On the Existence of Weak Solutions for a Semilinear Singular Hyperbolic System

JOÃO-PAULO DIAS and MÁRIO FIGUEIRA*

ABSTRACT. In this paper we prove the existence of a weak solution for the semilinear singular real hyperbolic system

$$\begin{cases} \frac{\partial u}{\partial t} + \frac{\partial u}{\partial r} + \frac{u \cdot v}{r} + k (u^2 + v^2) u = 0 \\ , r \in \mathbb{R}_+, t \in \mathbb{R}, \\ \frac{\partial v}{\partial t} - \frac{\partial v}{\partial r} + \frac{u \cdot v}{r} + k (u^2 + v^2) v = 0 \end{cases}$$

where k(r) is a smooth, bounded and positive function of the type $r^n, n \ge 3$, in a neighbourhood of zero. The initial data (u_0, v_0) belong to $(H^2(\Re_+))^2$ and verify

$$u_0(0) = v_0(0), \frac{\partial u_0}{\partial r}(0) = -\frac{\partial v_0}{\partial r}(0), (ru_0, rv_0) \in (L^2(\Re_+))^2.$$

1. INTRODUCTION

Let us consider the semilinear singular hyperbolic system

$$\begin{cases} \frac{\partial u}{\partial t} + \frac{\partial u}{\partial r} + \frac{u - v}{r} + k (u^2 + v^2) u = 0 \\ \frac{\partial v}{\partial t} - \frac{\partial v}{\partial r} + \frac{u - v}{r} + k (u^2 + v^2) v = 0 \end{cases}$$
(1.1)

^(*) Research supported by JNICT under contract n.º 87568. 1980 Mathematics Subject Classification (1985 revision): 35 L45,35 L60. Editorial de la Universidad Complutense. Madrid, 1991.

in the domain $D = \{(r, t) | r \in \mathcal{R}_+, t \in \mathcal{R}\}$, where $(u, v) : D^2 \to \mathcal{R}^2$, $k : \bar{\mathcal{R}}_+ \to \bar{\mathcal{R}}_+$, $k \in W^{1,\infty}(\mathcal{R}_+)$ and $k(r) \leq Mr^3$, $k'(r) \leq Mr^2$, $r \in [0, r_1]$ for a certain M > 0 and $r_1 > 0$.

The linear part of system (1.1) is associated (for complex u and v) to a simplified model for the linear Dirac system (cf. [2] and [3]).

In order to study the Cauchy problem for the system (1.1) we regularise this system as follows:

$$\begin{cases} \frac{\partial u}{\partial t} + \frac{\partial u}{\partial r} + \frac{1}{r+\delta}(u-v) + k(u^2 + v^2)u = 0\\ \frac{\partial v}{\partial t} - \frac{\partial v}{\partial r} + \frac{1}{r+\delta}(u-v) + k(u^2 + v^2)v = 0 \end{cases}$$
(1.2)

where $0 \le \delta \le 1$. Given the initial data $\binom{u_0}{v_0}$, with a suitable smoothness, we first study the Cauchy problem for (1.2) under the boundary condition

$$u(0,t) - v(0,t) = 0, t \in \Re.$$
 (1.3)

Then we obtain some estimates on the solution, independent of δ , and we pass to the limit, when $\delta \to 0$, in order to obtain a weak solution for the Cauchy problem for (1.1). More precisely, we prove the following theorem (where $H_{0,\ell}^1(]0,R[)=\{u\in H^1(]0,R[)|u(0)=0\}$):

Theorem 1.1: Let $u_0, v_0 \in H^2(\Re_+)$ be such that

$$u_0(0) = v_0(0), \frac{\partial u_0}{\partial r}(0) = -\frac{\partial v_0}{\partial r}(0) \text{ and } ru_0, rv_0 \in L^2(\mathbb{R}_+).$$

Then, there exists (u, v) such that $ru, rv \in L^{\infty}(\Re, L^{2}(\Re_{+})), r^{2}u, r^{2}v \in C([-T, T]; L^{2}(]0, R[)) \cap L^{2}(-T, T; H_{0, r}^{1}, (]0, R[)), \frac{\partial u}{\partial v}, \frac{\partial u}{\partial t} \in L^{2}(-T, T; L^{2}(]0, R[)), \text{ for each } R > 0 \text{ and } T > 0, u(r, 0) = u_{0}(r), v(r, 0) = v_{0}(r), r \in \Re_{+}, \text{ and } (u, v) \text{ verifies } (1.1) \text{ in } (\mathscr{S}'(\Re_{+} \times \Re))^{2}.$

Our previous papers [2] and [3] are concerned with nonlocal nonlinear complex perturbations (nonlinear Dirac system) of the principal part of the system (1.1). In this paper we deal with a local nonlinear perturbation which is, as far as we know, the only one that can be analysed by this method.

2. ESTIMATES FOR THE REGULARISED PROBLEM

As in [2] and [3], we consider the skew-adjoint operator in $(L^2(\mathbb{R}_+))^2$ defined by

$$D(A) = \left\{ \begin{pmatrix} u \\ v \end{pmatrix} \in (H^{+}(\Re_{+}))^{2} | u - v \in H_{0}^{+}(\Re_{+}) \right\},$$

$$A \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} -\frac{\partial u}{\partial r} \\ \frac{\partial v}{\partial r} \end{pmatrix}.$$

We put $S(t) = e^{At}$, $t \in \Re$, and S(t) is defined by

$$S(t) \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} u(r-t) \\ v(r+t) \end{pmatrix} \text{ with } \begin{cases} u(-r) = v(r) \\ v(-r) = u(r) \end{cases}, r > 0$$

We have, in D(A) (with $L^p = (L^p(\Re_+))^2$, $H^m = (H^m(\Re_+))^2$),

$$||S(t)\binom{u}{v}||_{L^{\infty}} = ||\binom{u}{v}||_{L^{\infty}}, ||S(t)\binom{u}{v}||_{H^{1}} = ||\binom{u}{v}||_{H^{1}}, t \in \Re.$$

Now, let be $F: D(A) \to D(A)$, D(A) with the H¹ norm, defined by

$$F\begin{pmatrix} u \\ v \end{pmatrix} = -\frac{1}{r+\delta} \begin{bmatrix} 1-1 \\ 1-1 \end{bmatrix} \begin{pmatrix} u \\ v \end{pmatrix} - k \left(u^2 + v^2\right) \begin{pmatrix} u \\ v \end{pmatrix}.$$

This map is locally Lipschitz continuous. Hence, for $\binom{u_0}{v_0} \in D(A)$ there exists T > 0 and an unique $\binom{u}{v} \in \mathbb{C}([-T, T]; D(A)) \cap \mathbb{C}^1$ $([-T, T]; \mathbb{L}^2)$ such that

$$\binom{u}{v} = S(t) \binom{u_0}{v_0} + \int_0^t S(t-\tau) F\left[\binom{u}{v}(\tau)\right] d\tau$$
 (2.1)

We have $||F(u)||_{H^1} \le c(\delta)(1+||(u)||_{L^{\infty}})||(u)||_{L^{\infty}})||(u)||_{H^1}$, and, for $t \in [-T, T]$,

$$\begin{cases} \frac{\partial}{\partial t} u^2 + \frac{\partial}{\partial r} u^2 + \frac{2}{r+\delta} (u-v) u + 2k (u^2 + v^2) u^2 = 0 \\ \frac{\partial}{\partial t} v^2 - \frac{\partial}{\partial r} v^2 + \frac{2}{r+\delta} (u-v) v + 2k (u^2 + v^2) v^2 = 0 \end{cases}$$

Hence, since $\binom{u^2}{v^2} \in C([-T, T]; D(A)) \cap C^1([-T, T]; L^2)$ and $k \ge 0$,

From (2.1) and (2.2) we easily obtain an estimate for $\|\binom{u}{v}(t)\|_{H^1}$ for $t \in [0, T]$ (and also for $t \in [-T, 0]$) and we conclude that $\binom{u}{v}$ is a global solution, that is

$$\binom{u}{v} \in C(\mathcal{R}; D(A)) \cap C^1(\mathcal{R}; L^2)$$
 and verifies (2.1) for $t \in \mathcal{R}$.

Furthermore, since $F: D(A) \to D(A)$ is locally Lipschitz continuous and D(A) is a Hilbert space (for the H¹ norm), we get (cf. [1]) $\binom{u}{v} \in C^1(\mathbb{R}; D(A))$ if

Hence, by (1.2), we obtain, in this case $\binom{u}{v} \in C(\mathbb{R}; D(A^2))$.

We need suplementary estimates for $\binom{u}{v}$. For this purpose we assume that $\binom{ru_0}{rv_0} \in L^2$, that is

$$\begin{pmatrix} u_0 \\ v_0 \end{pmatrix} \in (L_r^2(\mathbb{R}_+))^2$$
, where $L_r^2(\mathbb{R}_+) = L^2(\mathbb{R}_+, r^2 dr)$.

We easily deduce from (1.2), since $k \ge 0$,

$$\begin{cases}
\frac{\partial}{\partial t}(u^2+v^2) + \frac{\partial}{\partial r}(u^2-v^2) + \frac{2}{r+\delta}(u^2-v^2) \leq 0, \\
\frac{\partial}{\partial t}((r+\delta)^2(u^2+v^2)) + \frac{\partial}{\partial r}((r+\delta)^2(u^2-v^2)) \leq 0.
\end{cases}$$

By the integral of energy method we get, for R > 0, 0 < t < R,

$$\int_{0}^{-r+R} (r+\delta)^{2} (u^{2}+v^{2}) (r,t) dr \leq \int_{0}^{R} (r+\delta)^{2} (u_{0}^{2}+v_{0}^{2}) dr \leq \int_{\Re_{r}} (r+\delta)^{2} (u_{0}^{2}+v_{0}^{2}) dr.$$
Hence $(r+\delta)(u,v) \in L^{\infty}(\Re,L^{2})$ and

$$\| (r+\delta) \binom{u}{v} \|_{L^{\infty}(\mathcal{R}; L^{2})} \le c_{1} \left(\| \binom{u_{0}}{v_{0}} \|_{L^{2}_{r}} + \| \binom{u_{0}}{v_{0}} \|_{L^{2}} \right)$$
 (2.3)

where c_1 does not depend on δ .

Now, let us consider the linear system in D:

$$\begin{cases} \frac{\partial u}{\partial t} + \frac{\partial u}{\partial r} + \frac{1}{r} (u - v) = 0 \\ \frac{\partial v}{\partial t} - \frac{\partial v}{\partial r} + \frac{1}{r} (u - v) = 0 \end{cases}$$

L. Tartar has pointed out to us that if we put

$$\begin{cases} w = r u_r + \frac{3}{2} u - \frac{1}{2} v \\ , \text{ where } u_r = \frac{\partial u}{\partial r}, \end{cases}$$

$$\begin{cases} w_1 = r v_r + \frac{3}{2} v - \frac{1}{2} u \end{cases}$$

we obtain (formally): $\begin{cases} \frac{\partial w}{\partial t} + \frac{\partial w}{\partial r} = 0 \\ \frac{\partial w_1}{\partial t} - \frac{\partial w_1}{\partial r} = 0 \end{cases}$

Let us assume $(u_0, v_0) \in D(A^2) \cap L^2_r$ and let $(u, v) \in C(\mathbb{R}; D(A^2)) \cap C^1(\mathbb{R}; D(A)) \cap L^{\infty}(\mathbb{R}; L^2_r)$ be the solution of (1.2) for a fixed $\delta \in]0,1[$ and with initial data (u_0, v_0) (and boundary condition (1.3)). Let

$$\begin{cases} w = (r+\delta) u_r + \frac{3}{2} u - \frac{1}{2} v \\ w_1 = (r+\delta) v_r + \frac{3}{2} v - \frac{1}{2} u \end{cases}$$
 (2.4)

We deduce, from (1.2), with $\theta = k (u^2 + v^2)$,

$$\begin{cases} \frac{\partial w}{\partial t} + \frac{\partial w}{\partial r} = -\theta \, w - (r + \delta) \, \theta_r u \\ \frac{\partial w_1}{\partial t} - \frac{\partial w_1}{\partial r} = -\theta \, w_t - (r + \delta) \, \theta_r v \end{cases}$$
(2.5)

and $(w, w_1) = C(\Re; (H^+(]0, R[))^2) \cap C^+(\Re; (L^2(]0, R[))^2)$, for each $R \in]0, +\infty[$.

Furthermore, we have

$$\begin{cases}
\frac{\partial}{\partial r} [(r+\delta)(u+v)] = w + w_1 \\
(u-v) + \frac{\partial}{\partial r} [(r+\delta)(u-v)] = w - w_1
\end{cases}$$
(2.6)

and

$$\begin{cases} \frac{\partial}{\partial r} \left[(r+\delta)^2 u \right] = (r+\delta) w + \frac{1}{2} (r+\delta) (u+v) \\ \frac{\partial}{\partial r} \left[(r+\delta)^2 v \right] = (r+\delta) w_1 + \frac{1}{2} (r+\delta) (u+v) \end{cases}$$
(2.7)

By applying the Gagliardo-Nirenberg inequalities and the Sobolev theorem to $(r+\delta)(u+v)\in H^1(]0,R[)$ and $(r+\delta)^2(u-v)^2\in W^{1,1}]\theta,R[)$, respectively, we can deduce from (2.6), (1.3) and (2.3) (cf.[3], §3):

$$\|(r+\delta)(|u|+|v|)\|_{L^{\infty}([\theta,R])} \le c(R) \left[1+\|w\|_{L^{2}([0,R])}^{\frac{1}{4}}+\|w_{1}\|_{L^{2}([\theta,R])}^{\frac{1}{4}}\right] (2.8)$$

where c(R) does not depend on δ .

From (2.5) we deduce

$$\frac{\partial}{\partial t} (|w|^2 + |w_1|^2) + \frac{\partial}{\partial r} (|w|^2 - |w_1|^2) = -2\theta (w^2 + w_1^2) - 2(r + \delta)\theta_r (uw + vw_1)$$
(2.9)

and
$$\theta_r = k'(u^2 + v^2) + 2k(uu_r + vv_r) = k'(u^2 + v^2) + 2\frac{k}{r + \delta}[uw + vw_1 - \frac{3}{2}(u^2 + v^2) + uv].$$

Hence,

$$-2(r+\delta)\theta_r(uw+vw_1) = -2(r+\delta)(\frac{k'}{r^2})r^2(u^2+v^2)(uw+vw_1) - 4k(uw+vw_1)^2 - 4\frac{k}{r^3}r^3[-\frac{3}{2}(u^2+v^2)+uv](uw+vw_1).$$

Then we deduce, from (2.9) and from the properties of k,

$$\frac{\partial}{\partial t} (|w|^2 + |w_1|^2) + \frac{\partial}{\partial r} (|w|^2 - |w_1|^2) \le c(r + \delta)^3 (|u|^3 + |v|^3) (|w| + |w_1|)$$
(2.10)

where c does not depend on δ .

Furthermore, we have, by (2.3) and (2.8),

$$\int_{0}^{R} (r+\delta)^{3} (|u|^{3}+|v|^{3}) (|w|+|w_{1}|) (r,t) dr \le c(R) \Big[1+||w||^{2}_{L^{2}([0,R[)}+ ||w_{1}||^{2}_{L^{2}([0,R[)]})\Big]$$

$$+||w_{1}||^{2}_{L^{2}([0,R[)]} \Big]$$
(2.11)

where c(R) does not depend on δ .

Now, if we take T>0 we easily obtain, by applying the integral of energy method to (2.10), and since $|w_1|^2(0,\tau) - |w|^2(0,\tau) = 2\delta(\frac{\partial}{\partial t} - |u|^2)(0,\tau)$ (cf. [2], §3).

$$\int_{0}^{-t/2t} (|w|^2 + |w_1|^2) (r, t) dr \le c(T), \text{ for all } t \in [0, T].$$

Hence, if $\Omega_T = \{(r, t) | r \in [0, -t+2 \ T[, t \in]0, T[]\},$ we deduce

$$\int_{\Omega_I} (|w|^2 + |w_1|^2) (r, t) dr dt \le c(T)$$
 (2.12)

where c(T) does not depend on δ . A similar estimate holds for T < 0. Now, for every T > 0 and R > 0, we deduce from (2.12), (2.7) and (2.3),

$$\begin{cases}
\| (r+\delta)^{2} u \|_{L^{2}(-T, T; H^{1}(]0, R[))} \leq c(R, T) \\
\| (r+\delta)^{2} v \|_{L^{2}(-T, T; H^{1}(]0, R[))} \leq c(R, T)
\end{cases} (2.13)$$

Hence, by (2.3), (2.13) and (1.2), we obtain

$$\begin{cases}
\| (r+\delta)^{2} \frac{\partial u}{\partial t} \|_{L^{2}(-T; T; L^{2}(]0, R[))} \leq c(R, T) \\
\| (r+\delta)^{2} \frac{\partial v}{\partial t} \|_{L^{2}(-T; T; L^{2}(]0, R[))} \leq c(R, T)
\end{cases} (2.14)$$

where c(R, T) does not depend on δ .

Now, let

$$W(R, T) = \{ u \in L^2(-T, T; H_{0,r}^1(]0, R[)) | \frac{\partial u}{\partial t} \in L^2(-T, T; L^2(]0, R[)) \}$$

with its natural norm, where $H_{0/}^{1}(]0, R[) = \{u \in H^{1}(]0, R[) | u(0) = 0\}$. We have (cf. [4]).

$$W(R, T) \subset C([-T, T]; L^2([0, R[)))$$
 (2.15)

and, by Aubin's compactness theorem (cf. [4])

$$W(R, T) \subseteq L^2(-T, T; L^2(]0, R[))$$
, with compact injection (2.16)

Furthermore the map $u \rightarrow u(0)$ from W(R, T) into $L^2(]0, R[)$ is continuous by (2.15).

Let, for each $\delta \in]0, 1[$, be (u_{δ}, v_{δ}) the corresponding solution of (1.2) for the initial data (u_0, v_0) (and boundary condition (1.3)). We have, by (2.3). (2.13) and (2.14),

$$\begin{cases}
||r^{2}u_{\delta}||_{W(R,T)} \leq c(R,T) \\
||r^{2}v_{\delta}||_{W(R,T)} \leq c(R,T)
\end{cases}$$
(2.17)

where c(R, T) does not depend on δ .

3. EXISTENCE OF A WEAK SOLUTION

Let us assume $(u_0, v_0) \in D(A^2) \cap L_r^2$. With the same notation of the last part of §2 for the couple (u_δ, v_δ) , solution of the regularised problem, there exists, by (2.3), a sequence $\delta \to 0$ and $(u, v) \in L^{\infty}(\Re, L_r^2)$ such that

$$(u_{\delta}, v_{\delta}) \rightarrow (u, v)$$
 in $L^{\infty}(\mathbb{R}, L_r^2)$ weak * $\delta \rightarrow 0$

and

$$||(u, v)||_{L^{\infty}(\mathbb{R}, L^{2})} \le c(||(u_{0}, v_{0})||_{L^{2}} + ||(u_{0}, v_{0})||_{L^{2}}).$$

By (2.17), (2.16) and (2.15) there exists, for each (R, T), a sub-sequence (u_{δ}, v_{δ}) , $\delta \rightarrow 0$, such that

 $(r^2u_\delta, r^2v_\delta) \rightarrow (r^2u, r^2v)$ weakly in $(W(R, T))^2$, strongly in $(L^2(-T, T; L^2(]0, R[)))^2$ and a.e. in $]0, R[\times] - T, T[$, and $(u, v)(0) = (u_0, v_0)$ a.e. in \Re_+ . Furthermore, for each T>0, and by a diagonalisation method, we can assume (by (2.16) and (2.17)) that

$$(u_{\delta}, v_{\delta}) \rightarrow (u, v)$$
 a.e. in $\Re_{+} \times] - T$, $T[$.

In particular, for fixed T>0, we have, for each R>0,

$$k(u_{\delta}^2 + v_{\delta}^2) \ u_{\delta} \rightarrow k(u^2 + v^2) u$$
, a.e. in $]0, R[\times] - T$, $T[.$

Otherwise, by (2.12) and (2.8), we have

$$||k|((u_{\delta}^2 + v_{\delta}^2)u_{\delta}||_{L^2([0,R]\times [-T,T])} \le c||r^3|((u_{\delta}^2 + u_{\delta}^2)u_{\delta}||_{L^2([0,R]\times [-T,T])} \le c(R,T),$$

where c(R, T) does not depend on δ .

Hence, by lemma 1.3 in chap. 1 of [4],

$$k(u_{\delta}^2 + v_{\delta}^2)$$
 $u_{\delta} \rightarrow k(u^2 + v^2)u$, weakly in L²(]0, $R[\times] - T$, $T[$),

and similar conclusion for $k(u_{\delta}^2 + v_{\delta}^2) v_{\delta}$.

Now, take $\phi \in \mathcal{L}(D(R, T))$, $D(R, T) = \{(r, t) | r \in]0, R[, t \in]-T, T[\}$, we have, by (1.2),

$$\int_{-T}^{T} \int_{0}^{R} \left[\frac{\partial u_{\delta}}{\partial t} \phi + \frac{\partial u_{\delta}}{\partial r} \phi + \frac{u_{\delta} - v_{\delta}}{r + \delta} \phi + k \left(u_{\delta}^{2} + v_{\delta}^{2} \right) u_{\delta} \phi \right] dr dt = 0$$

By the previous considerations we can pass to the limit, when $\delta \rightarrow 0$ (subsequence) and we obtain, since R and T are arbitrary,

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial r} + \frac{u - v}{r} + k(u^2 + v^2)u = 0 \text{ in } \mathcal{L}'(D).$$

The same technique applies to the second equation, and so theorem 1.1 is proved.

References

- [1] T. CAZENAVE and F. WEISSLER. *The Cauchy problem for the nonlinear Schrödinger equation in II*¹. Manuscripta Math., **61** (1988), 477-494.
- [2] J. P. DIAS and M. FIGUEIRA. On the existence of weak solutions for a nonlinear time dependent Dirac equation. Proc. Royal Soc. Edinburgh, 113 A (1989), 149-158.
- [3] J. P. DIAS and M. FIGUEIRA. Solutions faibles du problème de Cauchy pour certaines équations de Dirac non linéaires. Portug. Math., 46 (1989), 475-484.
- [4] J. L. LIONS. Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris, Dunod, 1969.

CMAF 2 Avd, Prof. Gama Pinto, 1699 Lisboa Codex Portugal

Recibido: 23 de mayo de 1990