REVISTA MATEMATICA de la Universidad Complutense de Madrid Volumen 4, números 2 y 3; 1991. http://dx.doi.org/10.5209/rev_REMA.1991.v4.n2.17957

Solidity in Sequence Spaces

1. J. MADDOX

ABSTRACT. Relations are established between several notions of solidity in vector-valued sequence spaces, and a generalized Köthe-Toeplitz dual space is introduced in the setting of a Banach algebra.

INTRODUCTION

The study of linear spaces of scalar sequences and their α -duals was initiated by Köthe and Toeplitz [4].

If s denotes the linear space of all infinite sequences $a = (a_k)$ of complex numbers a_k and if E is a linear subspace of s then, following [4]; see also [3] and [1], we define the α -dual of E as

$$E^{\alpha} = \{ a \in s : \sum_{k=1}^{\infty} |a_k x_k| < \infty \text{ for all } x \in E \}.$$

Two related dual spaces are defined by

$$E^{\beta} = \{ a \in s : \sum_{k=1}^{\infty} a_k x_k \text{ converges for all } x \in E \},$$

$$E^{\gamma} = \{ a \in s : \sup_{n} \left| \sum_{k=1}^{n} a_k x_k \right| < \infty \text{ for all } x \in E \}.$$

Topologies on a sequence space, involving β and γ duality have been examined by Garling [2], who noted that $E^{\alpha} = E^{\beta} = E^{\gamma}$ when E is solid (or normal), i.e. when $x \in E$ and $|y_k| \le |x_k|$ for all $k \in N$ together imply that $y \in E$.

1991 Mathematics Subject Classification: 46A45. Editorial de la Universidad Complutense, Madrid, 1991. Thus, for example, the space c_0 of null sequences is solid, but the space c of convergent sequences is not.

We shall be concerned with the more general situation of vector-valued sequences $x = (x_k) = (x_1, x_2,...)$ with x_k in a complex linear space X. By s(X) we denote the linear space of all sequences $x = (x_k)$ with $x_k \in X$ and the usual coordinatewise operations: $\alpha x = (\alpha x_k)$ and $x + y = (x_k + y_k)$, for each $\alpha \in C$.

If $\lambda = (\lambda_k)$ is a scalar sequence and $x \in s(X)$ then we shall write $\lambda x = (\lambda_k x_k)$.

In case X is also a normed space we denote by B the closed unit ball of X and by B(X) the space of all bounded linear operators on X. As usual X^* denotes the continuous dual space of X. Two subspaces of S(X) that we consider later are

$$l_{\infty}(X) = \{ x \in s(X) : \sup_{k} ||x_{k}|| < \infty \},$$
$$l_{1}(X) = \{ x \in s(X) : \sum_{k=1}^{\infty} ||x_{k}|| < \infty \}.$$

These spaces generalize the classical spaces l_{∞} and l_{\parallel} which are subspaces of s.

If $A = (A_k)$ is a sequence in B(X) we shall write $Ax = (A_k x_k)$ for each $x \in s(X)$.

Some information about types of generalized Köthe-Toeplitz duals involving sequences of linear operators may be found in Maddox [5].

We now consider the eight statements below, each of which expresses some notion of solidity for a linear subspace E of s(X). It is statement (5) which generalizes the original idea of solid (or normal) as given by Köthe and Toeplitz [4].

The first three statements are meaningful in any complex linear space, but the last five statements require X to be normed. A statement such as $||y_n|| = ||x_n||$ is an abbreviation for $||y_n|| = ||x_n||$ for all $n \in \mathbb{N}$. Also, in (6) to (8) the A_n are elements of B(X).

- (1) $x \in E$ and $\lambda \in I_{\infty}$ imply $\lambda x \in E$
- (2) $x \in E$ and $|\lambda_n| \le 1$ imply $\lambda x \in E$
- (3) $x \in E$ and $|\lambda_n| = 1$ imply $\lambda x \in E$
- (4) $x \in E$ and $||y_n|| = ||x_n||$ imply $y \in E$

- (5) $x \in E$ and $||y_n|| \le ||x_n||$ imply $y \in E$
- (6) $x \in E$ and $(||A_n||) \in I_{\infty}$ imply $Ax \in E$
- (7) $x \in E$ and $||A_n|| \le 1$ imply $Ax \in E$
- (8) $x \in E$ and $||A_n|| = 1$ imply $Ax \in E$.

EQUIVALENCES

In Theorems 1, 2 and 3 we determine the relations between the statements (1) to (8).

Theorem 1. In any complex linear space X the statements (1), (2) and (3) are equivalent.

Proof. It is trivial that $(1) \rightarrow (2) \rightarrow (3)$. Let us show that $(3) \rightarrow (1)$. If (3) holds, $x \in E$ and $\lambda \in I_{\infty}$ then there exists M > 0 with $|\lambda_n| \le M$ for all $n \in N$. Define

$$\mu_n = \lambda_n / M = \alpha_n + i\beta_n$$

where α_n and β_n are real. Then $|\alpha_n| \le 1$ and $|\beta_n| \le 1$, so we may choose γ_n and δ_n with

$$\alpha_n^2 + \gamma_n^2 = \beta_n^2 + \delta_n^2 = 1.$$

Define $z_n = \alpha_n + i\gamma_n$ and $w_n = \beta_n + i\delta_n$, whence

$$|z_n| = |\overline{z}_n| = |w_n| = |\overline{w}_n| = 1$$
,

and so zx, $\overline{z}x$, wx, $\overline{w}x$ are all in E. Since E is a linear space it follows that αx , $\beta x \in E$ and so $\lambda x \in E$. Hence (3) \rightarrow (1).

Theorem 2. In any normed linear space X the statements (4), (5), (6), (7) and (8) are equivalent.

Proof. Let (4) hold, $x \in E$ and $||y_n|| \le ||x_n||$. If $||x_n|| = 0$ we define $\lambda_n = 1$ and if $||x_n|| > 0$ we define $\lambda_n = ||y_n||/||x_n||$, so that in every case $0 \le \lambda_n \le 1$ and $||y_n|| = ||\lambda_n x_n||$. Now define μ_n such that $\lambda_n^2 + \mu_n^2 = 1$ and write $z_n = \overline{\lambda_n} + i\mu_n$. Then

$$||z_n x_n|| = ||\overline{z}_n x_n|| = ||x_n||$$

and so (4) implies that zx and $\overline{z}x$ are in E, whence $\lambda x \in E$. Since $||y_n|| = ||\lambda_n x_n||$ it follows from (4) that $y \in E$. Hence (4) \rightarrow (5).

Now let (5) hold, $x \in E$ and $||A_n|| \le M$ for all $n \in N$. Then

$$||A_n(M^{-1}x_n)|| \le ||x_n||.$$

Hence $M^{-1}(A_n x_n) \in E$, so $Ax \in E$, whence $(5) \rightarrow (6)$.

It is trivial that $(6) \rightarrow (7) \rightarrow (8)$.

Finally, let (8) hold, $x \in E$ and $||y_n|| = ||x_n||$. By the Hahn-Banach theorem there exists $f_n \in X^*$ with $||f_n|| = 1$ and $|f_n(x_n)| = ||x_n||$. If $||x_n|| = 0$ we define $A_n = I$, the identity operator of B(X), and if $||x_n|| > 0$ we define

$$A_n(w) = f_n(w)y_n/||x_n||$$

for each $w \in X$. Then, for all $n \in N$, it is clear that $||A_n|| = 1$ and $y_n = A_n x_n$, so it follows from (8) that $y = Ax \in E$. Hence (8) \rightarrow (4), which completes the proof.

Theorem 3. In any normed linear space X any one of the statements (4) to (8) implies all of the statements (1) to (3). But (1) is equivalent to (4) if and only if X is one-dimensional.

Proof. For the first part of the theorem it is sufficent to show that $(8) \rightarrow (3)$. Let (8) hold, $x \in E$ and $|\lambda_n| = 1$. Now define $A_n \in B(X)$ by $A_n(w) = \lambda_n w$ for each $w \in X$. Then $||A_n|| = |\lambda_n| = 1$, whence (8) implies that $\lambda x = Ax \in E$, so $(8) \rightarrow (3)$.

It is straightforward to verify that if X is one-dimensional then $(1) \rightarrow (4)$.

Finally, suppose (1) \rightarrow (4) but assume that the dimension of X exceeds 1. Let $\{b_1, b_2, ...\}$ be a Hamel base for X and let us define $E = s([b_1])$, so that $x \in E$ is of the form $x_n = \alpha_n b_1$ for all $n \in N$. It is clear that (1) holds, whence (4) holds. Now we define, for all $n \in N$,

$$x_n = ||b_2||b_1$$
 and $y_n = ||b_1||b_2$.

Then $x \in E$ and $||x_n|| = ||y_n||$, whence $y \in E$, so $y_n = \alpha_n b_1$. Consequently we have $\alpha_1 b_1 = ||b_1||b_2$, which is contrary to the fact that b_2 are elements of the base.

THE DELTA DUAL

Henceforth we assume that X is an abstract non-commutative normed algebra, not necessarily containing an identity element. As before $x = (x_k)$, $y = (y_k)$ denote elements of the space s(X).

For any non-empty subset E of s(X) we now introduce its delta dual E^{δ} defined as follows:

$$E^{\delta} = \{ y \in s(X) : \sum_{k=1}^{\infty} (\|x_k y_k\| + \|y_k x_k\|) < \infty \text{ for all } x \in E \}.$$

It is immediate that E^{δ} is a linear subspace of s(X) even though E may not be a linear subspace. Also, it is clear that we have $E \subseteq E^{\delta\delta}$ for any non-empty E.

If it happens that $E = E^{\delta \delta}$ we shall define E to be δ -perfect.

Theorem 4. If E is δ -perfect then E is solid in the sense of (1), (2) or (3).

Proof. Let $x \in E$, $|\lambda_k| \le 1$ for all $k \in N$ and $y \in E^{\delta}$. Then

$$\sum (\|\lambda_k x_k y_k\| + \|y_k \lambda_k x_k\|) \le \sum (\|x_k y_k\| + \|y_k x_k\|) < \infty,$$

which implies $\lambda x \in E^{\delta \delta} = E$.

Of course there are solid spaces which are not δ -perfect; for example $E = c_0$ when X is the complex field C.

Next we examine the relation between the space $l_{\infty}(X)$ of bounded sequences and the δ -dual of $l_1(X)$. Since

$$||y_k|| \le \sup_k ||y_k|| := ||y||_{\infty}$$

for each $y \in I_{\infty}(X)$ we have

$$\sum_{k=1}^{\infty} (\|x_k y_k\| + \|y_k x_k\|) \le 2\|y\|_{\infty} \sum_{k=1}^{\infty} \|x_k\|$$

for each $x \in I_1(X)$, whence

$$(9) l_{\infty}(X) \subset l_1^{\delta}(X)$$

for any normed algebra X. In case X contains a certain type of element, which we shall call an almost identity, we shall be able to prove in Theorem 5 below that there is equality in (9).

Given a normed algebra X we say that X has an almost identity $z \in X$ if for such a z there is a positive constant c such that

$$|c||x|| \le ||xz|| + ||zx||$$
, for all $x \in X$.

If X has identity e, in the usual sense that xe = ex = x for all $x \in X$, then e is obviously an almost identity. We note also that the normed algebra c_0 with $xy := (x_k y_k)$ and $||x|| = \sup_k |x_k|$ has no almost identity. For if $z \in c_0$ were such an identity then for some positive c we have $c||x|| \le 2||xz||$ for all $x \in c_0$. Choose n with $|z_n| < c/2$ and let $x = e_n$, the n-th unit vector in c_0 . Then $c \le 2|z_n| < c$, a contradiction.

Theorem 5. If X has an almost identity then $l_{\infty}(X) = l_{\perp}^{\delta}(X)$.

Proof. In view of (9) we need only show that $l_1^{\delta}(X) \subseteq l_{\infty}(X)$. Let $y \in l_1^{\delta}(X)$, so that for all $x \in l_1(X)$,

$$\sum_{k=1}^{\infty} (\|x_k y_k\| + \|y_k x_k\|) < \infty.$$

Applying the Banach-Steinhaus theorem, there is a positive constant M such that for all $n \in N$ and all $x \in I_1(X)$,

$$\sum_{k=1}^{n} (\|x_k y_k\| + \|y_k x_k\|) \le M \sum_{k=1}^{\infty} \|x_k\|.$$

Now take any $n \in N$ and define $x_n = z$ and $x_k = 0$ for $k \neq n$, where z is an almost identity. Hence we have $c||y_n|| \leq M||z||$, which implies that $y \in I_{\infty}(X)$, and the proof is complete.

It is interesting to note in the next theorem that there are normed algebras X without an almost identity such that equality holds in (9).

Theorem 6. $l_{\infty}(c_0) = l_1^{\delta}(c_0)$.

Proof. By the argument of Theorem 5 there is a number M such that for all $n \in N$ and all $x \in l_1(c_0)$,

$$2||x_n y_n|| \le M \sum_{k=1}^{\infty} ||x_k||,$$

where we take $y \in I_1^b(c_0)$. Now take any $n \in N$, any $p \in N$ and define $x_k = 0$ $(k \neq n)$, $x_n = e_p$, the p-th unit vector in c_0 . Then we have $2|y_{np}| \leq M$, where

$$y_n = (v_{n1}, v_{n2},...) \in c_0$$

for each $n \in \mathbb{N}$. Since n and p are arbitrary it follows that $||y_n|| \le M/2$, so $|y \in l_{\infty}(c_0)$, as required.

If E is any linear subspace of s(X) then its delta dual generates a natural locally convex topology on E determined by the seminorms

$$p_{y}(x) = \sum_{k=1}^{\infty} (\|x_{k} v_{k}\| + \|y_{k} x_{k}\|),$$

for each $x \in E$ and each $y \in E^{\delta}$. We shall call this the E^{δ} topology on E.

In conclusion we give the following result:

Theorem 7. If the normed algebra X has an almost identity z then the $f_1^b(X)$ topology on $l_1(X)$ coincides with the norm topology of $l_1(X)$.

Proof. As usual, the norm topology of $I_1(X)$ is given by the norm

$$||x|| = \sum_{k=1}^{\infty} ||x_k||$$

for each $x = (x_k) \in I_1(X)$.

First we show that the $l_1^{\delta}(X)$ topology is weaker than the norm topology of $l_1(X)$ even when X has no almost identity. Let $\epsilon > 0$ and $y_1, y_2, ..., y_r \in l_1^{\delta}(X)$, where

$$v_i = (y_{i1}, y_{i2}, ...).$$

By the argument of Theorem 5 there are positive numbers $M_1, ..., M_r$ such that

$$P_{y_i}(x) \leq M_i ||x||$$

for i = 1, 2, ..., r and for all $x \in I_1(X)$. Taking M to be the largest of the M_i it follows that if $||x|| < \epsilon/M$ then

$$\sup \{ p_{y_i}(x) : i = 1, 2, ..., r \} < \epsilon,$$

whence, in the usual notation, the sphere $S(0, \epsilon/M)$ is contained in the neighbourhood

$$U(0, p_{y_1}, p_{y_2}, ..., p_{y_r}, \epsilon).$$

Conversely, suppose that X has an almost identity z with corresponding constant c, and let $\epsilon > 0$ be given. If we define

$$v = (z, z, z, ...)$$

then $y \in l_1^{\delta}(X)$ by Theorem 5. Hence if $x \in U(0, p_y, c\epsilon)$ then

$$\sum_{k=1}^{\infty} (\|x_k z\| + \|zx_k\|) < c\epsilon,$$

and since $c||x_k|| \le ||x_k z|| + ||zx_k||$ for all $k \in N$ it follows that $||x|| < \epsilon$, so that $x \in S(0, \epsilon)$, and the proof is complete.

References

- [1] COOKE, R. G., Infinite matrices and sequence spaces, Macmillan and Co., London, 1949.
- [2] GARLING, D. J. H., The β and γ -duality of sequence spaces, Proc. Camb. Phil. Soc., 63 (1967), 963-981.
- [3] KÖTHE, G., Topological Vector Spaces I (English translation by D.J.H. Garling of Topologische Lineare Räume 1, 1966), Springer-Verlag, 1969.
- [4] KÖTHE, G., and TOEPLITZ, O., Lineare Räume mit unendlichvielen Koordinaten und Ringe unendlicher Matrizen, J.f. reine u. angew. Math., 171 (1934), 193-226.
- . [5] MADDOX, I. J., Infinite matrices of operators, Springer-Verlag, Berlin, 1980.

Department of Pure Mathematics Queen's University of Belfast Belfast BT7 INN United Kingdom

Recibido: 29 de mayo de 1990