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On Exact Sequences of Quojections

G. METAFUNE and V. B. MOSCATELLI

ABSTRACT. We give some general exact sequences for quojections from which
many interesting representation results for standard twisted quojections can be
deduced. Then the methods arc also generalized to the case of nuclear Fréchet spaces.

INTRODUCTION

A Fréchet space [ is a quojection if it 1s the projective limit of a sequence
(£, R,} of Banach spaces E, and surjective maps R, £, — E,. In this case
we write E=quoj,(E,. R,). A quojection is cailed rwisred if it is not
isomorphic to a countable product of Banach spaces.

[t is well known that a quotient of a quojection i3 again a quojection
{possibly Banach). Here we want to investigate quotients of products with
respect to quojection subspaces with regard to the property of being twisted
or not. This has an intrinsic interest as well as implications to the existence or
not of unconditional bases. 1t is clear (hat the problem is equivalent to the
study of short exact sequences of quojections of the form

“(*) 0—F— G- E—0,

where, in our case, G is a product. Thus, in §1 we characterize the vanishing
of the first derived lunctor Ext' (E, F}, which is equivalent, lor fixed £ and F,
to the splitting ol any exact sequence as {*). To introduce the argument we
show that, for any given quojection F, there always exist a quojection F and
a cardinal d for which we have an exact sequence as (¥) with G = (/))™. This
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could also be deduced by carrying on further the proof of the result in [1],
but, for the convenience of the reader (and because the effort is the same), we
prefer to give here the {ull proof. In §2 we then give a general cxact sequence
for standard quojections. Based on the fact, proved in [16], that if £or Fare
standard twisted quojections, then no sequence (*) can split, in §3 we are able
1o obtain from our general sequence many interesting representation results
involving standard twisted quojection and, consequently, unconditional
bases. Last, but not least. applications are made in §4 to the case ol nuclear
spaces.

The notation we follow is standard, but, for brevity’s sake, we use the term
«surjection» to mean a linear and continuous surjective map.

1. ON THE VANISHING OF THE FUNCTOR Ext'
FOR QUOJECTIONS

Theorem [.I. [f E is a quojection, then there is a cardinal d and a
surjection T: (1IN — E such that ker T is a quojection.

Proof. By definition we have E=quoj,(£,. R,), where the E, are
Banach spaces and the maps R,: £+, — E, are surjective. Let ¢=dens (£)
and let 7\:/y— E, be a surjection. Supposing that 7,,: (/)" — E, has been
defined, tet 7, be a lifting of 7T, into E,.; (ie., R, T,=T,). let S,: [y —ker R,
be a surjection and define 7,4 :({)"x = E,«, by T,0,=T,+S,. The
required map is then obtained by setting 7T(x,)=(7T,(x;,....x,}), for (x,) €
()N, For the surjectivity, take any (y,)€ E: since v, € £, there is x, €/} with
Y= T| X = R| T[ X(. BUt ¥ = R;_Vz with _}726 Ez, hCﬂCﬂ Ya— ’171| X = S| Xa for
some x; €40 Qe 1, =T (x), x5). Inductively we obtain v, =T, (x,,..., x,,) for
all i, hence (y,)= T(x,) with (x,J€({)N. It remains to show that ker Tis a
quojection.

For cach n let P, ()" — ()" be the canonical projection; then
ker T=proj, (ker T,, P,). Let z=(x,,....x,)eker T, then 0=T,z=R, T,z
implies T,zeker R, and we may choose x,;, €/} with 7, z+ S, x,.., =0. This

means (z, x,+ )€ ker 7,4, hence each P, ker 7,4 — ker T, 1s surjective and
ker T'is a quojection, as claimed.

Theorem 1.1 is the analogue for quojections of the classical result for
Banach spaces., However, the analogy stops here. In fact, while for a
separable Banach space X not isomorphic to /' there is a unique, up to an
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automorphism of /', surjection T:/'— X (cl. [10, }, Theorem 2.1.8., p. 108]).
so that the kernels of all such maps 7 are isomorphic, for quojections the
situation is compietely dilferent, as the following example shows,

Example 1.2. Let T (/N — (AN be the canonical surjection induced by
the quotient map g: /' — /2. Clearly, ker T'=(ker @)™ and so ker T is a
quojection. Now let N be a nuclear Fréchet space not isomorphic to w: by [ 11,
Proposition 1.14]({3)N/ N is isomorphic to (/N and we denote by J one such
isomorphism. It follows that, il Q- (/N — (/AN/N is the quotient map, then
the map S=JQ7 is a continuous surjection ol (/)Y onto (/)N for which
ker § (= 7-'(N)) is not a quojection, hence not isomorphic to ker T.

Remark 1.3. At this stage one might think that the kernels of two maps
from (/)N onto the same separable quojection (not isomorphic to a
complemented subspace of a product of the form Xx (/)N with X Banach)
would have to be isomorphic il they were both quojections. However, not
even this is true, as will be shown in Example 3.13 below.

In the rest of this section we shall discuss some consequences of Theorem
1.1 and related results. We recall that the vanishing of the first derived functor
Extt(E F) for Fréchet spaces £ and F means that every exactl sequence

0—-F—-G—-E—-0

splits and, consequently, G= £®F. For a discussion of this topic see [20].

Proposition 1.4.  Let F be a quojection. The following are equivalent:
() Ext'(E, F)=0 for every quojection F:
(ily E is isomorphic to a complemented subspace of (DN for some

cardinal d (and hence either E=[y 0, [\xw(d'=d) or E contains a
camplemented copy of (IYN),

Proof. (i) — (ii}: By Theorem 1.1 there is an exact sequence
0—ker T—(IWNLE—0

and by assumption this sequence splits. Then the assertion in brackets follows
essentially from the proof of Theorem 1.2 in [15].

(it) — (i}: This is a conscquence of [20, Remark b), pag. 173].
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Remark 1.5. In the separable case, assertion (ii) above may be replaced
by E={" w,I'xwor (I"YN{(cf. [15, Theorem 1,21).

Proposition 1.6, Let F be a Fréchet space. The following are equivalent:
(i) Ext' (L F)=0 for every quojection F:

(1) F iy isomorphic to a complemented subspace of (I7)N lor some
cardinal d (and hence either F= X, w, X % w (X an injective Banach space} or
£ contains a complemented copy of (PN,

Proof, (1) — (11} Let d be such that F1s a subspace of(fff)'\'. By assumption
the exact sequence '
O F— (LN — (17N =0

splits and (a1} follows from {15. Proposition 3.8 or Propisition 3.14],

(i) — {i): This is immediate, since F is injective,

| Proposition 1.7.  Ler F he a Fréchet space, The following are equivalent:
(i) Ext! ((IDN, F)=0 for every cardinal d;
(i} Extt (NN, F)=0;
(iii) Ext! {w, F)=0;

(1) Fix a gquojection.

Proof. (i) — (i) — (iii); Clear.
(ui) —(iv): By [19, Theorem 5.2].
(ivi— (i} By Proposition 1.4,

Proposition 1.8.  Let F be a separable Frécher space. The following are
equivalent:

(i) BExt' (', F)=0;

(i1} Fis quasinormable.
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Proof. First of all, observe that Ext' (/. Fy=0 is quickly seen to be
equivalent to the following: for any exact sequence

(H 0—F—GLE—0

with G separable and Fréchet and F=ker ¢, every map T: /' — [can be lifted
toamap 7:/' — G such that g 7= 7. In turn, this happens if and only if ¢ lifts
the bounded subsets of £ to bounded subsets of G. Thus it suffices to show
that Fis quasinormable if and only if for any scquence (1) the map g lifts the
bounded subsets. Now if Fis quasinormable, then ¢ lifts the bounded subsets
by [4, Proposition 2]. Conversely, if this is the case, represent F as a reduced
projective limit F= proj, F of Banach spaces F,,. By [20, Lemma 1.1] we have
an cxact sequence

0—F—||F, 2| F,~0
1l M

Since g lifts the bounded subsets by assumption and | | £, is quasinormable

H

by [3, Theorem, Pag. 159] (cfr. also [5], Pag. 33) F is quasinormable. Note
that in general F is quasinormable if and only if Ext! (/. /=0 with
d=dens (F).

We conclude this section by showing that Proposition 1.4 cannot be
improved by relaxing the condition that F be a quojection. In other words,
from (/"N being a quotient it does not follow, in gencral, that it 1s also a
complemented subspace. At the same time, this will show that Proposition
3.3 and Corollary 3.4 of [15] do not hold for quojections. Precisely, we now
exhibit examples of separable gquojections having (/)N as a quotient but not
even as a subspace.

Example 1.9. Let X be a separable Banach space such that no power X*
contains an isomorphic copy of /' (e.g., X=¢, or I, 1<{p<{%) and put
£=10"x XN, Next, choose a biorthogonal system {{(v,, v,): v, € X, v,€ X"} with
(v;) total over X and ||v}||=1.

Then, define a map it X—/7 by ifx)=(2"<x v.,>); clearly i is
continuous and has a dense range. Now write /' in F as f1{(/') and define
T E—~ ()N by T((a,), (x))=(a,+i(x,) lor (a,)€/ (1) and (x,)€ XX, Tis
continuous and surjective: in fact, given (b,)€(/MN, choose (x,) € X™ so that
(b, — i el ('), f a,=b,—i(x,) then T((a,), (x,))=1{h,). Thus E has a
guotient isomorphic to (/)N We show that no subspace of £ is isomorphic to
(/"N

Arguing by contradiction. suppose that there exists an isomorphism J ol
M nto E For (a. (x,)e £, with ¢e/' and (x,) € XN, pul
{ ) g p

Py (a () = llall
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and

&
I)A‘I | ((I, (.Y,,)) - “(l“ | +ZI HXHH,\'-

N=

Also. lor (a,) € (/"N put

i
qi\ (”n): )_. ””u” I
0w |

'l'hcn_ {pi) and (g} are fundamental sequences of seminorms for £ and (N
respectively and for any he (/"N we must have

(2) - ap (=g =quabYSapn U =g th)
[or sultable positive constants ¢, ¢, ¢y and integers k= j<m. Il J, and J» arc

the restrictions of J to (/N and (/") respectively, [rom (2) we obtain the
following diagram

Sy
(fym —> ' X7
0l fp
(jI)I\ —}) f

where P, resp. O, is the projection onto the first component, resp. the first &
components, and PJS,b=J, Ob for all be(/,y". Now consider the (k+1)—st
copy of ff in (/)" and denote it by f};,. It {ollows from (2) that ./, is an
isomorphism on /.. But if A&/, then Qh=0, hence PJ, b=0 and,
therefore, ./, € X7. However, this contradicts our assumption on X.

Note that, with reference to the above example, it follows [rom
Proposition 1.4 that for any surjection §: £— (M~ kerS is nor a quojection.
It is also follows from Theorem 1.1 that every separable quojection is a
gquotient ol £

Finally, we observe that Theorem .1 has as a consequence also the
(ollowing:

Proposition 1.10.  Every strict (LB)-space G is a subspace of (IDN for
some cardinal d.

Proof. G'isa quojection and hence a quotient of (/)N with respect to a
quojection subspace, by Theorem 1.1, Since the quotient map hifts the
bounded subsets, " is a subspace of (£, whence so is G,
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2. AN EXACT SEQUENCE FOR STANDARD QUOIJECTIONS

Theorem 1.1 of the previous section tells us that every quojection £ can be
realized as the yuotient of ()N by a quojection subspace £ Now, in gencral,
even il £ is given. there is nothing we can say about £ or about the possibility
of replacing (/)N by some other product (depending on £, ol course). This is
due to our lack of knowledge about general quojections. There is. however,
an important class of quojections for which we can say a great deal and which
we shall examine i this section,

We recall that at present there are only two methods (or constructing
twisted quojections, plus an exceptional case discussed in [16, §2]. The first
wis originally devised in [17]: because ol its semplicity and versatility. it is
still the major source of examples and counterexamples, The second, treated
in [12], is much less concrete and, so far, it has been of very little use.
Therefore, it is not surprising that we shall appeal once again to the former
method. In doing so, we find it convenient to introduce a specilic notation,
for which we recall the construction in [17] in the {ollowing form.

Let (X,) and (Z;) be two sequences of Banach spaces for which there are
surjections s,: X, — Z,. Il L is a Banach sequence space, we form the steps

irl = (% Zn)f,: L(ZH)
and, for all &,

?k+| = [&@;A XH)® ggk Zn)]: L [( Xn)nSR’ (Zn)u>k]'

Clearly the maps s, induce, together with the identies of X, and Z,,
surjections S;: Fy+ i — F;. The projective limit ol the sequence (Fyp. §) is.
therefore, a quojection, which we shall denote by Q[(X,,), (Z,), (s,). L] Such
quojections form a subclass of the class of Fréchet spaces defined in [2] and
we shall refer to quojections isomorphic to them as standard quojections,
Note that QU(X,), (0}, (0); L]=1| X, so that every countable product of

. . A
Banach spaces is a standard quojection.
The above construction has the added advantage that it may be performed

also when the X, Z,, and [ are Fréchet spaces (as implicitly done in [17]) and
we shall give an interesting application of this in the last section.

If the spaces Z, above are quotients of the X, with respect to closed
subspaces Y, and if the s, are the quotient maps, the corresponding standard
gquojection will de denoted by Q[(X,). (X../ ¥.,). L]if no conlusion is likely to
arise. Clearly. we always have

QUIX). (Z). (o L]= QLX) (X, [ker s,); L]
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To end our preparations, we find it useful to state the following lemma,
which is essentially Thearem 1.1 of [16] (the «only if» part of the lemma being
ohvious).

Lemma 2.1. Q[ (X,) (Z,}). (5, L}is twisted if ane onfv if ker s, is no:
complemented-in X, for ‘infinitely many n.

Now the proof of our main result of this section begins with the lollowing
lemma., which 1s at the heart of the matier.

Lemma 2.2, Ler Q[ (X ) (X, /Y.h L] he any standard guojection and let
(Z,) be a yequence of Banach spaces admirting a sequence () of continuous
linear mups f,:Z,— Y, with dense ranges. Then there is a surjection
S L(X )< || Z,— Q| (X,). (X,,] Y,); L] such that ker § iy a Frécher space of

Moscatelli ;.Il';}(’ {cfr, {2, Defimtion [.3]).

Proof. First of all, put E= Q[ (X,), (X,/Y,,,): L] and observe that. by {2.
Proposition 1.4], algebraically we have

(3) = { (v\-n) € |”| /Yn: (qu (-\-u) )E I—’(-'Yu/ Yu) } "

where ¢,: X,— X,/ Y, is the quotient map for every n Moreover, the
topology of £ may be defined by the system (p,) of seminerms given by

I ("-n) - H(H Yn (.V") “ .\'”,"};,)“ L
(4) 3
Pr+1 (-Y»r) = ('\‘n) + L ”-\-n” Ny

n=lI

Now for ((x,). (z))E L(X,)= || Z, the cquation
n

(3) S Az ) =(x, +/,(z))

defines a linear map §: L{X))=|| Z,— |1 X,. Using (3) and (#) it is easy to
1

. . .n o . . .
see that § takes its values in £ and is continuous as a map into L£; hence, it
remains to prove that § is surjective and ker S is of the required type.

Let (x,)€ £ by (3) there is (v, )€ L{X,)} with g (v,) =g, (x,) for all n. Put
Yy =X,— v, since v, € Y, and [, has a dense range. we can find =z, € Z,, such
that (v, —f, (5,) e L(Y,). Thus, il e, = v, + v, — f(z, ) for all n, then (u,) € 1.(X,)
and S((w,). (2,0 =(x,)



On Exact Sequences of Quajections 201
Finally, by (5) we have

(6) ker S={((—/,(z). (z,)):(5) € |”| Zy (u(2))E€ L(Y )}

(rom which the assertion about ker § follows, again by [2, Proposition 1.4].

Theorem 2.3.  Under the assumptions of Lemma 2.2 suppose that the
maps [, can be chosen ro be surjections and denote them by s,. Then

(7 ker $=Q[(Z,). (Y.). (s,}: L]
Consequently:
(a) ker S is Banach if and only if ker 5,=0 for all bu{_ﬁni}el_v many 1y

(0) ker S==wx Bunach if and onlv if 0 dim (ker s5,)<oe for all hut
Jinitely many n;

(€Y ker S is rwisted {f and ondy if ker s, is nor complemened in 7, for
infinitely many n.

Moreover, we have established the exisience of an exact sequence

(8) o0— Q[(Zn)~ ( Yn)' (‘Vu); L] - L(Xu)x If?i Zu - Q[(Xn)ﬂ (Xn/ Yn): L]_' 0.

Proof. (7) follows (rom (6) and Proposition L4 of [2], while (8} follows
from (7) and Lemma 2.2. 1t is then an easy matter to verify that (a), (b) and
{c) hold {for (¢) use LLemma 2.1).

The above theorem has many interesting corollaries, which will be given
in the next section. Here we conclude with the following consequence of
Lemma 2.2,

Propcsition 2.4, Ler E he any standard quojection of the form Q[ (X,).
(X,/ Y0 '], with Y, separable for all n. Then for every sequence (7,) of
Banach spaces there is a surjection S: 1 (X, )x | 1 Z,— Esuch that ker § is not

1

/
distinguished (hence not quasinormable). In particular, this holds for
E=[|Y,

3]

Proof. Foreach n take a compact map f,,: Z,,— Y, with a dense range (f,,
may be constructed more or less as § was in Example 1.9). Then the surjection
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S constructed in the prool of Lemma 2.2 meets the requirement, by [2,
Corollary 2.5].

Remark 2.5. It is interesting to note that, if in the above proposition we
take X,=VY,=7Z,=I" and f,=f for all n, with ffa,)=(k"" @) for (@)=,
then for the corresponding surjection S: (/NN — (/YN we find that ker Sis the
non-distinguished Fréchet space of Kathe-Grothendieck (cfr. {9, §31, 7, pag.
4351).

3. CONSEQUENCES

This section is devoted to the investigation of various consequences of
Theorem 2.3, Here «product» means a countable (and not finite) product of
Banach spaces. Morcover, whenever all the Banach spaces X, (resp., Z,) and
maps s, are taken equal to one fixed space X (resp., Z) and map s, we simply
write Q (X, Z, 5; L) for the corresponding standard quojection.

The first cansequence of Theorem 2.3 1s the (ollowing quite strange

Corollary 3.1.  Every standard twisted quojection is isomorphic 1o the
gquotient of a product by a Banach space.

Proof. Taking in Theorem 2.3 Z, = ¥, and s, =the identity map of ¥,
for all 12, we obtain from (8) an exact sequence -

(9) 0— L( Yn) - L(X”)X !nl Yn"' Q[(Xn)~ (X.'r/ Yn)» L]—' 0.
It is clear that we can also represent a standard twisted quojection as the
yuotient of a product by a product. Consequently, since a standard twisted

quojection is never complemented in a product [16, Theorem 1.5 (b)]. we
have

Corollary 3.2. Let £ be any standard twisted quojection. Then there is
Banach space X and a product F such that

Ext' (£ X)#£0 and Ext' (£ F)=0.

Next, we abserve that Corollary 3.1 has the following counterpart.

Corollary 3.3. Every standard twisted quojection can be embedded as
subspace F of a product G such that G| F is again a product.
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Proof. Represent the given quojection as Q[(Z,), (Y,), (s,); L]. put
X,=Y, for all n and apply (8) Lo obtain an exact sequence

(]0) 0— Q[( Zn)a ( Yn)s (Sn); L] - L( Y”)X !FJ Zu - |”| YH_’O'

Corollary 3.4. Ler F be any standard twisted quojection. Then there
exists a product E such thar Ext' (£, F)#0.

Here we pause to note that it is not possible to obtain an exact
counterpart of Corollary 3.1, namely, the conclusion of Corollary 3.3 cannot
be improved to «G/ F is Banach» on account of the following

Proposition 3.5.  Let E be a quojection and let F be a subspace of E such
that EJ Fis Banach. Then Fis a quojection. Moreover, if E is a product, then
also F is a product.

Proof. Let E=quoj,(E,. R,) and write F as the reduced projective limit
F=proj,(F, R,).where each F, is a closed subspace of £,. Then £/ F=quoj,

(E,/F, R,). where the maps R,: E,+(/Foe1 — Eo/F, are induced by the maps
R,, E,— L, I E/F is Banach, we may assume that each R, is an
isomorphism. In particular, for all o,

0=ker ﬁu:(lea:l (Fn)+ Fu+|)/ ].:r'+'|'

which implies that in E,;, we must have R;' (F,)C F,,. Hence
F=quoj, (F,. R,).

Supposc now lhdl FE1s a product | | X, of Banach spaces X, and, for each
k
n et Ry, | | Xy= i \ X, be the canonical projection. With F, C X, from R7'

{(F\)=F; we oblam hﬁf X X5 and, in general, F,,= Fx I i X (n> 1), s0
that Fis a product. as claimed.

Remark 3.6. Note that F may be a product even if £ is twisted, as shown
in [11, Corollary 2.3).

Going back to the consequences of Theorem 2.3, now we have

Corollary 3.7.  Every quojection Q[(X,), (X,/ Y.): L] with Y,s= 1Y for
infinitely many n and all cardinal numbers d, is isomorphic to the quotient of
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a product by a standard nwisted quojection. In particular, the conclusion
holds for every product of Banach spaces Y, as above (cfr. (1)),

Proof. Take ¢=dens (Y,) for ali i, then choose surjections s,: {,— ¥,
and apply Theorem 2.3(c) with Z,=/}.

Corollary 3.8.  Let (Y, ) be a sequence of Banach spaces and suppose that
there are two infinite subsets N, N> of N such that, if neN,, Y, is not
infective and, if n€ N,, Y, is not projecrive. Put

E=QUX,). (X,/ Vo) Ll and F=Q[(Z,). (¥,). (s,): L].

Then, given any nwisted F (resp., F) there exist a twisted F (resp., E}and a
product G for which we have an exact sequence

0—F—G— [0

and, consequently, Ext' (E, F)=£0.

. We note the following special case of Corollary 3.8 (or 3.7). which should
be compared with Theorem .1

Corollary 3.9. Let Y he a subspace of I with Yz=1" and let s I'— Y be
a surjection. Then there is an exact sequence

0=, Y, s, M —(MN=—QU". 'Y, M=,

where, of course, both quojections are twisted.

Remark 3.10.  We do not know if the above result holds with  replaced
by {1 <Tp<Too, p2£2). It 15 easy to see that it holds lor /~ and ¢, and also for
C({0. 17y and L'(0. 1), with appropriate choices of ¥, but again we know
nothing about the case of L7(0, ) (1 <p<Too, p##2). However, it «almost»
- holds for £/(0, 1) 1n the sense that we have, putting £/(0, D=1' for all
| <r<leo, '

Corollary 3.11.  Let p, ¢, r. s be positive real mumibers satisfving

N p<g<2<r<s<o



Cn Exact Sequences of Quojections 205
and let L be reflexive. Then the reflexive product
G=L{{"oLlyx(L'a LN

containg a standard twisted quojection F such that also G F is a standard
twisted quojection.

Proof. By[10, 11, Corollary 2.£.5, p. 212] L4 15 (isometrically) a subspace
of L” whence L’ is a quotient of £ Since /7 is a subspace of L', we see from
[8. Corollary 3, p. 168] that L cannot be isomorphic to a subspace of L. This
implics also that L4 cannot be 1somorphic to a complemented subspace of 12,
Now observe that L@ L7/ LY@ L= L7/[¢ and {orm the standard quojection
E=Q(re L, L7/14; L). Then, by Theorem 2.3 (or Corollary 3.8), E= G/ F,
where F=Q(ldaw l, L@ Lr, s L) (here s: L@ Ly — L4@ L7 15 the map which
is the identity on L¥ and the quotient map on £).

Clearly the above result holds also with L¢ and Lr replaced by /v and /7
respectively. Morcover, an application of (9) and (10} establishes the
following particular case of Corollaries 3.1 and 3.3 which we {ind worth
mentioning because all the spaces involved are reflexive.

Corollary 3.12.  There are exact sequences
O fit— MUY (LN = QI 7] L4 1) =0,
O— QL Lo i) — Lyt — (LN =0,
where | <p<lg<2<Try<{oo

We terminate our list of direct consequences ol Theorem 2.3 by giving the
cexample promised in Remark 1.3,

Example 3.13. Let X=C([0,1])and £=Q(X, X//". /). From Theorem
2.3 (a) we obtain a surjection S;:/"(X)=x(/WW—FE with ker §=/'. If
Sy M (N LX) < {MN is the surjection which on (/)™ 15 the identity and
on /' is the quotient map onto /' (X), then §= 5, §; is a surjection of (/)N onto
£ such that ker S=S57'(/") is Banach. Now let T: (MNx(/"YN— E be the
surjection which i1s § on the first copy of (/)N and is the zero map on the
second copy. Then ker T'=ker Sx(/'")Na&ker 5.

Now we shall give some less direct consequences ol Theorem 2.3,
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Coroliary 3.14. There are reflexive quojections E,, E,, Ey having
unconditional bases and containing subspaces F|, Fy, F; respectively, such
that:

(1) F\, but not E\JF\, has an unconditional basis;

(b) Eyf Fy, but nor Fs, has an unconditional basis;

(c) Fyand Ef Fy have no unconditional bases.

Proof. Follows [rom Corollaries 3.11, 3.12 and the result in [7]. Part {(c)
of the above corollary shows that the property of not having an unconditional
hasis 18 not a three-space property for the class of separable Fréchet spaces,
thus providing the counterpart to Corollary 2.4 in [HI].

At this point we cannot drop the word «unconditional» in the above
statement, since (wisted gquojections may indeed have (conditional) bases. as
shown in [13]. This, however, will be donc in §4.

Now, as i [11], denote by SUM the ¢lass of countable direct sums of
Banach spaces and call s-LB the class of strict (1LB)-spaces. Evidently,
s-LBNSUM is the class of rwisted, strict {LB)-spaces (cl. [12, §1]}. Then,

dualizing Corollaries 3. 1T and 3.12 we obtain (for the «moreover party use [6.
Proposition 3. 1]},

Corollary 3.15.  For i=1, 2, 3 there are reflexive G,ESUM containing
respectively subspaces M2 s-1.B such that G/ H,€s5-1.8 and

(u) H,eSUM, ¢/ H ¢ SUM;

(by 1y SUM. G/ H,eSUM;

(&) . Gy Hyd SUM.

Maorcover, the analogue of Corvollary 3.14 holds,

Finally, itis perhaps superfluous to note that, by duality, (8). (9) and (10)
yicld corresponding exact sequences for reflexive spaces in s-1.8.
4. APPLICATIONS TO NUCLEAR SPACES

First of all we observe that, with reference to the construction of standard
quejections @ €.X,) (7). (s,). 1] outlined at the beginning of §2, if the spaces
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X, Z,and L are Fréchet spaces with continuous norms {each space having a
fundamental system of norms fixed once and for all), then the same
construction yields a Fréchet space without continuous norm which is twisted
if and only if ker s, is not complement in X, for infinitely many # (cfr. Lemma
2.1). The details of all this arc left to the reader; but we point out that in the
nuclear case the above construction was implicitly performed in [17. §2].
where it was explicitly carried out in the dual space. Here too we shall confine
ourselves to the nuclear case and indicate how some of the results of §§2 and
3 go over to this case. (Note that §1 has no nuclear analogue, since there is no
guotient-universal nuclear space).

The first result is the {ollowing analogue of Theorem 2.3,

Theorem 4.1,  [Let (X,). (Y,) be two sequences of nuclear Fréchet spaces
with continuous norms for which there exist surjections r,: X, — Y,. Further,
let (7,) be a sequence of nuclear Fréchet spaces with continuous norms for
which there are surjections s, Z,,— ker r,. Then we have an exact sequence

0— Q[(Z,), (ker r,), (5,); L]— L(X,)% Inl Z,— QL(X,),

{ Yn)-: (I‘,,); L]_° ()1

(I

from which the analogues of (9) and (10) may also be derived.

Proof. It suffices to note that the prools of Lemma 2.2 and Theorem 2.3
go over to this case,

Of coursc, Theorem 4.1 is not as far reaching as Theorem 2.3 so that,
although Corollaries 3.1 and 3.3 have nuclear analogues, there is no hope of
getting something like Corollaries 3.7 and 3.8. However, we wish to draw
attention to the following analogue ol Corollarics 3.11 and 3.12.

Let oo ={e,) be an increasing sequence of positive real numbers such that

| y
(12) lim—&"

o,
=0 and sup —— <0
" o, TR

H

and let A, = A («) be the associated nuclear power series space of [inite type.
Then we have

Corollary 4.2. There iy a surjection r: A — Ay such that the space
F=0Q(A. AL e A is ewisted. Moreover, we have the following three exact
sequences, none of which splits:
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(13) 0 Fe A¥— F—0,
(14) 0= Ay — AY — F—0),
(15) ' 0— F— AY = AV 0.

Proof. Since A\ @ Ay= A, by [18, Satz 5.4] there is an cxact sequence

U-“ .’\|4'1\]L‘.’\|—°0

with ker r not complemented 1n A, Since ker r= A, we have a surjection s

A, — ker r with ker s not complemented in A,. Also, A (A)=A,&A,=A, by

(12}, and (13) follows from (11) by appropriately choosing everything.
" Similarly for (14) and (15). By |16, Theorem 2.3] none of the sequences splits.

Remark 4.3, We note the curious fact that all the steps in Q(A,, A},
Ay) are isomorphic to A,

From Corollary 4.2 (13) we immediately derive, via [17, §2] or [6,
Proposition 4.1], the announced improvement of Corollary 3.14(c).

Corollary 4.4, The property of not having a basis is not a three-space
property for the class of separable (even nuclear) Fréchet spaces. The same iy
true also for the classes of separable (LB)— or (DF)— spaces.

Remark 4.5. The {irst assertion in the above corollary should be
compared with the result in [14].

Finally, we observe that (14) also holds for nuclear powecr series spaces of
infinite type. In fact. supposc thal e satisfies (12), and sup log it/ e, < oo and
put A= A (a). Then we have "

Corollary 4.6, There is a nuclear Frécher space Y (depending on o) with
a comtinuons porm and surfection 1AL — Y such that O(A.. Y, o Ax) iy
iwisted and we have the following exact sequence (which does not split):

0= A — AN — Q(A... V. ri AL)— 0.
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Proof. Let 8=(f,) be an increasing sequence of positive real numbers

satisfving (12), and l,i,m ,/B,=0. By [21, Lemma 3.3] there is a subspace £
ol A. and an exact sequence

0— Aw— A= A (BB E—O.

Since A (B) is not isomorphic to a complemented subspace of A, ker ris not
complemented in A.. and the result follows by taking Y= A (8) & £
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