Existence and Nonexistence of Nontrivial Solutions for Some Nonlinear Elliptic Systems

JEAN VÉLIN AND FRANÇOIS DE THÉLIN

ABSTRACT. In this paper we give some existence and nonexistence results of non trivial solutions of nonlinear elliptic systems involving the p-Laplacian.

0. INTRODUCTION

In this paper, we give some existence and nonexistence results concerning nonlinear elliptic systems. The case of one equation has been studied by many authors.

Let Ω be a bounded regular open set in \mathbb{R}^n and consider the problem
Jean Vélin and François de Thélín

\[
\begin{align*}
(P_\lambda) \\
\begin{cases}
-\Delta u = \lambda f(u) & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega
\end{cases}
\end{align*}
\]

where \(f(u) \in C^0(\mathbb{R}) \), \(0 < \alpha < 1 \), is such that: \(f(0) = 0 \) and \(|f(u)| \leq A \cdot B \cdot |u|^\alpha \).

Any solution \(u^* \) of \((P_\lambda) \) satisfies the Pohožaev’s identity [21]:

\[
\int_\Omega \left[\frac{n-2}{2n} u \cdot f(u^*) - \int_0^{u^*} f(s)ds \right] dx = -\frac{1}{2} \int_{\partial \Omega} |\nabla u^*|^2 (x \cdot \nu) d\sigma,
\]

whence \(u^* = 0 \) if \(\Omega \) is starshaped and

\[
\lambda \left[\frac{n-2}{2n} u \cdot f(u^*) - \int_0^{u^*} f(s)ds \right] > 0.
\]

On the other hand, if

\[
0 < m+1 < \frac{2n}{n-2},
\]

Pohožaev [21] has shown that \((P_\lambda) \) admits an eigenfunction \(u^* = 0 \) corresponding to \(\lambda \).

Always in the scalar case, Ōtani [19], [20] and de Thélín [25] generalize these results for the \(p \)-Laplacian \(\Delta_p u = div(|\nabla u|^{p-2} \nabla u) \).

For example, they give the following results concerning the equation

\[
(E_\lambda) \quad -\Delta_p u = \lambda \cdot |u|^{m-1}u
\]

- If \(\Omega \) is a strictly starshaped open set and \((m+1)(n-p) \geq np \) the only solution \(u^* \in W^{1,p}_0(\Omega) \) of \((E_\lambda) \) is \(u^* \equiv 0 \).

- If \((m+1)(n-p) < np \) and \(m+1 \neq p \), then for any \(\lambda > 0 \), \((E_\lambda) \) admits a positive solution \(u^* \in W^{1,p}_0(\Omega) \).
- If \(m+1 = p \), we have an eigenvalue problem [3].

More recently, in [32], we have given some results concerning the existence and nonexistence of a nontrivial solution \((u^*,v^*) \in W_0^{1,p}(\Omega) \times W_0^{1,q}(\Omega)\) of the following system

\[
\begin{cases}
-\Delta u = \frac{u^{\alpha-1}}{\alpha} + \frac{v^{\beta+1}}{\beta+1} & \text{in } \Omega \\
-\Delta v = \frac{u^{\alpha+1}v}{\alpha+1} & \text{in } \Omega
\end{cases}
\]

We prove

1) nonexistence results when

\[
(\alpha+1) \frac{n-p}{np} + (\beta+1) \frac{n-q}{nq} \geq 1
\]

when \(\Omega \) is a strictly starshaped open set;

2) existence results when

\[
(\alpha+1) \frac{n-p}{np} + (\beta+1) \frac{n-q}{nq} < 1
\]

and when

\[
\frac{\alpha+1}{p} + \frac{\beta+1}{q} \neq 1.
\]

Now, in this paper, we extend the study of existence and nonexistence of positive solutions of the nonlinear elliptic problem

\[
(P) \quad \begin{cases}
-\Delta u = f(x;u,v) & \text{in } \Omega \\
-\Delta v = g(x;u,v) & \text{in } \Omega \\
u = 0, \ v = 0 & \text{on } \partial \Omega.
\end{cases}
\]
Jean Vélin and François de Thélın

We say that (P) is a potential system if there is a C^1 function H such that

$$f(x,s,t) = \frac{\partial H}{\partial s}(x,s,t), \quad g(x,s,t) = \frac{\partial H}{\partial t}(x,s,t).$$

In a first part, following Egnell [10] and Pucci-Serrin [22], we obtain a Pohožaev type identity for potential systems. In the case when Ω is a starshaped bounded open set, this identity gives nonexistence results.

In a second part, we give some existence results for non potential systems. Following Deuel and Hess [7], we construct appropriate sub-supersolutions for (P) and use a suitable comparison principle.

In a third part, we give some existence results for potential systems. Following Nirenberg [18], we apply Mountain-Pass Lemma to find a nontrivial solution; after that, we extend an iterative method previously used by Ōtani [20] for the equation (E_0) to prove that the solution is bounded.

Concerning the systems, we can notice the existence results obtained in [4], [6], [11], [12], [28]. Independently, [13], [22] give nonexistence results.

1. NONEXISTENCE RESULT

In this first section, we propose to extend the non-existence study, made by de Thélın [26] and Egnell [10] in the scalar case, to the following problem (P)

$$\begin{align*}
\text{Find } (u,v) \in X \cap [L^\infty(\Omega)]^2 \text{ such that } \\
(1) \quad & -\Delta u = \frac{\partial H}{\partial u}(x,u,v) \quad \text{in } \Omega \\
(2) \quad & -\Delta v = \frac{\partial H}{\partial v}(x,u,v) \quad \text{in } \Omega \\
& u > 0 \quad \text{in } \Omega \\
& v > 0 \quad \text{in } \Omega
\end{align*}$$

$$\tag{P}$$
Existence and Nonexistence of Nontrivial...

Hereafter, X denotes the space $W^{0,q}_0(\Omega) \times W^{0,q}_0(\Omega)$.

1.1. Properties and Results.

Theorem 1.1. Assume the following hypotheses

i) $H(x;0,0) = 0$ and $\frac{\partial H}{\partial s}(x;0,0) = \frac{\partial H}{\partial t}(x;0,0) = 0$

ii) $\frac{\partial H}{\partial s}(x;s,t), \frac{\partial H}{\partial t}(x;s,t)$ are in $C(\Omega \times \mathbb{R} \times \mathbb{R})$ and $\frac{\partial H}{\partial s}(x;s,t) \geq 0$

\[
\frac{\partial H}{\partial t}(x;s,t) \geq 0 \text{ for any } s,t \geq 0 \text{ and } x \in \Omega
\]

iii) $\forall (s,t) \in \mathbb{R}^2$

\[
H(x;s,t) \leq \frac{n-p}{np} \left(\frac{\partial H}{\partial s}(x;s,t) \right)^+ + \frac{n-q}{nq} \left(\frac{\partial H}{\partial t}(x;s,t) \right)^- - \frac{x}{n} \nabla H(x;s,t)
\]

iv) Ω is a bounded strictly starshaped domain in \mathbb{R}^n containing 0.

Then, $(u^*,v^*) = 0$ is the only solution of (P) in $X \cap [L^\infty(\Omega)]^2$.

Corollary 1.1. Let Ω be a bounded strictly starshaped domain in \mathbb{R}^n and $H(x;s,t) = |s|^{\alpha+1} |t|^{\beta+1}$.

If

\[
(\alpha+1) \frac{n-p}{np} + (\beta+1) \frac{n-q}{nq} \geq 1,
\]

(P) has only the trivial solution $(0,0)$ in $X \cap [L^\infty(\Omega)]^2$.

Proof of the Corollary 1.1. Since

\[
(\alpha+1) \frac{n-p}{np} + (\beta+1) \frac{n-q}{nq} \geq 1,
\]

we have
Jean Vélin and François de Thélin

\begin{equation}
H(x,s,t) \leq \left[(\alpha+1)\frac{n-p}{np} + (\beta+1)\frac{n-q}{nq} \right] H(x,s,t)
\end{equation}

(1.1)

\begin{equation}
\leq \frac{n-p}{np} \left\{ \frac{\partial H}{\partial s}(x,s,t) \right\} + \frac{n-q}{nq} \left\{ \frac{\partial H}{\partial t}(x,s,t) \right\}
\end{equation}

and all the hypotheses of Theorem 1.1 are satisfied.

The proof of Theorem 1.1 needs the following lemma which extends Egnell’s one [10].

Lemma 1.1.1. Let \((u^*, v^*)\) be a solution of the problem \((P)\); then for all \(x\) on the boundary of \(\Omega\), we have: \(|\nabla u^*(x)| \neq 0\) and \(|\nabla v^*(x)| \neq 0\).

Proof. Let \(x_0 \in \partial \Omega\); there is a ball \(B_r \subset \Omega\).

By translation we assume that \(B_{r_0} = \{x \in \Omega; |x| < r_0\}\) and, proceeding as in [10], we introduce the function

\[g(x) = k(e^{-\alpha|x|^p} - e^{-\alpha|x|^q}) \]

For \(p > 1\), a suitable choose of \(\alpha\) gives \(g_p\) such that

\begin{equation}
-\text{div}(\nabla g_p)^{p-2}\nabla g_p \leq a g_p^{-1} \quad \text{in} \quad B_r \setminus B_{r/2}
\end{equation}

(1.2)

Multiplying (1) and (1.2), [resp. (2) and (1.2).] by the test function \(\varphi_p = (g_p - u^*)\), [resp \(\varphi_q = (g_q - v^*)\)] and integrating on the set \(B^*_p = \{x \in B_{r} \setminus B_{r/2}; \varphi_p > 0\}\) [resp. \(B^*_q\)] where \(u^*\) and \(v^*\) are regular, we obtain

\[0 \leq \int_{B^*_p} (|\nabla g_p|^{p-2}\nabla g_p - |\nabla u^*|^{p-2}\nabla u^*) \nabla \varphi_p \, dx \leq -\int_{B^*_p} \frac{\partial H}{\partial u}(x; u^*, v^*) \varphi_p \, dx \]

whence, \(g_p \leq u^*\) in \(B_r \setminus B_{r/2}\).
By construction $g_p(x_0) = u^*(x_0) = 0$, therefore

\begin{equation}
|\nabla u^*(x_0)| > 2k_p \alpha_p e^{-3} > 0
\end{equation}

Proof of Theorem 1.1. Let \((u^*, v^*)\) be a nontrivial solution of \((P)\). For \(i = 1, \ldots, n; \ell = 1, \ldots, n\) let

\[P_i = \sum_{i=1}^{n} |\nabla u^*|^{p-2} \frac{\partial u^*}{\partial x_i} \frac{\partial u^*}{\partial x_i} \quad \text{and} \quad Q_{i\ell} = \sum_{i=1}^{n} |\nabla v^*|^{p-2} \frac{\partial v^*}{\partial x_i} \frac{\partial v^*}{\partial x_{i\ell}} \]

Let \(K_p = \{x \in \Omega; |\nabla u^*(x)| = 0\}, K_q = \{x \in \Omega; |\nabla v^*(x)| = 0\}.

Lemma 1.1. allows us to consider as in [10], the sets \(\Omega_k \supset \Omega_k \subset \Omega, K_p \subset \Omega_k \subset \Omega, \) with \(\text{dist}(K_p, \partial \Omega_k) \to 0, \text{dist}(K_p, \partial \Omega_k) \to 0\), as \(k \to +\infty\) and we define \(\Omega_k = \Omega \cap \Omega_k, \Omega_k = \Omega \cap \Omega_k\).

\begin{equation}
\sum_{i=1}^{n} \int_{\Omega} \frac{\partial P_i}{\partial x_i} dx = \sum_{i=1}^{n} \int_{\Omega_k} \left(\sum_{i=1}^{n} x_{i1} \frac{\partial u^*}{\partial x_i} \frac{\partial u^*}{\partial x_i} \right) dx + \int_{\Omega_k} |\nabla u^*|^p dx
\end{equation}

\begin{equation}
= -\int_{\Omega_k} \left(\sum_{i=1}^{n} x_{i1} \frac{\partial u^*}{\partial x_i} \frac{\partial H(x;u^*,v^*)}{\partial u} \right) dx + \int_{\Omega_k} |\nabla u^*|^p dx
\end{equation}

\begin{equation}
= -\int_{\Omega_k} \frac{1}{p} \frac{\partial}{\partial x_i} \left(x_{i1} |\nabla u^*|^p \right) dx - \int_{\Omega_k} \frac{n}{p} |\nabla u^*|^p dx
\end{equation}
\(\nabla u^* \) do not vanish in \(\Omega_k \) and therefore \(u^* \) is of class \(C^2 \) in \(\Omega_k \), so we can use the Gauss's formula to obtain

\[
(1.5) \quad \sum_{j=1}^{n} \frac{\partial P}{\partial x_j} dx = \int_{\partial \Omega_k} \sum_{i=1}^{n} P_i \nu_i d\sigma = \int_{\partial \Omega_k} |\nabla u^*|^p (x \cdot \nabla u^*) (v \cdot \nabla u^*) d\sigma
\]

and

\[
(1.6) \quad \left[\sum_{j=1}^{n} \frac{\partial}{\partial x_j} \left(x_j \frac{1}{p} |\nabla u^*| \right) \right] = \int_{\partial \Omega_k} \frac{1}{p} |\nabla u^*|^p (x \cdot v) d\sigma
\]

Whence, by (1.4), (1.5) and (1.6)

\[
\int_{\partial \Omega_k} |\nabla u^*|^p (x \cdot \nabla u^*) (v \cdot \nabla u^*) d\sigma = \int_{\partial \Omega_k} |\nabla u^*|^p (x \cdot v) d\sigma
\]

In the same way, an analogous relation is also obtained relatively to \(v^* \). Summing up these relations, we have

\[
\int_{\partial \Omega_k} |\nabla u^*|^p (x \cdot \nabla u^*) (v \cdot \nabla u^*) d\sigma + \int_{\partial \Omega_k} |\nabla v^*|^p (x \cdot \nabla v^*) (v \cdot \nabla v^*) d\sigma
\]

\[
- \frac{1}{p} \int_{\partial \Omega_k} |\nabla u^*|^p (x \cdot v) d\sigma - \frac{1}{q} \int_{\partial \Omega_k} |\nabla v^*|^q (x \cdot v) d\sigma
\]
(1.8)

\[
\frac{p-n}{p} \int_{\Omega} u^* \frac{\partial H}{\partial u}(x;u^*,v^*)dx + \frac{q-n}{q} \int_{\Omega} v^* \frac{\partial H}{\partial v}(x;u^*,v^*)dx
- \left(\sum_{i=1}^{n} x_i \frac{\partial u^*}{\partial x_i} \frac{\partial H}{\partial u}(x;u^*,v^*) \right) dx - \left(\sum_{i=1}^{n} x_i \frac{\partial v^*}{\partial x_i} \frac{\partial H}{\partial v}(x;u^*,v^*) \right) dx.
\]

Passing to the limit on \(k\) in this equality, as \(u^*\) and \(v^* \equiv 0\) on \(\partial \Omega\) and using the results of Egnell (2.1 [10, p. 64]).

\[
\frac{p-1}{p} \int_{\Omega} |\nabla u^*|^p(x,v) d\sigma + \frac{q-1}{q} |\nabla v^*|^q(x,v) d\sigma
= - \frac{n-p}{p} \int_{\Omega} u^* \frac{\partial H}{\partial u}(x;u^*,v^*)dx - \frac{n-q}{q} \int_{\Omega} v^* \frac{\partial H}{\partial v}(x;u^*,v^*)dx
- \left(\sum_{i=1}^{n} x_i \frac{\partial u^*}{\partial x_i} \frac{\partial H}{\partial u}(x;u^*,v^*) + \frac{\partial v^*}{\partial x_i} \frac{\partial H}{\partial v}(x;u^*,v^*) \right) dx.
\]

(1.9)

We have the following relation

\[
\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(x_i H(x,s,t) \right) = 2H(x,s,t) + x_i \nabla_i H(x,s,t)
\]
Moreover, since the application \(x \to H(x,u^*(x),v^*(x)) \) is of class \(C^1(\Omega) \), using again the Gauss’s formula then we have from hypothesis \(i) \)
\[
\int_{\partial \Omega} H(x,u^*(x),v^*(x)) (x \cdot \nu) d\sigma = 0.
\]
Hence, we obtain
\[
(1.11) \quad \int_{\partial \Omega} \nabla u^* \cdot \nu d\sigma (x \cdot \nu) d\sigma
\]
by integration by parts. According to the hypothesis \(iii) \) the integral on \(\Omega \) is nonnegative, whence a contradiction.

2. EXISTENCE RESULTS VIA COMPARISON ARGUMENTS

\(\Omega \) denotes a bounded regular open set in \(\mathbb{R}^n \) and \(X = W_0^{1,p}(\Omega) \times W_0^{1,q}(\Omega) \).

Throughout this second section, we shall prove some existence results for the following problem.

\[
(P) \quad \begin{cases}
\text{Find } (u,v) \in X \text{ such that } \\
-\Delta u = f(x;u,v) & \text{on } \Omega \\
-\Delta v = g(x;u,v) & \text{on } \Omega.
\end{cases}
\]
We make the following assumptions

\((H1)\)
\[f \text{ and } g \text{ belong to } C(\Omega \times \mathbb{R} \times \mathbb{R}) \]
morover, for any \(s \geq 0, t \geq 0; f(x,s,t) \geq 0 \text{ and } g(x,s,t) \geq 0 \)

\((H2)\)
There are nonnegative constants:

\[\alpha > 0, \beta > 0, p_i, q_i \text{ (i = 1,2)} \]
\[a_j, b_j \text{ (j = 1,...,6)} \text{ where } a_i > 0, a_j > 0, b_i > 0, b_j > 0 \text{ satisfying} \]
\((H2)_a\) and \((H2)_b:\)

\[
\frac{\alpha+1}{p} + \frac{\beta+1}{p} < 1
\]
\[(H2)_a:\]
\[
1 < p_1 < p_2; \quad 0 < q_1 - 1 < \frac{q}{p^*} \\
0 < p_2 - 1 < \frac{p}{q^*}; \quad 1 < q_2 < q
\]

We have the following existence theorem:

Theorem 2.1. Under hypotheses \((H1)\) and \((H2)\), \((P)\) has a nontrivial solution \((u^*, v^*)\) in \(X \cap [L^\infty(\Omega)]^2\).

Example: existence result for \(f(x,s,t) = a(x)s^{\alpha-1}t^{\beta+1} - a_2 s^{\alpha-1}t^{\beta+1} + a_3 s^{\alpha-1}t^{\beta+1} + a_4 \) and \(g(x,s,t) = b(x)s^{\alpha-1}t^{\beta+1} + b_3 s^{\alpha-1}t^{\beta+1} + b_4 \).

Corollary 2.1. Let \(f\) and \(g\) be as above where \(a\) and \(b\) are
Jean Vélin and François de Thélin

nonnegative continuous functions and assume that \(\alpha > 0 \) and \(\beta > 0 \) are such that

\[
\frac{\alpha+1}{np} + \frac{\beta+1}{nq} < 1; \quad \frac{\alpha+1}{p} + \frac{\beta+1}{q} < 1.
\]

Then, the corresponding problem \((P)\) has a nontrivial solution in \(X \cap [L^\infty(\Omega)]^2 \).

The proof of Theorem 2.1 is in three steps.

1st step: Construction of sub-supersolutions of \((P)\).

Definition 2.1. A pair \([(u^0,v^0),(u^0,v^0)]\) is said a weak sub-super solution for the Dirichlet problem \((P)\) if the following conditions are satisfied:

\[
\begin{align*}
(1): & \quad (u^0,v^0) \in (W^{1,p}(\Omega) \times W^{1,q}(\Omega)) \cap [L^\infty(\Omega)]^2 \\
& \quad (u^0,v^0) \in (W^{1,p}(\Omega) \times W^{1,q}(\Omega)) \cap [L^\infty(\Omega)]^2
\end{align*}
\]

\[
\begin{align*}
(2.1): & \quad -\Delta_p u^0 f(x;u^0,v^0) \leq 0 \leq -\Delta_q v^0 g(x;u^0,v^0) \quad \text{in} \ \Omega \\
& \quad \forall v \in [v^0,v^0]
\end{align*}
\]

\[
\begin{align*}
(2): & \quad u^0 \leq u^0 \quad \text{in} \ \Omega \\
& \quad v^0 \leq v^0 \quad \text{in} \ \Omega \\
& \quad u^0 \leq 0 \leq u^0 \quad \text{on} \ \partial \Omega \\
& \quad v^0 \leq 0 \leq v^0 \quad \text{on} \ \partial \Omega
\end{align*}
\]

Similar definitions can be found in Díaz-Hernández [8], Díaz-Herrero [9], Hernández [16].

Proposition 2.1. Assume \((H2)\) and

\[
\frac{\alpha+1}{p} + \frac{\beta+1}{q} < 1;
\]
then, for any $M > 0$, the problem (P) admits a pair $[(u_0,v_0),(u^0,v^0)]$ of sub-super solution satisfying $u_0(x) \leq M \leq u^0(x)$, $v_0(x) \leq M \leq v^0(x)$ in Ω.

Proof. a) Construction of (u^0,v^0)

Consider $R > 0$ such that $\Omega \subset B(0; R)$. We seek for u^0, v^0 in the following forms:

$$
\begin{align*}
u^0(x) &= \varphi^0(r) = ar^p + b \\
v^0(x) &= \psi^0(r) = cr^q + d
\end{align*}
$$

with: $b > 0$ and $d > 0$

$$
|x| = r.
$$

(2.2)

We fix a real $M > 0$ and choose

$$
(2.3) \quad a = \frac{b-M}{R^p}, \quad c = \frac{d-M}{R^q},
$$

we have, for b and d greater than M

$$
(2.4) \quad M \leq u_0(x); \quad M \leq v_0(x) \quad \forall x \in \Omega.
$$

and for each point x in Ω, we have:

$$
(2.5) \quad \Delta_p u_0(x) = (p-1)\|\varphi'(r)\|^{p-2} \varphi''(r) + \frac{n-1}{r} \|\varphi'(r)\|^{p-2} \varphi'(r) = -npa|a|^{p-1} = np\left(\frac{b-M}{R^p}\right)^{p-1} .
$$

For $u \leq u^0$, $v \leq v^0$ and $a < 0; e < 0$ we have
Let \(k > 0, \ b = k^{1/\rho} \) and \(d = k^{1/\sigma} \). Comparing, the growth of the different terms in (2.6) for large \(k \), we obtain

\[
\begin{align*}
\Delta_\nu \lambda^0 + f(x; \lambda^0, \nu) &\leq -n\eta + \frac{b-M}{R^{\rho^*}} + a_3 b^{g^1} d^{\beta-1} + a_6, \quad \forall \nu \leq \nu^0 \\
\Delta_\lambda \nu^0 + g(x; \nu^0) &\leq -n \eta + \frac{d-M}{R^{\sigma^*}} + b_3 b^{\sigma^1} d^{\beta} + a_6, \quad \forall \lambda \leq \lambda^0.
\end{align*}
\]

(2.7)

b) Construction of \((\lambda_0, \nu_0)\). Consider \(x_0 \in \Omega \), and \(R > 0 \) such that \(B(x_0; R) \subset \Omega \); we can assume \(0 \in \Omega \).

As in [11], [26], we seek \((\lambda_0, \nu_0)\) in the following form

\[
\begin{align*}
\lambda_0(x) &= \psi_0(r) = \begin{cases}
Ar^{\rho^*} + B & \text{for } 0 \leq r \leq \frac{nR}{n+1}, \\
C(R-r)^{\rho^*} & \text{for } \frac{nR}{n+1} \leq r \leq R, \\
0 & \text{for } R < r,
\end{cases}
\end{align*}
\]

(2.8)

\[
\begin{align*}
\nu_0(x) &= \psi_0(r) = \begin{cases}
\tilde{A}r^{\sigma^*} + \tilde{B} & \text{for } 0 \leq r \leq \frac{nR}{n+1}, \\
\tilde{C}(R-r)^{\sigma^*} & \text{for } \frac{nR}{n+1} \leq r \leq R, \\
0 & \text{for } R < r
\end{cases}
\end{align*}
\]

(2.9)
Take
\[A = -B \left(\frac{n+1}{n} \right)^{\nu - 1} \frac{1}{R^{\nu}}, \quad \bar{A} = -\bar{B} \left(\frac{n+1}{n} \right)^{\nu - 1} \frac{1}{\bar{R}^{\nu}} \]

(2.10)

By (2.10) \(u_0 \) and \(v_0 \) are in \(C^1(\Omega) \) and moreover they vanish on \(\partial \Omega \).

First consider \(x \) such that
\[\frac{nR}{n+1} \leq r = ||x|| \leq R; \]

we have
\[
\begin{align*}
0 & \leq u_0(x) \leq C \left(R - \frac{nR}{n+1} \right)^{\nu} \\
0 & \leq v_0(x) \leq C \left(R - \frac{nR}{n+1} \right)^{\nu}
\end{align*}
\]

(2.11)

Consequently
\[
\Delta_p u_0(x) \geq \frac{p \cdot p^\nu \cdot C \cdot (n-1) \frac{R-r}{r}}{n}
\]

(2.12)

Whence for any \((u,v) \in [u_0, u_0'] \times [v_0, v_0']\) and for sufficiently small \(R \):
Jean Vélin and François de Thélín

\[
\begin{cases}
\Delta_p u_0 + f(x; u_0, v) \geq C_{p-1} \left\{ \frac{p}{n}^{p-1} - a_2 \left(\frac{R}{n+1} \right) \right\} \\
\Delta_q v_0 + g(x; u_0, v) \geq C_{q-1} \left\{ \frac{q}{n}^{q-1} - b_2 \left(\frac{R}{n+1} \right) \right\}
\end{cases}
\geq 0
\]

(2.13)

Now consider \(x \in \Omega \) such that:

\[0 \leq |x| \leq \frac{nR}{n+1} \]

We have in this case

\[0 \leq u_0(x) \leq B \text{ and } 0 \leq v_0(x) \leq \bar{B} \]

Moreover

\[\Delta_p u_0(x) = -B^{(p-1)} \frac{n+1}{R^p P^{p-1}} \]

(2.14)

Using the hypothesis (H2), for any \((u, v) \in [u_0, v_0] \times [v_0, \bar{v}]\), we obtain

\[\begin{cases}
-B^{p-1} \frac{n+1}{R^p (p+1)^{p-1}} + a_1 B^a \bar{B}^{p-1} \frac{1}{(n+1)^{a-1}} - a_2 B^{p-1} \leq \Delta_p u_0 + f(x; u_0, v) \\
-\bar{B}^{q-1} \frac{n+1}{R^q (q+1)^{q-1}} + b_1 B^a \bar{B}^{q-1} \frac{1}{(n+1)^{b-1}} - b_2 \bar{B}^{q-1} \leq \Delta_q v_0 + g(x; u_0, v)
\end{cases} \]

(2.16)

Hence the conclusion follows for \(B = D^{1/p}, \bar{B} = D^{1/q}, D > 0 \) sufficiently small.

2nd Step: The truncated problem \((\tilde{P})\) associated to \((P)\).

Following [7], we define a truncated problem \((\tilde{P})\), associated to \((P)\).
Existence and Nonexistence of Nontrivial...

\[\begin{aligned}
\tag{\bar{P}}
\begin{cases}
\text{(1)} & -\Delta_p u = \tilde{f}(x;u,v) - \gamma_1(x,u) \quad \text{in } \Omega \\
\text{(2)} & -\Delta_q v = \tilde{g}(x;u,v) - \gamma_2(x,v) \quad \text{in } \Omega
\end{cases}
\end{aligned} \]

Where

\[
\gamma_1(x,u(x)) = -(u_0(x) - u(x))_{p+1} + (u(x) - u^0(x))_{p+1}
\]

\[
\gamma_2(x,v(x)) = -(v_0(x) - v(x))_{q+1} + (v(x) - v^0(x))_{q+1}
\]

(2.17)

\[
\tilde{f}(x;u(x),v(x)) = f(x,U(x),V(x))
\]

\[
\tilde{g}(x;u(x),v(x)) = g(x,U(x),V(x))
\]

With

\[
U(x) = u(x) + (u_0(x) - u(x))_+ - (u(x) - u^0(x))_+
\]

(2.18)

\[
V(x) = v(x) + (v_0(x) - v(x))_+ - (v(x) - v^0(x))_+
\]

For any \((u,v) \in X, (\bar{u},\bar{v}) \in X,\) we define:

\[
A(u,v) = \begin{pmatrix}
\Delta_p & 0 \\
0 & \Delta_q
\end{pmatrix}
\begin{pmatrix}
u \\
v
\end{pmatrix}
+ \begin{pmatrix}
\gamma_1(x,u) - \tilde{f}(x;u,v) \\
\gamma_2(x,v) - \tilde{g}(x;u,v)
\end{pmatrix}
\]

(2.19)

\[
\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left[|\nabla u|^{\frac{p-2}{2}} \frac{\partial u}{\partial x_i} \right] + \begin{pmatrix}
\gamma_1(:,u) - \tilde{f}(x;u,v) \\
\gamma_2(:,v) - \tilde{g}(x;u,v)
\end{pmatrix}
\]

\[
\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left[|\nabla v|^{\frac{q-2}{2}} \frac{\partial v}{\partial x_i} \right]
\]
\[a[(u,v);(\tilde{u},\tilde{v})] = \int_{\Omega} A(u,v) W dx \]

with \(W = \begin{pmatrix} \tilde{w} \\ \tilde{v} \end{pmatrix} \)

We have

\[
a[(u,v);(\tilde{u},\tilde{v})] = \int_{\Omega} |\nabla u|^{r-2} \nabla u \nabla \tilde{u} dx + \int_{\Omega} |\nabla v|^{r-2} \nabla v \nabla \tilde{v} dx
\]

(2.20)

\[-\int_{\Omega} f(x;u,v) \tilde{u} dx - \int_{\Omega} g(x;u,v) \tilde{v} dx + \int_{\Omega} \gamma_1(x,u,v) \tilde{u} dx + \int_{\Omega} \gamma_2(x,v) \tilde{v} dx. \]

Lemma 2.1. A is a bounded operator from \(X \) to \(X^* \).

Proof [31].

Definition 2.2 (C.f [17]). An operator \(A : X \rightarrow X^* \) is called a calculus of variations operator, if it is bounded and if it can be represented in the form

(1) \[A(u,v) = \mathcal{A}[(u,v);(\tilde{u},\tilde{v})] \]

where \(((u,v),(\tilde{u},\tilde{v})) \rightarrow \mathcal{A}[(u,v);(\tilde{u},\tilde{v})] \) is an operator \(X \times X \rightarrow X^* \) which satisfies
Existence and Nonexistence of Nontrivial...

\[
\begin{align*}
\forall (u,v) \in X; (\hat{u},\hat{v}) &\rightarrow A[(u,v);(\hat{u},\hat{v})] \text{ is a hemicontinuous bounded operator } X \rightarrow X^* \text{ and} \\
\langle A[(u,v);(u,v)] - A[(\hat{u},\hat{v})],(u,v)-(\hat{u},\hat{v}) \rangle &\geq 0; \forall (u,v),(\hat{u},\hat{v}) \in X
\end{align*}
\]

For any \((\hat{u},\hat{v}) \in X, (u,v) \rightarrow A[(u,v);(\hat{u},\hat{v})] \text{ is a bounded hemicontinuous operator } X \rightarrow X^*.

\[\text{(3)}\]

If \((u_\mu,v_\mu) \rightharpoonup (u,v) \text{ weakly in } X \text{ and} \]
if \(\langle A[(u_\mu,v_\mu),(u_\mu,v_\mu)] - A[(u_\mu,v_\mu),(u_\mu,v_\mu)],(u_\mu-u,v_\mu-v) \rangle \rightarrow 0 \text{ (4)} \]
then, for any \((\hat{u},\hat{v}) \in X \text{ the sequence } A[(u_\mu,v_\mu),(\hat{u},\hat{v})] \text{ converges weakly to } A[(u,v),(\hat{u},\hat{v})] \text{ in } X^*.

\[\text{(5)}\]

In our problem, we define \(A\) by the following relation; for any \((u_1,v_1), (u_2,v_2),(\hat{u},\hat{v})\):

\[
\begin{align*}
\langle A [(u_1,v_1),(u_2,v_2);(\hat{u},\hat{v})],(u,v) \rangle &\rightarrow \int_{\Omega} |\nabla u_2|^{p-2} \nabla u_2 \nabla \hat{u} dx + \int_{\Omega} |\nabla v_2|^{q-2} \nabla v_2 \nabla \hat{v} dx \\
&- \int_{\Omega} f(x;u_1,v_1) \hat{u} dx - \int_{\Omega} \hat{g}(x;u_1,v_1) \hat{v} dx \\
&+ \int_{\Omega} \gamma_1(x,u_1) \hat{u} dx + \int_{\Omega} \gamma_2(x,v_1) \hat{v} dx
\end{align*}
\]

(2.21)

Lemma 2.2. \(A\) is a calculus of variations operator.

Proof. (c.f [31])

Lemma 2.3. Let \(V\) be a Banach space and let \(A\) be a coercive calculus of variations operator.
Jean Vélin and François de Thélin

Then, for any f in V^*, the equation $A(u) = f$ has a solution u in V.

Proof (c.f [17], proposition 2.6, theorem 2.7, p. 180-181).

Lemma 2.4. If the application \tilde{f}, g, g_1, and g_2 are defined as above, then the problem (P) has a solution (\tilde{u}, \tilde{v}) in X.

3° Step: Existence of a non-trivial solution for (P).

Now, we prove that $u_0 \leq \tilde{u} \leq u^0$, $v_0 \leq \tilde{v} \leq v^0$, in Ω.

We show for example $\tilde{u} \leq u^0$.

Consider $\tilde{u} = (\tilde{u} - u^0)$, and $\tilde{v} = (\tilde{v} - v^0)$.

Multiplying (1) by \tilde{u} and (2) by \tilde{v}, we have

\[
\int_\Omega |\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \nabla \tilde{u} dx = \int_\Omega \tilde{f}(x;\tilde{u},\tilde{v}) \tilde{u} dx + \| (\tilde{u} - u^0) \|_{L^p(\Omega)} = 0
\]

but, according to the definition of u^0, $\forall v \in [v_0, v^0]$, we have

\[
\int_\Omega |\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \nabla \tilde{u} dx = \int_\Omega \tilde{f}(x;u^0,\tilde{v}) \tilde{u} dx \geq 0
\]

Thus, combining (2.22) and (2.23), we obtain

\[
0 \geq \int_\Omega |\nabla \tilde{u}|^{p-2} \nabla \tilde{u} - |\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \tilde{u}(\tilde{u} - u^0) \mathcal{V}(\tilde{u} - u^0) dx
\]

\[
+ \int_\Omega \left[\tilde{f}(x;u^0,\tilde{v}) - \tilde{f}(x;\tilde{u},\tilde{v}) \right] \tilde{u} dx + \| (\tilde{u} - u^0) \|_{L^p(\Omega)}^p
\]

Take $v = \tilde{V}$ where \tilde{V} is associated to \tilde{v} as in (2.18). On the set $\{ x \in \Omega; \tilde{u}(x) - u^0(x) > 0 \}$, we have $\tilde{U}(x) = u^0(x)$.

(2.27) \[
\int_\Omega (f(x;u^0,\bar{v}) - f(x;\bar{u},\bar{v}))(\bar{u} - u^0)(x)dx = \int_\Omega (f(x;\bar{u},\bar{v}) - f(x;\bar{u},\bar{v}))(\bar{u}^0 - u^0)(x)dx = 0
\]

By monotonicity of $-\Delta_p$, we get that $0 \geq \|(\bar{u} - u^0)_+\|_{p} \geq 0$.

Thus $\bar{u} \leq u^0$ on Ω and similarly $\bar{v} \leq v^0$ on Ω.

3. EXISTENCE RESULTS VIA VARIATIONAL METHODS

3.0. Introduction. We present in this final section an existence result for the following problem (P)

\[
\begin{cases}
\text{Find } (u,v) \in X \text{ such that} \\
(1^*) \quad -\Delta_p u = \frac{\partial H}{\partial u}(x;u,v) \quad \text{in } \Omega \\
(2^*) \quad -\Delta_q v = \frac{\partial H}{\partial v}(x;u,v) \quad \text{in } \Omega
\end{cases}
\]

This result extends to a potential system those obtained by L. Nirenberg [18] and F. de Thélin [26], in the scalar case. Our existence result follows from an appropriate adaptation of the variational method given by Ambrosetti-Rabinowitz [2].

Recall that $X = W_{0}^{1,p}(\Omega) \times W_{0}^{1,q}(\Omega)$.

In the next section, we shall prove that in fact $(u,v) \in X \cap [L^{\infty}(\Omega)]^2$.

We make the following assumptions

(H1) $H \in C^1(\Omega \times \mathbb{R} \times \mathbb{R})$

(H2) There exist two positive real numbers δ, A, with $\delta < A$ such that, for a partition of \mathbb{R}^2 in D_1, D_2, D_3, respectively defined by
We have:

\((H2)_a\) there exists a nonnegative constant \(C\) and

\[
\begin{align*}
p' &\in \left[\frac{np}{n-p}, \frac{nq}{n-q}\right], \\
qu &\in \left[\frac{np}{n-q}, \frac{nq}{n-p}\right],
\end{align*}
\]

such that \(0 \leq H(x; s, t) \leq C(\|s\|^p + \|t\|^q)\), for any \(x \in \Omega\) and for any pair \((s, t) \in D_j\).

\((H2)_b\) There exists a positive function \(a \in L^\infty(\Omega)\) such that \(H(x; s, t) = a(x) \|s\|^{p+} \|t\|^{q+}\) for any \(x \in \Omega\) and \((s, t) \in D_j\).

Remark. We are interested by the nonnegative solutions for the problem \((P)\), so we can add the following hypothesis

\[(H3)\) For any \(x \in \Omega, s \leq 0\) or \(t \leq 0;\)

\[
\frac{\partial H}{\partial s}(x; s, t) = 0 \quad \text{and} \quad \frac{\partial H}{\partial t}(x; s, t) = 0.
\]

For any \((u, v)\) in \(X\), we define:

\[
J(u, v) = \frac{1}{p} \int_{\Omega} |\nabla u|^p dx + \frac{1}{q} \int_{\Omega} |\nabla v|^q dx - \int_{\Omega} H(x; u, v) dx
\]

We shall use the Mountain-Pass Lemma to obtain an existence theorem for \((P)\). The nontrivial solution is obtained as a critical point of \(J\).
Theorem 3.1. We suppose that the hypotheses (H1) and (H2) are satisfied and that the real numbers α and β in (H2), are such that

\[
\begin{align*}
1) & \quad \frac{(\alpha+1)\frac{n-p}{np}+(\beta+1)\frac{n-q}{nq}}{p} > 1 \\
2) & \quad \frac{\alpha+1}{p} + \frac{\beta+1}{q} > 1,
\end{align*}
\]

then, the problem (P) possesses a nontrivial solution (u^*, v^*) in $X \cap [L^\infty(\Omega)]^2$.

Corollary 3.1. All the hypotheses of Theorem 3.1. are satisfied for $H(x; s, t) = a(x) |s|^{\alpha+1} |t|^{\beta+1}$.

If

\[
(\alpha+1)\frac{n-p}{np}+(\beta+1)\frac{n-q}{nq} < 1, \quad \frac{\alpha+1}{p} + \frac{\beta+1}{q} > 1,
\]

then, the corresponding problem possesses a nontrivial solution (u^*, v^*) in $X \cap [L^\infty(\Omega)]^2$.

Proof of Corollary 3.1. Consider a truncature \tilde{H} of the application H

\[
\tilde{H}(x; s, t) = \begin{cases}
0 & \text{if } s \leq 0 \text{ or } t \leq 0 \\
H(x; s, t) & \text{otherwise}
\end{cases}
\]

\tilde{H} satisfies the hypotheses (H1), (H2). For proving (H2), we write for any real s and t

\[
(*) \quad |s|^{\lambda+1} |t|^{\mu+1} \leq C(|s|^{\lambda_0} + |t|^{\mu_0})
\]

Where λ and μ are such that
Existence of a solution in X.

Lemma 3.1.1. If

$$\left(\frac{\alpha+1}{p^n} + \frac{\beta+1}{q^n}\right) < 1,$$

there exist γ_1 and γ_2 such that

$$\begin{cases}
\gamma_1 \in \left[1, \frac{n_p}{n-p}\right] \\
\gamma_2 \in \left[1, \frac{n_q}{n-q}\right]
\end{cases}$$

Moreover, if (u_k,v_k) is bounded in X, the applications

$$x \mapsto u_k(x) \left| u_k(x) \right|^{\alpha-1} \left| v_k(x) \right|^{\beta-1} \text{ and } x \mapsto v_k(x) \left| v_k(x) \right|^{\beta-1} \left| u_k(x) \right|^{\alpha-1}$$

are bounded in $L^\infty(\Omega)$ and L^∞ respectively.

Lemma 3.1.2. If

$$\frac{\alpha+1}{p^n} + \frac{\beta+1}{q^n} > 1,$$

J satisfies the Palais-Smale (P.S) condition.

Proof. Let $\{u_k,v_k\}; k \in \mathbb{N}$ be a sequence in X such that

there exist $M > 0, \ |J(u_k,v_k)| \leq M \ (P.S)$.

Existence and Nonexistence of Nontrivial...

\[J'(u_k, v_k) \to 0 \text{ strongly in } X^* \text{ as } k \text{ goes to } +\infty \ (P.S)_2. \]

We claim that this sequence is bounded in \(X \).

By contradiction, suppose that we can extract from \((u_k, v_k)\) a subsequence denoted again by \((u_k, v_k)\) such that \(\|(u_k, v_k)\|_X \to +\infty\).

Hereafter, we set
\[
e_k = \frac{1}{p} \int_{\Omega} |\nabla u_k|^p \, dx + \frac{1}{q} \int_{\Omega} |\nabla v_k|^q \, dx.
\]

The \((P.S)_1\) condition implies that
\[
(3.1.1) \quad \frac{M}{e_k} \leq 1 - \frac{1}{e_k} \int_{\Omega} |H(x; u_k, v_k)| \, dx \leq \frac{M}{e_k}.
\]

Let \(\Omega_{i,k} = \{ x \in \Omega : (u_i(x), v_i(x)) \in D_i \} \), for \(i = 1, 2, 3 \); we obtain
\[
(3.1.2) \quad -\frac{M}{e_k} \leq 1 - \frac{1}{e_k} \left(\int_{\Omega_{i,k}} a(x) u_k^{\alpha-1} v_k^{(\beta-1)/2} \, dx + \int_{\partial \Omega_{i,k}} H(x; u_k, v_k) \, dx \right) \leq \frac{M}{e_k}.
\]

On the other hand, by \((P.S)_2\) we have:
\[
-\varepsilon \|(u_k, v_k)\|_X \leq J'(u_k, v_k) \left(\frac{u_k}{p}, \frac{v_k}{q} \right) \leq \varepsilon \|(u_k, v_k)\|_X.
\]

That means
\[
-\varepsilon \|(u_k, v_k)\|_X \leq \frac{1}{p} \int_{\Omega} u_k \frac{\partial H}{\partial u}(x; u_k, v_k) \, dx - \frac{1}{q} \int_{\Omega} v_k \frac{\partial H}{\partial v}(x; u_k, v_k) \, dx.
\]
Then, taking the limit with respect to \(k \) in the inequalities (3.1.2) and (3.1.3), we obtain respectively

\[
\lim_{k \to +\infty} \frac{1}{\epsilon_k} \int_{\Omega} a(x) u_k^{\alpha+1} v_k^{\beta+1} \, dx = 1
\]

But, this contradicts the hypothesis

\[
\frac{\alpha+1}{p} + \frac{\beta+1}{q} > 1.
\]

Thus, there exist positive constants \(C_1 \) et \(C_2 \) such that: \(\|u_k\|_{L^p} \leq C_1 \) and \(\|v_k\|_{L^q} \leq C_2 \).

Denoting again by \(\{u_k; k \in \mathcal{N}\} \) and \(\{v_k; k \in \mathcal{N}\} \) the extracted subsequences, they converge strongly in the spaces \(L^p(\Omega) \) and \(L^q(\Omega) \) respectively; we claim that the subsequence \(\{(u_k, v_k); k \geq 0\} \) converges strongly in \(X \).

In fact, for any integer pair \((m, l) \)

\[
\int_\Omega (F_p(\nabla u_m) - F_p(\nabla u_l)) \nabla (u_m - u_l) \, dx = A_{m,l}
\]

where
Existence and Nonexistence of Nontrivial...

\[A_{m,j} = J'_{\rho,q}(u_m,v_m) - J'_{\rho,q}(u,v);(u_m-u_j,0) \bigg|_{X,X} \]
\[+ \int_{\Omega} \left(\frac{\partial H}{\partial u}(x;u_m,v_m) - \frac{\partial H}{\partial u}(x;u_j,v_j) \right) (u_m-u_j) \, dx \]

and

\[B_{m,j} = \left< J'_{\rho,q}(u_m,v_m) - J'_{\rho,q}(u,v);(0,v_m-v_j) \right>_{X,X'} \]
\[+ \int_{\Omega} \left(\frac{\partial H}{\partial v}(x;u_m,v_m) - \frac{\partial H}{\partial v}(x;u_j,v_j) \right) (v_m-v_j) \, dx \]

By \((P,S)\), it is easy to remark that \(< J'_{\rho,q}(u_m,v_m) - J'_{\rho,q}(u,v);(u_m-u_j,0) >_{X,X} \) converges to 0 as \(m \) and \(l \) tend to \(+\infty\).

From the hypotheses \((H1)\) and \((H2)\), there exist two constants \(A_1 \) and \(A_2 \) such that for any \((s,t)\) in \(\mathbb{R}^2 \) and \(x \) in \(\Omega \)

\[|v_m - v_j|^p \leq C \left[(\nabla u_m - \nabla v_m)^p \right] \left(|\nabla u_m|^p + |\nabla u_j|^p \right)^{(1-\alpha)/2} \]

By use of Lemma 3.1.,

\[\left| \int_{\Omega} \left(\frac{\partial H}{\partial u}(x;u_m,v_m) - \frac{\partial H}{\partial u}(x;u_j,v_j) \right) (v_m-v_j) \, dx \right| \leq A_1 \alpha |s|^\alpha |t|^{p-1} \]
Integrating (3.1.8) on Ω and using Hölder's inequality in the right hand side, we obtain

$$
(3.1.9) \quad \|u_m - u\|_{L^p} \leq C |A_m|^{1/2} \|u_m\|_{L^p}^{1/2} + \|u\|_{L^p}^{1/2} \|u_m\|_{L^p}^{1/2}
$$

and

$$
(3.1.10) \quad \|v_m - v\|_{L^q} \leq C |B_m|^{1/2} \|v_m\|_{L^q}^{1/2} + \|v\|_{L^q}^{1/2} \|B_m\|_{L^q}^{1/2}
$$

From the convergence results related above, these inequalities give strong convergence of \{(u_k,v_k); \ k \in \mathbb{N}\}.

Lemma 3.1.3. Under the hypotheses of Theorem 3.1.

1) There exist two positive real numbers ρ, ν_1 and a neighborhood V_0 of the origin of X such that for any element (u,v) on the boundary of V_0, $J(u,v) \geq \nu_1 > 0$.

2) There exist (ϕ, ψ) in X such that $J(\phi, \psi) < 0$.

Proof. 1) By $(H1)$ and $(H2)$

$$
\int_{\Omega} H(x;u,v)dx \leq C \int_{\Omega} |u|^\rho + |v|^\rho dx + \int_{\Omega} Bdx + \int_{\Omega} a(x)|u|^\nu_1 |v|^\nu_1 dx
$$

$$
(3.1.11) \quad \leq C \|u\|_{L^\rho}^{\nu_1} + \|v\|_{L^\rho}^{\nu_1} + b_\delta \int_{\Omega} |u|^\nu_1 |v|^\nu_1 dx + \int_{\Omega} a(x)|u|^\nu_1 |v|^\nu_1 dx
$$

By lemma 3.1.1., we obtain
Therefore, we get

\begin{align}
(3.1.13) \quad & \int_{\Omega} |u|^\alpha|v|^\beta \, dx \leq C(\|u\|_{1,p}^{\alpha+1} + \|v\|_{1,q}^{\beta+1} + (b_\delta + \|a\|_\infty)\{\|u\|_{1,p}^{\alpha+1} + \|v\|_{1,q}^{\beta+1}\}) \\
\end{align}

where b_δ is a positive constant $B = b_\delta \delta^{\alpha+\beta+1}$, δ fixed,

\[r = 1 + \frac{p}{q} \frac{\beta+1}{\alpha+1} \quad \text{and} \quad r^* = 1 + \frac{q}{p} \frac{\alpha+1}{\beta+1}. \]

Denoting by θ and η respectively $\|u\|_{1,p}$ and $\|v\|_{1,q}$, we therefore obtain the following minoration of J for any $(u,v) \in X$,

\begin{align}
(3.1.14) \quad & J(u,v) \geq \theta \left[1 - C \delta^{\alpha+\beta+1} - (b_\delta + \|a\|_\infty)\delta^{\alpha+\beta+1} \right] + \eta \left[1 - C \delta^{\alpha+\beta+1} - (b_\delta + \|a\|_\infty)\delta^{\alpha+\beta+1} \right] \\
\end{align}

Whence,

\begin{align}
(3.1.15) \quad & J(u,v) \geq 0
\end{align}

2) Let $\phi \in W_0^{1,p}(\Omega)$ and $\psi \in W_0^{1,q}(\Omega)$ be positive in Ω, for any $\sigma > 0$, we have

\begin{align}
J(\sigma^\phi \psi, \sigma^\phi \psi) = & \sigma \|\phi\|_{1,p}^{\alpha+1} + \sigma \|\psi\|_{1,q}^{\beta+1} - \int_{\Omega} H(x; \sigma^\phi \psi, \sigma^\phi \psi) \, dx \\
\end{align}

\begin{align}
= & \sigma \|\phi\|_{1,p}^{\alpha+1} + \sigma \|\psi\|_{1,q}^{\beta+1} - \int_{\Omega} H(x; \sigma^\phi \psi, \sigma^\phi \psi) \, dx - \sigma^\phi \sigma^\psi \sigma^{\alpha+\beta+1} \int_{\Omega} |\phi|^{\alpha+1} |\psi|^{\beta+1} \, dx
\end{align}

Taking σ sufficiently large to have $|\Omega_\sigma| > 0$, we obtain
By the continuity for $J(\cdot,\cdot)$ on X, we find a pair (ϕ,ψ) in $X \setminus B_\rho(0)$ such that $J(\phi,\psi) < 0$.

Proof of the theorem 3.1. (1st part). By Mountain-Pass Lemma [2], there exist a pair (u^*,v^*) in X which is a critical point of J. This means that for any $(w_1,w_2) \in X$, $J'(u^*,v^*) \cdot (w_1,w_2) = 0$, i.e.

\[
\begin{align*}
-\Delta_p u^* &= \frac{\partial H}{\partial u}(x;u^*,v^*) \quad \text{in } \Omega \\
-\Delta_q v^* &= \frac{\partial H}{\partial v}(x;u^*,v^*) \quad \text{in } \Omega.
\end{align*}
\]

So, we have proved that (P) possesses a nontrivial solution in X. The second part is devoted to prove that the solutions are bounded in Ω.

Moreover, [26] (c.f the definition for H) ensure $u^* \geq 0$ and $v^* \geq 0$ in Ω.

3.2. L^∞-Estimate of the solution

3.2.0. Introduction. In this part, we use an iterative method to estimate the solution (u^*,v^*) obtained in section 3.1. We prove here that in fact $(u^*,v^*) \in [L^\infty(\Omega)]^2$.

In this matter, the crucial point is the construction of two strictly increasing unbounded sequences $\{\lambda_k; k \geq 0\}$ and $\{\mu_k; k \geq 0\}$ such that u^* and v^* verify:
We shall present some properties deriving to the fact that \(u^* \) and \(v^* \) belong to \(L^\nu(\Omega) \) and \(L^\mu(\Omega) \) respectively. In a second step, we shall proceed to the appropriate construction for these sequences.

It is very important to note that this iterative scheme uses some regularity properties of \(u^* \) and \(v^* \), for example \((u^*, v^*) \) belong to \([C^2(\Omega) \cap C^1(\Omega)]^2 \). The study of regularized equations (cf. [20], [26]) allows us to suppose \(u^* \) and \(v^* \) smooth throughout all this part. Though we do not make extensive development about our iterative method, more detailed proofs are given in [31].

Proposition 3.2. Suppose that all the hypotheses of Theorem 3.1. are satisfied. Then, there exist sequences \(\{\lambda_k; k \geq 0\} \) and \(\{\mu_k; k \geq 0\} \) such that

1) For each \(k \), \(u^* \) and \(v^* \) belong respectively to \(L^\nu(\Omega) \) and \(L^\mu(\Omega) \).
2) There exist two real constants \(A_p \) and \(A_q \) be such that

\[
\lim_{k \to \infty} \|u^*\|_{L^\nu(\Omega)} \leq A_p
\]

\[
\lim_{k \to \infty} \|v^*\|_{L^\mu(\Omega)} \leq A_q
\]

Lemma 3.2.1. Let \(\pi_p \) (resp. \(\pi_q \)) be such that

\[
1 < \pi_p < \frac{np}{n-p} \quad \text{(resp.} \quad 1 < \pi_q < \frac{ng}{n-q} \text{),}
\]

and for any \(k \geq 0 \)
\[a_k = \lambda_k \left(1 - \frac{\alpha}{\lambda_k} - \frac{\beta + 1}{\mu_k} \right)^{-1} \quad (1)_k \]

\[b_k = \mu_k \left(1 - \frac{\alpha + 1}{\lambda_k} - \frac{\beta}{\mu_k} \right)^{-1} \quad (2)_k \]

Then there are some constants \(c \) and \(c' \) such that for any \(u^* \in L^{q'}(\Omega) \) and \(v^* \in L^p(\Omega) \) we have

\[
\int_{\Omega} |u^*|^{1 - \frac{\alpha}{q}} dx \leq \left(1 + \frac{a_k}{p} \right)^{\frac{1}{p}} \theta_k^{1 - \frac{\alpha}{p}}, \quad \int_{\Omega} |v^*|^{1 - \frac{\beta}{q}} dx \leq c' \left(1 + \frac{b_k}{q} \right)^{\frac{1}{q}} \Phi_k^{1 - \frac{\beta}{q}}
\]

where \(\theta_k \) and \(\Phi_k \) are defined as

\[
\theta_k = \int_{\Omega} \frac{\partial H}{\partial u}(x; u^*, v^*) u^* |u^*|^\alpha dx, \quad \Phi_k = \int_{\Omega} \frac{\partial H}{\partial v}(x; u^*, v^*) v^* |v^*|^\beta dx.
\]

Proof of the Lemma 3.2.1. Multiplying (1*) by \(u^* |u^*|^\alpha \) and integrating on \(\Omega \), we obtain

\[
(3.2.1) \quad \int_{\Omega} |\nabla u^*|^p |\nabla u^*|^q |u^*|^\alpha dx = \frac{\partial H}{\partial u}(x; u^*, v^*) u^* |u^*|^\alpha dx
\]

On the other hand, we have,

\[
(3.2.2) \quad \int_{\Omega} |\nabla u^*|^{1 - \frac{\alpha}{p}} dx = \left(1 + \frac{a_k}{p} \right)^{\frac{1}{p}} \int_{\Omega} |u^*|^\alpha |\nabla u^*|^p dx
\]

Since, \(u^* \) is in \(C^1(\overline{\Omega}) \), so is \(\{u^*\}^{1 + \alpha \beta} \) and consequently \(\{u^*\}^{1 + \alpha \beta} \) belongs to \(W_0^{1,p}(\Omega) \). The continuous imbedding \(W_0^{1,p}(\Omega) \rightarrow L^p(\Omega) \) implies the existence of a constant \(c > 0 \) such that
(3.2.3) \[
\left(\int_{\Omega} |u^*|^{1+\frac{a_k}{p}} \, dx \right)^{\frac{p}{1+\frac{a_k}{p}}} \leq C \left(\int_{\Omega} \left| \nabla u^* \right|^{\frac{p}{2}} \, dx \right)^{\frac{1}{2}}
\]

Since \(a_k \) is nonnegative, (3.2.1), (3.2.2), (3.2.3) give,

\[
\left(\int_{\Omega} |u^*|^{1+\frac{a_k}{p}} \right)^{\frac{p}{1+\frac{a_k}{p}}} \leq C \left(1 + \frac{a_k}{p} \right)^{\frac{p}{1+\frac{a_k}{p}}} \left(\int_{\Omega} |\nabla u^*|^p |u^*|^\alpha \, dx \right)^{\frac{p}{p}}
\]

(3.2.4)

\[
\leq C \left(1 + \frac{a_k}{p} \right)^{\frac{p}{1+\frac{a_k}{p}}} \theta_k^{\frac{p}{1+\frac{a_k}{p}}}
\]

Lemma 3.2.2. Assume that

\[
\lambda_{k+1} \leq \left(1 + \frac{a_k}{p} \right) \pi_p \quad (3.3)
\]

\[
\mu_{k+1} \leq \left(1 + \frac{b_k}{q} \right) \pi_q \quad (4.3)
\]

Then, if \(u^* \in L^r(\Omega) \) and \(v^* \in L^s(\Omega) \), we have

\[
\|u^*\|_{L^{\lambda_{k+1}}(\Omega)}^2 \leq K_p^{-1} \left(1 + \frac{a_k}{p} \right)^{\frac{1}{2}} \left[A_1 \|u^*\|_{L^{\lambda_k}(\Omega)}^{\alpha_{k+1}} + A_2 \left(\|u^*\|_{L^{\lambda_k}(\Omega)}^{\alpha_{k+1}} \right)^{\frac{1}{2}} \left(\|v^*\|_{L^{\lambda_k}(\Omega)}^{1} + A_3 \right) \right]^{\frac{1}{p}}
\]

(3.2.5)

where \(A_i (i=1, 2, 3) \) are positive constants.
Proof. We first call (c.f (3.1.7)) that the hypotheses on H imply the existence of positive constants $A_i (i=1;2)$ such that for any real numbers s and t,

$$\frac{\partial H}{\partial s} (x;\xi,\tau) \leq A_1 + A_2|s|^{\alpha} |\tau|^{\beta+1}$$

Thus, by Hölder’s inequality we obtain

$$\int_{\Omega} \frac{\partial H}{\partial u} (x;u_*,v_*)u_*|u_*|^{\gamma} dx \leq A_1 \int_{\Omega} |u_*|^{\alpha_1} dx + A_2 \int_{\Omega} |u_*|^{\alpha_2} |v_*|^{\beta+1} dx$$

(3.2.6) \hspace{1cm} \leq A_1 \int_{\Omega} |u_*|^{\gamma} dx + A_2 \left(\int_{\Omega} |u_*|^{\alpha_1} dx \right)^{\alpha_2/\alpha_1} \left(\int_{\Omega} |v_*|^{\beta+1} dx \right)^{\beta/\beta+1} + A_3

That implies with (3.2.4),

(3.2.7)

$$\int_{\Omega} |u_*|^{\left(1 - \frac{\gamma}{\alpha_1}\right)} \leq C \left(1 + \frac{a_2}{p} \right) \left[\int_{\Omega} |\nabla u_*|^{p} |u_*|^{\alpha_2} dx \right]^{\gamma/p}$$

$$\leq C \left(1 + \frac{a_2}{p} \right) \left[A_1 \int_{\Omega} |u_*|^{\gamma} dx + A_2 \left(\int_{\Omega} |u_*|^{\alpha_1} dx \right)^{\alpha_2/\alpha_1} \left(\int_{\Omega} |v_*|^{\beta+1} dx \right)^{\beta/\beta+1} + A_3 \right]^{\gamma/p}$$

Now, by (3.4), $L^{(1+\alpha/p)\gamma}(\Omega)$ is continuously imbedded into $L^{\gamma}(\Omega)$, so there exists a constant K_ρ such that
Combined with (3.2.7), we have

\[
\left(\int_\Omega |u^*|^{\lambda \gamma} \, dx \right)^{\frac{1}{\lambda \gamma}} \leq K_p \left(\int_\Omega |u^*|^{\frac{\alpha + \beta}{p}} \, dx \right)^{\frac{1}{\frac{\alpha + \beta}{p} \lambda \gamma}}.
\]

An analogous result is obtained for \(v^* \).

3.2.1. Definition and construction of sequences \(\{\lambda_k; \, k \in \mathbb{N}\} \) and \(\{\mu_k; \, k \in \mathbb{N}\} \). Here, we construct the sequences \(\{\lambda_k; \, k \in \mathbb{N}\} \) and \(\{\mu_k; \, k \in \mathbb{N}\} \). This construction requires similar tools as in [20], [26] or [27] use for the study of first eigenvalue, but here the problem is different from [27], because \(\alpha \) and \(\beta \) do not verify

\[
\frac{\alpha + 1}{p} + \frac{\beta + 1}{q} = 1.
\]

Here, the first terms of each sequence cannot be determined directly by using the Rellich-Kondrachov's continuous embedding result. So, we first construct Lebesgue spaces of exponents \(\lambda_k \) and \(\beta_k \) containing respectively \(u^* \) and \(v^* \). By an appropriate choice for \(k_0 \in \mathbb{N} \) and \(\beta_0 \), give the respective first terms of \(\{\lambda_k; \, k \geq 0\} \) and \(\{\mu_k; \, k \geq 0\} \). After that, we shall show that \(u^* \) and \(v^* \) are estimated independently to \(k \) by a same constant in every \(L^{\lambda}(\Omega) \) and \(L^p(\Omega) \) spaces respectively. This is not always the case when we are limiting us only to \(L^{\lambda}(\Omega) \) and \(L^p(\Omega) \) spaces.
a) Construction of $[\lambda_k; k > 0]$ and $[\mu_k; k > 0]$. We consider here α and β satisfying the relations

$$\frac{\alpha + 1}{p} \left(\frac{n-p}{n}\right) + \frac{\beta + 1}{q} \left(\frac{n-q}{n}\right) < 1$$

(3.2.9)

So, we can find $C > 1$ and (λ, μ) such that

$$\begin{align*}
1 < & \frac{\lambda}{C} < \frac{n}{(n-q)C} \\
1 < & \frac{\mu}{C} < \frac{n}{(n-q)C} \\
\frac{\alpha + 1}{\lambda p} + \frac{\beta + 1}{\mu q} = & 1
\end{align*}$$

(3.2.10)

Now, we take $\lambda_k = \lambda p^k C^l$, $\mu_k = \mu q^k C^l$.

From (1) and (2), we get

$$\begin{align*}
\lambda_k = & \lambda^k p^l C^l \\
\mu_k = & \mu^k q^l C^l \\
\lambda_k = & \lambda^k p^l C^l \\
\mu_k = & \mu^k q^l C^l \\
\lambda_k = & \lambda^k p^l C^l \\
\mu_k = & \mu^k q^l C^l
\end{align*}$$

(3.2.11)

Lemma 3.2.3. For each $k \in \mathcal{K}$, u^* and v^* belong respectively to $L^{\lambda_k}(\Omega)$ and $L^{\mu_k}(\Omega)$.

Proof. We give a proof by induction.

By Sobolev imbedding Theorem, we have $u^* \in L^{\lambda_k}(\Omega)$; $v^* \in L^{\mu_k}(\Omega)$.
Existence and Nonexistence of Nontrivial...

Then the Lemma is proved for \(k = 0 \). Suppose that it is true for all integer \(k' \) such that \(0 \leq k' \leq k \in \mathcal{K} \).

Take \(\pi_p = \lambda p \hat{C} \) and \(\pi_q = \mu q \hat{C} \), and \(u^\ast \in L^b(\Omega) \). The relation:

\[
\left(1 + \frac{a_k}{p} \right) \pi_p = \lambda^2 p \hat{C}^{k+1} + \lambda p \hat{C} - \lambda^2 p \hat{C} \geq \lambda p \hat{C}^{k+1} = \hat{h}_{k+1},
\]

and Lemma 3.2.1. give \(u^\ast \in L^b(\Omega) \) and \(v^\ast \in L^b(\Omega) \).

b) Construction of sequences \(\{ \lambda_k; k \in \mathcal{N} \} \) and \(\{ \mu_k; k \in \mathcal{N} \} \). Let

\[
C = \min \left(\frac{n}{n-p}, \frac{n}{n-q} \right), \quad \gamma = \frac{\alpha+1}{\lambda p}, \quad \beta = \frac{\beta+1}{\mu q}, \quad \delta = (M - (\gamma - 1))C,
\]

with \(M > \gamma - 1 \); we define the sequences \(\{ \lambda_k; k \in \mathcal{N} \} \) and \(\{ \mu_k; k \in \mathcal{N} \} \) by

\[
\lambda_k = pf_k, \quad \mu_k = qf_k,
\]

where \(f_k \) denotes the sequence

\[
(3.2.12) \quad f_k = \frac{C}{C - 1} [\delta C^{k-1} + (\gamma - 1)].
\]

Remark the sequences \(\{ \lambda_k; k \in \mathcal{N} \} \) and \(\{ \mu_k; k \in \mathcal{N} \} \) are strictly increasing and tend to \(+\infty \), furthermore, we have the iterative relation

\[
f_{k+1} = C[\hat{f}_k - (\gamma - 1)] \quad (5_k).
\]

Proof of Proposition 3.2. We proceed again by induction.

First, we use the fact that the sequences \(\hat{h}_k \) and \(\hat{h}_k \) are strictly increasing to establish the existence of an integer \(k_0 \) such that \(\lambda_0 \geq \hat{h}_0 \) and \(\mu_0 \geq \hat{h}_0 \); we obtain from Lemma 3.2.3. that \(u^\ast \in L^b(\Omega) \) and \(v^\ast \in L^b(\Omega) \).
Suppose that the proposition is true for $0 \leq k' \leq k$. Let $\pi_p = C p$ and $\pi_q = C q$, (1) and (2) give: $a_k = p(f_k \gamma)$ and $b_k = q(f_k \gamma)$.

So,

$$1 + \frac{a_k}{p} = 1 + f_k \gamma \leq \frac{C}{C-1} \left[\frac{\delta}{C} + (\gamma - 1) \right] C^k.$$

Moreover by (5), we obtain

$$\lambda_{k+1} = \left(1 + \frac{b_k}{q} \right) \pi_q.$$

and similarly

$$\mu_{k+1} = \left(1 + \frac{b_k}{q} \right) \pi_q.$$

Then, we conclude with Lemma 3.2.2. that $u^* \in L^{\lambda_q}(\Omega)$, according to (3.1.6) and taking

$$A = \frac{C}{C-1} \left[\frac{\delta}{C} + (\gamma - 1) \right],$$

$$\|u^*\|_{L^{\lambda_q}(\Omega)}^{\lambda_q} \leq C \left(1 + \frac{a_k}{p} \right)^{\gamma} \left(A_1 \|u^*\|_{L^\lambda(\Omega)}^\lambda + A_2 \|u^*\|_{L^\lambda(\Omega)}^{\alpha_{q+1}} \left(\frac{\|v^*\|_{L^\lambda(\Omega)}^{\beta+1}}{\alpha^\beta} \right)^{\frac{\beta+1}{\beta}} \right).$$

(3.2.13)

$$\leq A^C C^{\kappa_p} \max \left(1; \|u^*\|_{L^\lambda(\Omega)}^\lambda; \|v^*\|_{L^\lambda(\Omega)}^\beta \right)^C.$$

Considering the equality
we obtain an analogous inequality

\[
\|v^*\|_{L^{\infty}(\Omega)} \leq A C^{\frac{1}{2}} \max\left\{1; \|u^*\|_{L^{\infty}(\Omega)}; \|v^*\|_{L^{\infty}(\Omega)}\right\}^{\frac{1}{2}}
\]

(3.2.14)

As in [20], [26], [27], we obtain the iterative relation \(E_{k+1} \leq r_k + CE_k \), where

\[
E_k = \ln \max\left(\|u^*\|_{L^{\infty}(\Omega)}^{\frac{1}{2}}; \|v^*\|_{L^{\infty}(\Omega)}^{\frac{1}{2}}\)
\]

(3.2.15)

\[
r_k = ak + b \quad a = \ln C^{\max(p,q)}, \quad b = \ln(A)^C
\]

So, we get the iterative relation \(E_k \leq dC^{k-1} \), where \(d \) denotes a positive constant.

Thus,

\[
\|u^*\|_{L^{\infty}(\Omega)} \leq \exp\left(\frac{E_k}{\lambda_k}\right) \exp\left(\frac{d(C-1)}{pC\delta}\right)
\]

(3.2.16)

\[
\|v^*\|_{L^{\infty}(\Omega)} \leq \exp\left(\frac{d(C-1)}{qC\delta}\right)
\]

then, \(u^* \) and \(v^* \) are bounded in \(L^\infty(\Omega) \) and \(L^p(\Omega) \) independently of \(k \in \mathbb{N} \).
Jean Vélin and François de Thélin

References

Existence and Nonexistence of Nontrivial...

193

Département de Mathématiques
Laboratoire d'Analyse Numérique
Université PAUL SABATIER
118, route de Narbonne
31062, Toulouse Cédex
FRANCE

Recibido: 10 de febrero de 1992
Revisado: 30 de julio de 1992