(8, 5)>0},

Oy =inf {o:u((),a):H—hqwg(q,,,)J k() dr},
a 4(r)

Q,=0,n{6>0}, 0,=0,n{6<0},
Zw:{o}x[am, +00[, 2*={0}X]0*’Gm[: F*=]6*’ O[X{S}-

Proposition 4.2. For every a, 0<a<1 and some 5, 0<8<1, we
have:

a) HECZ'G(_/Z'\ZWUZ*UF*),
weC"(Q,UZ), ucC(Q,UX_ UTl.
b) ueC“(QUZy), ueC(Q,UZy).

Proof. This proposition is a direct consequence of standard results on
partial differential elliptic equations ([11], [14]), since REC"%(8,, 0,), of
a result of Grisvard ([12]) which establishes the W** regularity (for all p,
l=p<+®) near the corner X, M [y={(0, s}} (for details see

Lemma 5.1) and a result of Caffarelli for the Signorini problem ([11]). O

Theorem 4.3. The free boundary =.Md{(6,0):u (6,0)=0} is a
graph o=K8) uniformly Lipschitz in s and h, on any compact subset of
16x, 8,[. The Lipschitz constant depends on |u||c\x,, (being K any compact
subset of ), maxeeq, o,|R(6)|, maxeey, o5|R'(0)], lgllw:= and on

=

1 2
Proof. Since tp=%uo on &7, using that — (ik—uo) + Uy +

q2

k
u=—R(0), differentiating this equality in order to ¢ and noticing that —
q

= - (g%)c, we conclude that k(0)yz+y,=0 on &N\(Z.UZs). As

Y=0 on US Ule and =0 on X since on 2

u(O,a)=H—hqwg(qm)I 7
principle, that ¥ >0 in €. Then 4,>0 in & \ (XU 24) and

G

dr, we conclude, by the strong maximum
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v 0€] Oy, 0, 3o, u(8,00>0 v o=ag,

and we can define an upper semi-continuous parametrization of ¢,
(B =inf {cER :u(8,0)>0}, v 0E]0%, 0 ].

Observe that [(0) <oy, since 1,(0,0,)>0.

Let us verify now that 27" does no contain vertical segments. Rea-
soning by contradiction, let yC .2/ be such a segment. Then =0 and
1p9=%(u9)0=0 on ¥, since u,=0 on .Z"; on the other hand, each point of
y is a point of minimum of the function iy and, by the Hopf maximum

principle, —E;—w—= Ty,>0 on'y {n normal unitary vector), which is absurd.
n

To conclude that / is Lipschitz in a neighborhood of (6,,0,)E >, we
are going to adapt to this case an argument of Alt ([1], [16]} for elliptic
operators with constant coefficients. Let L be the operator

»

1 {4
Lw=—|—\—w,] +wg+w
q k o
G={u>0}N]6,—9,0,+0l[ X)o,—0,0,+0[CL},,
F={(68,00€10,—0’, O,+¢'[xX]o,—¢',0,+0'[:0=l(0)}, o' <p.

where ¢ will be choosen conveniently, suficiently small (in particular in
such a way that GCQ,).

Let w=u+guy,—C u,. We will prove that

1
Vi
3IC,>0 v C, C,=C=<2C, i, >0V ¢, |ef<es w=0in F. (23)

Clearly we have

Fi
Lw=Lu+e(Lu),— CL (~—

)

Noticing that

s S
L{fu,)=fLu,— _qT(Tf oua)a_ = o
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where f=f(0), and

Lu,=(Lu),+ |—

we can verify that

U=l R L4 (e

Let —m be a lower bound (m=0) of

-2

Then Lw=R(0)+&R'(6)+ Cmu,.

Let

a= max {R(9)}<0

0 (0y,

Since u,=0 on I, using the preceding proposition, we conclude that,
given C,>0, choosing o suficiently small, we have 2Comu,=—a/4 in G.
There exists also an g>>0 such that, if |¢|<e¢,, then eR'(8)=<—a/4. So,

v C, C,SC=2C, Ve, le|<e Lw=a/2.

Fix a non-negative function { of class C*(G) such that {=0 in F and
=1 on dG\(0Z2 NK,). Choose x>0 (that will depend only on L, a, ¢
and @', and consequently on ||g|j,~~ and |}||;=~ through @) such that

a
—pult<——
uLE=——
If we prove that
w=u on IG\(@BZ NQ), (24)

since w=0 in 42 N{),, using the maximum principle, we conclude that
w—uf=0 on G, establishing then (23).

To prove (24), recall that »,>0 in & and define
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u(8,0):(0,00)€G and u(6,0)>¢ 3.

1
y(g)=inf {
V(o)

Let us see that y(£)>0. Argue by contradition. Then there exists a se-
quence (£,), of elements of G converging to an element £,EG U such

i
that ———u (£.)—y(e)=<0.
d mu(é.) V(E)

(&) = Vk(&,)y(e)=0, which contradicts the fact that u, is strictly positi-
ve in &7,

Then we have w(§)=¢ and

Let M =|u||1z and define

. { # } M
Ey=min{— L, Ef, Cyp= .
I+M y(&o)

Let (@,0)€dGN\(d%” NQ,) be such that u(f,0)=g,. Then
w(B,0)<(1+M)e,<pu.

Let (6,0) be now a point of dG\(8< N{},) such that u(8,0)>¢,.
Then we have w=M+eM—M=<yu. We have then established (24) and
from this we easily deduce that F verifies the (uniform) cone property (or
equivalently 0F is Lipschitz) since

(—e, C)-Vu=0 v C=Chua ve:|e|<eg,,

where a is a positive lower bound of the function \/1:7 in G, which exists
by the continuity and strict positivity of & in [0, &], for any b such that
0<b<g. O

Theorem 4.4.

[ECLe and uEC (U .Z).

Proof. These results are direct consequence of known theorems on
the regularity of the free boundaries (once more since REC"*) and of
Theorem 4.3 ([11], [14], [16]).

Observe that, established the regularity of the function u it is easy to
verify the possibility of returning to the physical plane through the inverse

transformation of the hodograph and that 1,[1:%140 is the unique physically

natural solution of the initial problem, with the desired regularity.
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5. THE CONVERGENCE OF THE SOLUTION TO THE
COMPRESSIBLE LIMIT CASES

In this section we are going to let s— + = firstly (it corresponds to let
the velocity of the wake g—0) and prove that the solution of problem
(*, gq,) converges to the solution of problem (*, 0), being *=h, + . The
proofs are presented just for the case h<{+ o, being the other case simi-
lar. The second step is to let ~— + o and prove that the solution of prob-
lem (+ o0, g,) is the limit of the solutions of problems (&, g,), g,=0. The
proof presented here is just for the case g,>0, since the other case is
analogous.

Lemma 5.1.

| ()07, 5 =C,

C contant independent of s and h.

Proof. Denote, to simplify, u, by u.

Let € C”(R) be uniformly Lipschitz, 0=¢=1, and such that ¢=1 if
s—o<g, =0 if o<s—3e, ¢ fixed less than (s—o0,)/4. Let
Q=108 0[X]o., s[ and w=opu. Let

Lo L@ (q_26)+ ¢,
oo \k 9o/ o06*

As Lu=—R(0)) >0, W is the solution of problem

2
Lw=—gR(0) ) (o0 + —lz—(i—%u) + L%uo,
w,=0on UL, 9Kk o Kk
w=gH on X,

w=0onZ%,,

(25)

where I,=16,, 0( X {0.}, Z,={0} X]o., s[, 2, ={6} X]o., s[.

Let

1
f==eR(OYY o0y + 7 (W



350 Lisa Santos

Using the properties of k, ¢ and u, we can easily conclude that
FELYQ) and so w, which is the solution of Lw=F, belongs to H*(Q). But,
as

HZ(Q)t_.W""(Q), v p<+eo,
we have weEW'?(Q) and fFELXQ), v p<+ o,
By a result of Grisvard ([12]), since the necessary compatibility condi-

tions are verified on the vertices and interior of the rectangle Q, we can
assert that we W*#(Q) and

“W“wlﬂco) = (“f”LP(Q) + ”‘PH ”wl-IW(zﬂ)) - (26)

Since [|ul|,, is independent of s and A, we conclude that {{f]},-,, is inde-

pendent of s and A and consequently, iy, is bounded independently

of s and A. Since w=u if 0>s—~¢, we have that the C>* norm of u, is
bounded in a neighborhood of (07, s5), independently of s and k. O

Lemma 5.2.

0

L (W8, 5)|do=<C, 27

C constant independent of s and h.

k
Proof. For simplicity, we omit the subscripts sh. Since u,=—1y,
q

and

2

2
q—(—{;'c—uo) +upy+u=—R(0) in Z,

we have
(q9)e=(—R(0) — upy—u)q" on &
On points of the form (8, 5), 1 =0, so
Yo, 5)=[—R(O) —ug(0, s)—u(f, 9lg(s).

Besides that
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.. y(B,0+h
Vo8, 9)=lim-————=0,
so

i)

L |9, (6, )do = | —y,(8, 5)d6

0

u(f, s)q()dé + J U g (0, 5)g(s)db

"

=

JO
9*
JO
3*

JT
= -—-2—Hq(s)+u3 (07, 5)q(s)
=< %H+ 4y (07, 5),

since g is non-increasing and ¢(0)=1. O

Extend now u,, to 3={(}_ as follows:

_ _fu, 8,00 if(6,0€Q,
4(6,0) = {us,,(a,a) if (8,EQN Q,

Proposition 5.3,
,EK,NL(D)
and i, is the unique solution of the variational inequality
Al v =) = L[R(BH
+0,4(0,0)]¢*(v—ii,)d0do, v vEKNL™(Q),

being

1
@al0,0)=——(Wu)(0, S)xz,, Ex=18x, O[X]s, + [

q(s)

Proof. Denote &, by & and u, by u. We can easily check that

351

(28)

(29)

(30)
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RECY (D UELN\Z UZy)), GEC(Z UE4),
and also that #€K,NL™({1).

Let us evaluate Li. Let (#,0)EEx: then

{qu;‘(—i—ﬁa) +ﬁee+ﬁ} (8,0) = uy,(8, s)+ulb, s)

1
= —R(O)———9u0, s).

q(s)
Then
Lu in &
Li={0 1 in QN QUEY)
—R()———y(0,s5) inEx.

q(s)

.
Since AP UE+)=FUZ UZ:U {84} X1s, + o[, a—”=0
n

2
(ﬁg, qﬁa)'n(v—ﬁ)ao, we have
2OE UE, k

{64} X 15, + [ and J
-~ -~ — J 2 l - -~ - e ~ -
a(@, v=a) = g Tu,,(v—u),,+u9(v-—u9)—u(v—u)
= —-J {(iﬂ ) (v—i)+i (v—ﬁ)qz+ﬁ(v—ﬁ)qz}
SUE. k ] v (1]
I P Y
+L@UE')(u9, Tu") n{v—a)

> L RO — i)+ [

E

q(s)

= Jn{R(O)+<p,,.(9,0)}q"(0)(v—ﬁ),

since R<0, ¢,<0, d|awsues =0 and v=0. D

on

1
{R(9)+ —y, (0, s)}qz(o)(v—ﬁ)
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Theorem 5.4,
iy —wly=Ce™ v s>a., (31)
C constant independent of s and h.
In particular

0, — uinV.
Fep 00
Proof. Recall that 4,E[, and

) 1
1a>0 vy, wek,: v-w|i=s —alv—w, v—w).
a

Then
a"ﬁsh_uk||!2/ = a(li =y, Gy uy)

= —a(ily, u,— i) —alu,, d,—u,)
= Jn {R(B) + ‘P;h(e’ U)} qz(o.) (u,,hﬁs,,)dﬂdo
- LR(B)qz(a) (i, — u,)d6 do

= - [ put0.00 @, 1,100

2

JE l(wsh)a(es 0) | (uh - ﬂ,,,)d@do

q(s)
< w0 9las| L0,
By s q(s)

since u,<H and #,=0.

q(0)
g(q(0))
= I'it ¢ =5. Using this fact and L.emma 5.2 we conclude that

As the function g is decreasing since q'(g)=— <0, we have

q(0)
q(s)
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+

G
Ha.rh - uh”%’S_a_I ‘?(U) d07 (32)

5

C, constant independent of s and A.
Since g(0)=<e™", the estimation results directly from (32). 0O
Extending now u, to () as we did with u,, it is possible to prove
equally that (u,),(07, s) is bounded independently of s, #,€EK,NL”({})
and it is solution of a variational inequality analogous to (29). We have
then
Theorem 5.5.
&, ~ulp<Ce™, (33)
C constant independent of s, and so
g, - uinV.
Snp 20

O

Let us study now what happens when h— + o, firstly with s fixed.
We have

Lemma 5.6. Let uy, u, and u, be the solutions of (15) with convex
sets K ;, I§,, and I, respectively. Then

ui=u,=u, in 8, if h<h. (34)

O

T
Proof. Since the obstacle 17,,(0)=H—hqmg(qw)J ) drt decreases

q(7)

on the segment {0} XR* when h increases, we have

K,;CK, CIK, when h<h.

and, using comparision arguments, we conclude (34). O

Theorem 5.7.

N — u*=<Cti?, C constant independent of s and h, (35)
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where t, is the unique solution n,(0,—0)=0, n defined in (13).

Proof. Let

W.(Q)={vEV :qvEL", qv,EL", LvaEL “1,

Vi
and suppose that

v vEKNW.(Q) 1v,EK, NW_(Q):

|Vh_VH\2/, =Cg, (36)
C, constant independent of s and 4.

Since KNW,(£,) is dense in I, and u, €K, there exists vEKN W, ({},)
such that |lv—u,|f} =C,1, and so

1v,EK,NW_ (Q): |

u—v)2i<2Ct,
Then, since

a”ush— us”‘zfs = a(usk_ us’ 'ush_ u:)

= _a(us: us};_us)_a(us}v vh_'ush)_a(ush’ us_vh)’

and a(u, v)<||u|||lv| (as it was established in the proof of Proposition
1), we have

aflug—ul}, = J“R(e)qz(o)(us,.—u,)dedo

+ |, ROIG(0) v~ u,)d0do+ | | e~ v I,

< IR(0)q()||xa lg(@) =)
= D”Vh_ us”V,,

oyt ”usk“ V,”Vh'_ u:“v,

D constant independent of s and A.

Then

||t — .} = Cti%, C constant independent of s and A.

To prove (36), given vEKNW_(£2,), define v,(8,0) as follows:

v(@,o0y(®) if o&lo.—2¢,,0.],
W6, 0.)9(0) if 0E[0u—1,,0.],
{v(0,0.) + [(o+1,—o0Yt,]1[v(B,0.)—v(0,0.—2t)]}y(6) otherwise,
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where Y €C'([6,, 8,)), ¥=0, p(0)=1, ¥(B:) =y (0,)=0.
Observe that v,(0,0)=H if 0=0..
If o€[0.—1,,0.], v,(0,0)=v(0,0)=H=n,(0), 1, defined in (13).

If 6€E[0.—2t,,0,—1,], v,(0,0)=0=1,(0), since f, is the only solution
of ,(0,—0)=0.

Since v,EV,, v,E€K,. Besides, v,EW..(£,)}.
Direct calculations show that

lv—v,l;, <C t,, C, constant independent of s and k. O

. . .
Remark 5.8. Since k(0)#0 in [T’OW] and k is continuous,

Oy
— 0

iE:k(o)y=E v oE

Then, for #, small enough,

= k(x
f 2O oz ger-1-e),
Tty q(f)
using the fact that g{(o)=<e™°. Then
| L A
—e h_,
hq.g(q.)&e™
and, for A big, we conclude that
= (1 H 1 ) C
=-1lo - —~—
ST g B )

Corollary 5.9. We have the following order of convergence

u—ully, = Ch"?, C constant independent of s and h

and consequently

Uy 2 U N V.. o
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Theorem 5.10.
(lu,— ulz=<Ct}?, C constant independent of h, (37)

being 1, the unique solution of n,(0.—0) = 0, n, defined in (13).
Furthermore

e, — ul2=C,h~'72, C, constant independent of k, (38)
and so,

u, — uinVv. O
P

6. STABILITY OF THE FREE BOUNDARIES
Let
Fa=Hu,=0}NaQ,, Z =0{u,=0}NQ,,
Z={u,=0}NQ and L={u=0}N4,
be the free boundaries of problems (s, k), (s, + ®©), (+, 5) and
(+o, +=), It is known, by Theorem 4.3, that the free boundaries are
graphs of functions {,,, [, [, and [ respectively. Qur aim in this section is
to establish -convergence results for these functions when s—+

or h— + w0,

We begin with the following lemma, for the problems with wake:

Lemma 6.1. 0:— 68, when s— + 0, being Oy the angle beetwen the
profile and wake on the point of intersection of both.

Proof. Since #, are uniformly bounded in WiZ(Q), 4, — W in

W2r — weak and, since W**_.C"“, being the inclusion compact, we con-

loc

clude that #, = uniformly in the compact subsets of (). Since

1 {(6)— + © when 68— &,, we must have O4-—>6, when s—+ o, O
Fix 6 >0 arbitrarily small. By Lemma 6.1
15, V525, 0+<0,+06/2,

{observe that 64 =80x(s)). Let I,=({60,+9, 68,—06]. Then
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Theorem 6.2.
(1) ”lsh_lh”CD.uUd Ce™ gz,
(2) H["_lllco'aud )SCh —(]—a)jg,
(3) ||£5k - l.f”Co'u([b )SCh _(l“a)fs, Vs =s .

@) = Hloeq, ,<Ce™, v =5,

being C constants, independent of s and h and a any number belonging to
the interval 10, 1].

Proof. The proof will be presented just for case (1), since the others
are similar.

Let yEC;(QNEUZ,)) be a cur off function such that 0=y=],

with ¥=0 in a neighbourhood of (% ,U.Z#,)N10,+06/2, 0,— /2 XR*
and supp yCI..

Then vii, is solution of the variational inequality

a(yily, v—yiu)= L%(G, o)(v—yi,), Vv VvEK, (39)
and yu, is solution of the variational inequality
a(yu,, v—yu,) = L{Pz(ﬂ,a)(v—wh), ¥ vEK, (40)
being
K={veV:v=0}, (41)
qZ qZ
#=vq’RO) +¢,4(0,0)] - (Tyou,h) Ve ),
— @V ook~ 2477 o1t 1) s
and

2

q q
®=yqR(E)— (TVauk) ~Ve (o~ TV o0 itn=2q"Y 4 () o

being ¢, defined in (30).

Let K=y7'(1). Since suppy is a compact set, K is a compact subset of
Q.. Let
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B=min|R(6)¢*(0)|>0.
Observe that
P =@, =q (O)R()=—-F<0, on K,
0, using a result of [16], we have

”lsh(e)_lh(6)||L'(BB+6.0‘—6) = ”Zn_Xz”L'(x) 42)

I
= FJ(J(PI —(P2|d6d0,

where ¥, =y -0 and X,=x(,,-0;- But, since g, g, and k are bounded on
K (notice that (6, 0)&£K), we conclude that

LI%-%I = J a’lv,
n’

=C

2
q
T(ush_ w,) | +2ydu,— “h)e| + |Vsa(u:h_ uh)|

u.fk_ uh“lzf'

We are going to use now the following interpolation inequality, due to
Gagliardo-Nirenberg ([15]): for all a such that 0<a <1, for all £>0,

Allcoeia,n = Coe Y [lomay +(Ca+ Co® Ol oy

Since I,—1, is a Lipschitz function, with Lipschitz constant indepen-
dent of s and A, we have

21‘(1+a)”[rh
b}

||lsh'"'lh“c°'“(a, ra,0,-8 = Ci& _l:-||:_‘“m,,+a,e,,—a)

+ (C+ C e N =Ll o, 06,5

E Ce-s(l—-a).f4

2

—s(t—a)/d

choosing e=¢ , and using Theorem 4.3 and property 42. O

7. THE INCOMPRESSIBLE CASE AS A LIMIT CASE

We are going to show in this section that, if g, is a sequence of den-
sity functions (of the fluid) such that

g.EW*®R), (44)
im,M>0 vx€ER* vneEN m=g (0)=M, (45)

g,—1, g,'— 0 uniformly on the compact subsets of R, 46)
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then, if v, is the solution of the problem (after a convenient translation) in
one of the four situations refered before (in the channel with wake, in the
channel without wake, in the plane with wake and in the plane without
wake), with density function g,, then v,—sv in a convenient space, being v

the solution of the limit problem with density function g=1; besides e™°v
is the solution of the problem in the incompressible case, formulated as it
appears in the literature.

Given g,, define

Eﬁr A% dr, (47
1T

where ¢7 denotes the velocity of the sound, which means the least solution
of the equation g’:g = —x. For n sufficiently large, &, is positive, since
qﬁ-? + e, Let o

1 1
s :J LAV dr, o,.=J 80, dr.

n
g, T T

Let ¢, and k, be defined in 10, + [ by the following relations:

9.2 _
4.(0) IACACHM

g.6)=1, (48)

k,(0)=

7.(0)£,(4.(0)) ) 49)

gig. (o)) ( £.(4.(0))

Recall that the variable o (which depends on n) is related with function

T 8l.T
q, (taken as a variable) by the following relation: o(g,)= _fzn gi ) dr. Re-

defining the problem with a different initial condition for g, corresponds to
make a translation in the variable o, more specificly, ¢ ~ 0+§&,, and, in

£.(7)
T

1
the new variables, o(q,,)=f,;” dr, the function g, evaluates 1 in zero

and is defined on 1—§&,, +o°[.

Let

{FJH=]68, 00 {s,},
Q, =16, 0[X1=&,, 8,[UI0, B,(X]=E,, +[.
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Observe that, from now on, everything done for n€RN, has also a
meaning for n= oo, being, for simplicity, omited the subscript « when-
ever convenient.

Let n€NU {+ e}, The space V, in which we are going to work is

V,={vigvELHQ,), q.v,ELQ,),

(50}
\C/I;i_ vELYL,), vig,\, =0},
with the canonical norm
2 2 1 b 2 2
Ivll= 9 ?va+ vi+v?| dfdo. (51)
Let
h -
Cloy=H—h+ —qug"(q ))) (52)
q.(gqto
and
n.=WHAE)vO. (53)

The convex that appears in the variational formulation of the problem
can be defined as follows:

K,={veV, :v=0, v(0,0)=79(0) if =0,

(54)
v(0,0)=7.(0) if 6<a,}.
Consider the bilinear form
,f 1
a,u, v)= o 4n k—uava+u6v3—~uv dfdo. (55)

H

The solution of the problem in the compressible case with density
function g, is the unique solution v, of the problem
v,€K,, neENU{+x}, (56)

a,(v,, v—v.)=[a, R(O)qXo)(v—v)ydbdo, v vEK,

We are going to verify now that all the problems (for any n) can be
defined in the same open subset of 18,, #,[ XR and afterwards relate the
limit problem (n= + %) with the problem of the incompressible fluid.
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The following theorem (see [4]), gives us an a priori estimation of the
maximum velocity of the fluid, or equivalently, of a lower bound of {c:38
v(6,0)>0}, where u, is the solution of problem (56) with density function
g.- In the next theorem, since we are working in a fixed situation, we
omit the n.

Theorem 7.1. Consider the problem (56) with density function g. Let
ox=inf {0:5(a)>0}, being { defined in (52), and q(0x)=gsx. Let a=

MiNgegq, 6, |R(6)[>0 and q, the least positive solution of the equation

9 [—1+ ! [”gm dr]=£—1. (57)
CI*|. g8(gx) Jou T a

If q,=<gq, then the maximum velocity of the fluid is less or equal 1o q,,.

Proof. Let ,u=J £ dr and define, for o=u
4
© J 0 -
o)=a T—u)dr.
? 9. . 4(® H

It is easily verified that ¢=0, ¢(u)=¢,(u)=0 and g+=<gq,. Besides,

. k 9o
since — = — , we conclude that

q q

dr— —+—|. (58)

J * g(n) 11
q T q Q,u

o) =aq, [ q8(q)

Using (58) we conclude that (o) =H. As ¢,=0, o=<H if 0=<04. Ex-
tend ¢ by zero to o<u and define $=¢AH. Simple calculations show

that
1 (¢
_(_k_rpa) +q)—a

Let w=u—(u—@)*, being f*=max{f, 0}. Observe that weEl (€ de-
fined in (54)). Then

a(u, (u—P)H)= L’R(9)q2(0)(u-" D). (59)
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Let us evaluate now a(@, (u—P)"). Since @ depends only on the
variable o and u(@, —&)=0, integrating by parts we obtain

2
o, (u—P)) = ~ L {(qTqb) - cb}(u— ®)*
= I —ag'(u—P)* (60)
{u<o<ainiu=o}

= L —aq’(u—D)*.

As it was refered before, there exists a positive constant C such that
||(u— (D)"HZS Ca(u— P, (u— ") and, since

alu—@, (u—P)yH= L} {R(&)+a}q(u—@) =0,

we conclude that u< @ and, since =0, u=0 on {o<u}. O

Remark 7.2. The preceding theorem is valid whenever g, <g.. When
g,—1 and g/— 0 (uniformly on the compact sets), then g/— + . On the

other hand, observing equation (57) we easily verify that, if g} is the sol-
ution of (57) with density function g,, g,—¢,<+%, g, solution of the

same equation with density function g=1. Then, at least for n big, the
preceding theorem is true in our case.

We verify then that there exists 4 €R such that, for » big, u>—§, and
v,(8,0)=0 for o=u.

Consider the open set
6, =16 00X 1, 5,[U10, 8,[x Ju, + L. (61)

Let ¥, be the restriction of v to ﬁ,n. Define V,, K and 4, in the natural
way, that is considering the intervenient functions with domain of defini-
tion {}, . Then

Proposition 7.3. Vv, is the unique solution of the variational inequality

{u,,eu%,,, nENU {+ =}, 62

a,(u,, v=u)Z [ R(OVG{O)Nv—u)dbdo, Vv E K.
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Proof. The proof is immediate.

Remark 7.4. The formulation (62) of the problem will be the one
used from now on; since there is no risk of confusion, we will omit the
tilde on the functions, for simplicity of writing.

Lemma 7.5.

_ J" dr
(@) g, (o)=¢ l g

(b) q,EC°([u, +=[) and k,EC' ([, + =[).
{c) g—>e", q,’,—"w"’, uniformly on the compact subsets of @, + [

and q,—e"° in H'(u, + ).

{d) k,,—n>l, k,:—’t)O uniformly on the compact subsets of [u, +=| and
k,—1 in H'(u, + ).

Proof. These results are a direct consequence of the definitions of g,
and £,. O

The limit problem is defined letting n= o in problem (62). Notice that
qlo)=e°, k(o)=1, n.=HACL.)VvO0, where {_(0)=H—h+hq_¢°.

The problem for an incompressible fluid (see [7]) has the following
formulation: the open subset of R* considered is

Q.: =]689 le]ms S[U]()’ GA[x]ms +w[’

(see [16]) being s= —log(g,) and m any lower bound of 7,+ .+ log(1 —H/
h), where 7, is the unique negative solution of the equation

(1+H/p)Y1—H/h)y=¢(v+ 1+log (1 —H/h));

= max R(&)<O0.

BE(65.8,]
Recall that I',=16,, 0{ X {s}. The space considered in this case is

V={veEH'(Q):v =0},

|aqr,
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the convex set is

K'={veV':v=0, v(0,0)=He™’ if 0=0,,
v(0,0)=®(0) if 0<0.},

where @(0)=hqg,,+ (H—h)e™, and the bilinear form is

Vu-Vvdo do+ J uvdo.
: L

0,

blu, v)=I

Then, the solution # of the problem for an incompressible fluid, for-
mulated in the hodograph plane, using variational inequalities, is the
unique solution of

b(u, v—u)ELR(B)e“’(v—u), v vekK'. (63)

Obviously we can suppose m=u, extending u or v by zero, whether
we are in the situation m>>u or in the other one. We need to extend the
domain of definition of all functions and to make the appropriate change
on the definition of the bilinear form. Since to K and KK’ only belong non-
negative functions and R(6)<<(, the extension of u by zero is the solution
of the extended problem.

Since, given v, wEV’,
a(e’u, e’v)= L {e¥[uv+(uv) +uy)+uy,—uvl}te *ddo

and

0 8,
L (uv),= f uv(o)],+ J w(0)]; "= [ uvd®,
s 8 T

0

because, as 0=u=<He 7, lim

e

uf{f,0)=0, we conclude that
ale’u, evi=bu,v) v u, v€EV'.
Since e*vEK if and only if vEK', we conclude that u is solution of
(56) for n= + % with the definition of {2, given in (61) if and only if ¢ "u
is the solution of (63).

Define, for n€ENU {+=},

K,= (vEV,(Q):v=0, v(0,0)=1,0) if 0 =0,



366 ‘ Lisa Santos
(64)
v(0,0)=n,(0) if 6<0,},

where V,({},) has a definition analogous to V,, being the domains of defi-
nition of the functions just restricted to £2,. Being v, the solution of prob-

lem (56) we are going to define (by extension or restriction) \?"EKH.

Suppose that s,>s. Then define v,=v,, . If s=s, extend v, to {), as
it was done in section 5, that is

. _lvi(8,0) if(8,00€(),,
G {v,,(B,s,,) if (0,00 EQNQ, . (63)
Let a=1/m,m defined in (45) and

W=W(,)={vEH'(Q,):vyq r,=0}. Let Z=¢ “W with the canonical
norm, that is, if weZ, |[w,=|le“wl|,.

Theorem 7.6. If v, is the solution of problem (56) with density func-
tion g, and v is the solution of the same problem with density function 1
and if the assumptions (44}, (45) and (46) are verified, then

9, —v[z =0 (66)

Proof. By Lemma 3.3, the bilinear form q, is coercive in
K,={veV,(Q,):v(0,0)=H if 6>0,}.

Notice that K, contains K,. Since (g,), and (k,), are sequences uni-
formly convergent in the compact subsets, the constant of coerciveness can

be choosen independently of n, as we can verify in the proof of the re-
fered lemma.
Since
iay,0,>0 voEu,+] ag=k,(0)=a,
and (45) is verified, we have that V,(Q,)=g¢;'W({),) and
3.C,G>0 vveV, Cllgvlp=|vl.< Collgy]a.
C, e C, constants independent of n. |

Since g,—»1 uniformly on the compact sets, there exists ¢,=1, ¢,— 1.

alc,

So, g,(0)=c, and, since g, is decreasing, g,=<c,. Notice that r,=e™ 7 is
the solution of equation (48) and j,= l/c} the solution of equation (49)
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(after translation of the variable o) with g,  substituted by ¢, Let
Z,=r;'W the canonical norm (that is, |w|;=|r.w|ly). Then Z, — V,
and [v||y, =C|M|;,, C constant independent of n. Let b, be the following
bilinear form, defined for v, wE€Z,:

b, (v,w)= L e (v w v w ,— vw), (67)

R oo
]

and w_ the solution of (56) with convex set N{I" defined as in (64), but for
the functions 7, and j,.

To prove the result it is sufficient to establish that
”wn_ ﬁn"Z_':O and ”wn— v”Z—:O

Recall that Z=r'WCV,=¢q;'W and w,(0,0)=H for o=o0,, since
w,,El\?ﬂn.

It was proved in section 2 that ||v,, are bounded independently of n
(and the same is verified by the extensions ¥,). Letting a be the constant
of coerciveness of all the bilinear forms a, and b, (for n big enough), we
have

1
Iw, =¥, = —a,(w,— 9,, w,—9,)
a (68)
= L[— a,v,w,—V)—a, (w,¥,—w)].
a
Let wEC'({6;,8,]) verifying
p=0, w@,)=y@B,)=0, y0)=1 (69)

1
and w,Eq; ‘W' NV, verifying ||lw,—w,|, £—, w, (0,0)=H if 0=0, (W,
n
exists because W'“NW is dense in W). Observe that [lw,—w,[, 0.
Define
Ww,(6,0)=w,(0,0) +[W,(0,0) v n,(0)—w (0,0 ]p(6).

Easy verifications allow us to conclude that w,EI, Mg 'W"™. Notice
that ||, —w,||,,,0 and
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_aﬂ(‘oﬂ,wn—'- 9") = _aﬂ(vﬂfli wﬂ— ﬁﬂ) - aﬂ(ﬁ.ﬂ’ Wﬂ_ w’l)

v

< [, 2RO + 010, ~5)+ 15, v, 0

being ¢, defined in (30).
Analogously we construct z, EM, Nr'W"=,|

A

ZT(_ vﬂ

v,.»0. Then
—a,(w,, V,—w,)=<

”wn”Vﬂ”ﬁn_zn“Vn-i_ Jﬂ{r:[R + wn] (Zn— Wn) + gn(w n? zn_ wn)}!

being 1, defined as ¢,, but for the problem with density of the fluid equal
to ¢,, and being £,=a,—b,.

Then

lw. =51z = o)+ Lqi[Rw,](wn— v,

+ J PIR+9,1(z,—w,)
. (70)

= J rRIGY, = w,) +(z,— 9,)]

+ [ @ rre, [, .
where @,=H(|(v,),(07,s,)|+ ! (w,)s(07,s,)|) (for details, see calculations
on section 3). Since |w,—w,[, —0, g;—r;—0 uniformly on the compact
subsets of [u,+ ] and [ose, @,<C|s—s,|, C constant independent of n
(due to the uniform boundedeness of v, and w, in C ""(Qs")), we conclude
that [lw,—7,[,—0.

Analogously, we prove that ||w,,—-v||z-:>0, since Z,=r, ' WCV=eW.
Seeming this case simpler than the case treated before, it has an additional
difficulty, since o, changes, converging to 0. when n— + . Neverthe-

less, this difficulty can be easily solved, choosing the functions
w, in g;' W' NV, verifying w,(0,0)=H for 0=0,A0,.. O

We are going to study now the free boundaries. Recall that g, € W*~,
and so the free boundaries are graphs of Lipschitz functions (with Lips-
chitz constants independent of n).
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The limit problem was not included in what was done in the preceding
sections. However, we have seen in this section, after the translation of
the coordinate o done above, that the limit problem is similar to the others
and so, all the results previously obtained are also true for the limit
problem.

Let I, and ! be parametrizations of d{u,=0} N and of d{u=0}N
respectively. We are going to prove the convergence of the free boundaries
when n—s + o, which means that the free boundary of the problem of the
compressible flow converges to the free boundary of the problem of the in-
compressible flow, when & 1.

Let us begin with a result of convergence of the angles of the wakes
with the profile.
Lemma 7.7.
0%— Ox,
being 0% the angle between the wake and the profile on the point of inter-

section of both, in the problem of the flow with density function g,, and
O« defined in the same way, but for the incompressible case.

Proof. Notice that
w=inf{6:v(6,s,)>0} =sup{6:v (8, s, )=0}
Let us see that 8% converges on the right for 8«. Suppose, by contra-
diction, that this does not happen, that is, '
1e>0 vpeEN 3n,=2p 083> 0,+c.
Observe that v,(6,s,)— v(#,s) uniformly, since ¥, is uniformly bounded
in Wir(€.). Since v,(8,5,)=0 v 6<6% we have v, (0,5,)=0,

v @< O4+e¢and so, passing to the limite, v will be zero for all (8,s) such
that 8, <8< 0+, which is against the definition of 6.

Let us see now that 6% converges on the left to 6«. Suppose not; then
1e>0 vpEN m,=Zp 0y<BOi—e.

Fix r,0<r<e. Let x,=(0%,s,) and notice that xOEN,,p, where N, =
{(6’,0)60," :v,,P(H, 0)>0}. Then, by a resuit of Caffarelli, ([14])
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n a 2
sup{v, (8,0)—v, (0%,5,)} =T,
B.(xp) P P P 4
where B,(x,) is the ball of center x, and radius » and & =min,|R(#)[>0.

Observe that v,,p(@';?,s,,p)=0 and, by the definition of least upper

2

a
bound, there exists (@,,,0,)EB/(x,) such that v, (OHP,U,,P)Z ?r. Since

vnp(6,0)=vnp(6,snp) if o>s,, and (v,)f(0,0)=0, we conclude that
Vo (0, 55,)Zv, (0, ,0,). Since (8, ,0,)EB,(x;), we also have (0, ,s,)€
B,(x,) and |0, —6%|<r<e. Notice that 8, <O%+r<,+(r—e<0x

Since (8, ),en is a bounded sequence, it has a convergent subsequence to a

a
number 6, and 6,= 0+ (r— &)< 8. Since v, (8, , snp)z?r{ passing to

a
the limit we conclude that v(GO,S)E?rZ, which is in contradiction with
the definition of Oy, since §,<Gy. O
Fix 6>0 and let pEN be such that

¥ n=p 5<O.+0. )

Proposition 7.8.
||ln'”l”c“"’(9_+a,9A —a)—:O- (72)
Proof. Let vy be a cur off function with compact support such
that 0=<y=1, and y=1 in a neighbourhood of (&,UZ}N10;+4d/2,

0,—0/2[ XR* and such that suppyCQ X, where X={0} x[inf {0,},
+ [, n large enough.

Then, if v, is the solution of problem (56) and v is the solution of the
same problem for n=+ o, yv, is the solution of the variational inequality

a,,(yv,,,v—yv,,)EL E0,0(v—yv), VVEK, 73)
and v is the solution of the variational inequality

a(yv,v—'yv)zjﬂ E0,00(v—yv), vveEl, (74)
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where K= {vEV:v =0},
4,
k

n

vﬂ) - YU%VA)U

&, = vqAR(O) +¢,(6.0)] — (?o

—Qi'yﬁﬂvn_ ZQiye(vn)a’

being ¢,=0 if {,C {2, and being ¢, defined in (30) otherwise, and

E=ye ™ R(0) — (¥,£72V) = V£ T2 V,— e T v =2 Ty

Observe that

a(yv,v=yv,) = ayv, v=yv) +(@—a) (yv,, v=yv,)

> J Ev—yv)— J L=y, v VveK,

where

L, =

(% e)on,,

n

+[(g2~e™*) (yv,)od

+ [(gi—e ) yv,].
Let K=y"'(1). Since K is a éompact subset of (),
a=d(K,R*\{,)>0 and KCQ_,,
and, since Sa—>5,
pEN v n=p s,>s—all,
and so, KCQ,, for n=p.
Defining
B=min{¢RO)|, RO},
we have, in K,

.~ £)(0,0)= gIR(B) —(g*— e )<~ %<0

and

371
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£(0,0)=e¥R(O)=—-5<0,

for n suficiently large, since g,—>e”’ uniformly in K (compact).

Using (just as for the stability of the free boundaries in s and k) a re-
sult of [16], we conciude that

“ln“'l”L'ca,m,eA—é) = ||Xn—XHL‘<-'o
2
= FJ{!|(§”+C")_§|’

where x,= ., —y and x=yx,q;-

But
[e—co-ai=le—al+ el
Observe that
f 2
L §.-8 = | ylai—e "lIRO)|+ L (n - "")f(" Y

[\, @

+
Jnln )

(V,)o— Vo€ —Zava| + JRIQ:?’GGV:‘ —e€ _zoyeev|

)
+ 2407000 — 277 4|0,

and that

LIC,.ITO,

(2]

since g.—>e”
subsets of R, v, and v are bounded in W2

p.loc

, gi>—e % k,—1, and k;—0 uniformly in the compact
(independently of n).

Since [, are Lipschitz function, by Theorem 4.3, and the Lipschitz
constants are independent of n, using the Gagliardo-Nirenberg inequality
([15]), we conclude,as in the preceding section that
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e, = Hlcoso, 55,50 (75)
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