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Solidity in Sequence Spaces

1. J. MADDOX

ABSTRACT. Rclations arc established between several notions of solidity in vector-
valued sequence spaces, and a generalized K&the-Toeplitz dual space is introduced in
the setting of a Banach algebra,

INTRODUCTION

The study of linear spaces of scalar sequences and their o-duals was
initiated by Kéthe and Toeplitz [4].

If s denotes the linear space of all inflinite sequences ¢ = (a;) ol complex
numbers g and if £ is a linear subspace of s then, lollowing [4]; see also [3]
and [1], we define the a-dual of F as

]

Fr={acs: Y |agx,| <o for all x& £},
=1
Two related dual spaces are defined by

Eﬁ:{ae\':;\}: a x;, converges for all xe £},

Ev={aes:sup,| a, x| <eo for all xe £},
k=1

Topologics on a sequence space, involving 8 and v duality have been
examined by Garling [2]. who noted that Fr= ¥ = EY when E is solid {or
normal), i.e. when x € Fand vy, | < | x| Tor all k € M together imply that ve E.
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Thus, for example, the space ¢, of null sequences is solid, but the space ¢ of
convergent sequences is not.

We shall be concerned with the more general situation of vector-valued
sequences x = (x;}=(x. ¥;,...) with x, 1n a complex linear space X. By s(X)
we denote the linear space of all sequences x = (x;} with x; € X and the usual
coordinatewise operdations: ex=(w.y,} and x+ y={x.+ v}, for cach ¢ = C.

If A =(A;) is a scalar sequence and x €5 (X) then we shall write Ax = (A, xy).

In case X is also a normed space we denote by B the closed unit ball of X
and by B(X) the space of all bounded linear operators on X. As usual X*
denotes the continuous dual space of X. Two subspaces of s(X) that we
consider later are

()= { xE5(X): supgllxell <o,
/[(X):{.\’E.s'(X):; e
=1

These spaces generalize the classical spaces L, and /) which are subspaces of .

I A=(A;) Is a sequence in B({X) we shall write Ax={A; x,:) for each

xes(X).

Some information about types of generalized Kothe-Toeplitz duals
involving sequences of linear operators may be found in Maddox [5].

We now consider the eight statements below, each of which expresses
some notion of solidity for a linear subspace £ of s(X). It is statement (5)
which generalizes the original idea of solid (or normal) as given by Kothe and
Toephtz [4].

The first three statements are meaningful in any complex linear space, but
the last five statements require X to be normed. A statement such as
el =!lx,ll is an abbreviation for ||y,|| = || x,|| [or all rE N. Also, in (6} to
(8) the A, are elements of B(X). )

(I' xcFand A€ L imply AxeE

(2) x€Fand {A,| =1 imply AxeE

(3) xeEand |A,] =1 imply hxe £

(4} xeEand ||yl =llx,ll imply ve £
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(5) xeEand ||yl =[x, imply v& £
(6) xeFand (||4,]1)€ L imply Axe £
(7) xeEand [|A,)l<1imply Axe £

(8) x€Eand ||4,]l =1 imply Axe L.

EQUIVALENCES

In Theorems 1, 2 and 3 we determine the relations between the statements

) to (8).

Theorem 1. In any complex linear space X the statements (1), (2) and (3)
are equivalent.

Proof. 1t is trivial that (1)— (2} —(3). Let us show that (3)-—(1). If (3)
holds, x€ £ and A< £ then there exists M>0 with |A,| <=M for all ne N.
Define

#H = AM/A(f = a" + iBH
where a, and B8, are real. Then ja,| =<1 and |8,/ =1, so we may choosc v,
and &, with

altyi=B2+82=1.

Define z, =, +iv, and w, = 8, +i8,,, whence
‘Z”| = |Z'r| = |wn| = Iwul =1,

and so zx, Zx, wx, wx are all in . Since £'is a lincar space it follows that avx,
Bxe L and so Ax& E. Hence (3)—(1).

Theorem 2. In any normed linear space X the statements (4), (5), (6), (7)
and (8) are equivalent.

Proof. Let (4) hold, x€ E and ||yl < I|.x,ll. If || x, || =0 we define A, =
and if || x,|| >0 we define A, = ||y, I/l x,]l, so that in every case 0= A, = | and
vl = 1IA, x,)l. Now define g, such that A2+ u2=1 and write z,= X, -+ in,.

Then

llz, 2,1l = WZ,y xall = ]l
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and so (4) implies that zv and Zx are in £, whence Ax&€ £ Since
[l ¥,0] = || An Xl it follows from (4) that ve E. Hence (4) — (5).

Now let (5) hold, x& £ and || 4,1l <M for all n€ N. Then
| A, (M= e M= ]l
Hence M—'(A4,x,}EE. so Axe £ whence (5)—(6).
It is trivial that (6)— (7) — (&),

Finally, let (8) hold, x& fLand || v,|| =/ x,||. By the Hahn-Banach theorem
there exists £, X* with ||/, =1 and f,(x,)=[lx,||. If ||x,|| =0 we define
A, =1, the identity operator of B(X), and i ||x,|| >0 we define

A " (“') :ln (H")_l',,/ ”-\-n”

for each swZ X. Then. for all ne N, it is clear that || A4, || = | and v, = A4, x,. 50
it follows from (8) that r= Axe £ Hence (8)—(4). which completes the
proof.

Theorem 3. [in any normed linear space X any one of the statements (4)
to (8) implies all of the statemenis (1) 1o (3). Bur (1) is equivalent to (4 if and
only if X is one-dimensional.

Proof. For the first part of the theorem it is sulficent to show that
{(8)—(3}). Let (8) hold, x& F and |A,| =1. Now define A,,e B(X) by A, (w)=
A, for each we X, Then [(A,ll=|A, =1, whence (8) implies that
Ax=Ax<ckE so (8§ —(3).

It 1s straightforward to verity that if X is one-dimensional then (1) —(4).

Finally, suppose (1)—(4) but assumc that the dimension of X exceeds I,
Let {b, ba....] be a Hamel base for X and let us define £=s([5,]). so that
xc Eis of the form x, =, b, for all ne N, Tt is clear that (1) holds, whence
{4) holds. Now we define, for all nE N,

Xp= b2l and v, =115y 11hy.
Then xe E and || x,|| = [|3,]l, whence y€ E, so r,=a, b,. Consequently we

have «, b; = || b¢]| #2, which is contrary to the lact that b, arc clements of the
base.
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THE DELTA DUAL

Hencelorth we assume that X is an abstract non-commutative normed
algebra, not necessarily containing an identity element. As before v=(x;),
¥={¥) denote clements of the space 5(X).

For any non-empty subset £ of s(X) we now introduce its delta dual £3
defined as {ollows:

B =10Es00: S (Il + llpenl) <o for all xe £},
A=1

It is immediate that £9 is a linear subspace of s (X) even though £ may not
be a linear subspace. Also, it is clear that we have F£C £% {or any non-
empty £.

If it happens that £= £33 we shall define E to be 8-perfect.
Theorem 4. If Eis 8-perfect then F is solid in the sense of (1), (2) or (3).

Proof. Let v £, |7 =<1 for all k€ N and v < E% Then
SO x vl e A D) = 3 g vl v x| <o,
which implies Ax€ £ =E,

Of course there are solid spaces which are not d-perfect; for example
E=cy; when X is the complex field C.

Next we examine the relation between the space [.(X) of bounded
sequences and the d-dual of /, (X). Since

Lyl = supg tadl: =11 ¥l

for each v& /. (X) we have

i ras

el + D S 201 3 (g

for each xe/, (X)), whence

9) L(X)C A (X)

for any normed algebra X, In case X contains a certain type of element, which

we shall call an almost identity, we shall be able to prove in Theorem 5 below
that there is equality in (9).
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Given a normed algebra X we say that X has an a/fmost identity z< X if for
such a z there is a positive constant ¢ such that

clix) < llxz)| + llzx]i, for all x€ X.

If X has identity e, in the usual sense that xe =ex=1x for all x&€ X, then ¢ 1s
obviously an almost identity, We note also that the normed algebra ¢, with
xy:=(x; v} and ||x|| =sup, [x;| has no almost identity. For if ze¢, were
such an identity then for some positive ¢ we have ¢|| x| = 2| xz|| for all ve¢,.
Choose # with |z} <¢/2 and let x=e,, the n-th unit vector in ¢, Then
¢=2|z,l <¢, a contradiction.

Theorem 5. I X has an almost identity then L.(X)=E(X).

Proof. In view of (9) we need only show that £(X)C/hL(X). Let
vE B(X), so that for all xe /,(X),

IEI Gl vl g xgll) << oo

- Applying the Banach-Steinhaus theorem, there is a positive constant M such
that for all nE N and all xe/,(X),

1l ES)
AZI(!IXA».VAII e D=EM Y, |x ).
= hk=1

Now take any n€ N and define x,==z and x,=0 for A#n. where z is an
almost identity. Hence we have ¢||y, || = M|iz]|, which implies that y € /L. (X},
and the proof is complete.

It is interesting to note in the next theorem that there are normed algebras
X without an almost identity such that equality holds in (9).

Theorem 6. L. (cp)= £ ().

Proof. By the argument of Theorem 5 there is a number Af such that for
all ne N and all xe /| (¢y),

25,1 M3 il
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where we take vy £ (cy). Now take any n€ N, any pe N and definc x, =0
(k #n), x,=e, the p-th unit vector in ¢, Then we have 2|1, ,| = M. where

Ta=A{Vuts Va2 - E

for each ne N. Since n and p are arbitrary 1t follows that ||r,]| < M/2, so
ve L (¢g). as required.

H £1s any Linear subspace of s (X) then its delta dual generates a natural
locally convex topology on £ determined by the seminorms

P(x)= E‘l (g vl v el

for each x& £ and each v€ £%. We shall call this the £7 topology on £

In conclusion we give the following result:

Theorem 7. If the normed algebra X has an almost identity = then the
B (X) topology on 1| (X) coincides with the norm topology of 1, (X).

Proof. As usual, the norm topology of /;(X) is given by the norm
Il =2 el
k=1
for each x=(x)€ {,(X).
First we show that the £ (X) topology is weaker than the norm topology
of /, (X) even when X has no almost identity. Let e >0 and y, 1, 1, ERB(X),
where

Fi=0v, bia, )

By the argument of Theorem 5 there are positive numbers M, ..., M, such
that

Pe ()= Ml x|

for i=1,2....r and {or all x€ {, (X). Taking M to be the largest of the M, it
follows that il ||.v]] <efAM then

supip.x)ii=1, 2.....r1<e,
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whence, in the usual notation, the sphere S(0, /M) 1s contained in the
neighbourhood

UW@,p,s Py s 24, €),

Conversely, suppose that X has an almost identity z with corresponding
constant ¢, and let € 2> 0 be given. [f we define

then r€#(X) by Theorem 5. Hence il xS U(0, p,. ce) then
AZ (g zll H llzxg ) <ce.
=1

and since ¢f|x||= || xg 2]V || zxi || Tor all &€ N it {ollows that || x|| <e, so that
x€5(0,¢), and the proof is complete.
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