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On the Existence of Weak Solutions for
a Semilinear Singular Hyperbolic System

JOAO-PAULO DiAS and MARIO FIGUEIRA*

ABSTRACT. In this paper we prove the existence of a weak solution for the
semilinear singular real hyperbolic system

Ju | du , u-v
o, ou 252y g,
61+ar+ ; +hk(u+vHu=0
R cR,
dv  Jdv | u-v
oy _ oy 200 vy
ar 8r+ P + k(w2 tvHv=0

where k& (r) is a smooth, bounded and positive function of the type r, n=3, in a
neighbourhood of zero. The initial data (1, v,) belong to (H?(R,))? and verify

a d
Uy (0)= vy (0), =52 (0) = ~-(0), (rtig, rv) € (L2(R,))2

1. INTRODUCTION

Let us consider the semilinear singular hyperbolic system

du , du_ u-v 1y —
S S v u=0

(1.1)

dv _dv  u-v P RN N
61m6r+ " +hk(u+v)v=0
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in the domain D={(r, ){reR,, 1€R}, where (v, v): DI—-R2, I\':B_’\_L—-?-RJ'”
keW! = (R and k(r)< Mri k'(N<Mr2 rel0.r/] for a certain M >0 and
r >0,

The linear part of system (1.1} is associated (for complex & and v) to a
simplified model for the lincar Dirac system (cf.[2] and [3]).

In order to study the Cauchy problem for the system (1.1) we regularise
this system as follows:

du | du 1 o
a—! E_—‘f‘ﬁ_—ﬁ(u-\’)‘l‘/\(u“‘}—\ Ju=0
{1.2)
dv  dv 1 i3 2 1
P _ar+r+6(“_‘})+l\(u + =0

where 0<<6<1. Given the initiat data (if:"), with a suitable smoothness, we
first study the Cauchy problem for (1.2) under the boundary condition

(. N—v{0,N=0,1eR. (1.3)

Then we obtain some estimates on the solution, independent of 8, and we
pass to the limit, when 8 —0, in order 10 obtain a weak solution for the
Cauchy problem for (1.1). More precisely, we prove the following theorem
(where H)) . (J0.R[) =fuc H' (]0, RD|u () =0}):

Theorem 1.1: Let uy, vy € H2(R,) be such that
e dv
g (0) =y (0), - (0) == = (0) and ru. rvy € L2(R,).

Then, there exists {(w, v) such that ru, rve 2 (R, L2(RL)), riw, r2ve
C=T 7L (0. RDINLH =7, 70 B, (0RD)LZY Se 12T T:
v dr
L2(J0, R[}), for cach R>0 and 70, u(r, ) =1uy(r). v(r,0)=v,(r), re R,.
and (u, v) verifies (1.1} in (&7 (R xR))2

Our previous papers [2] and [3] are concerned with nonlocal nonlinear
complex pérturbations {nonfinear Dirac sysiem) of the principal part of the
system (1.1). In this paper we deal with a local nonlinear perturbation which
is. as far as we know, the dnly one¢ that can be analysed by this method.
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2. ESTIMATES FOR THE REGULARISED PROBLEM

As in [2] and [3], we consider the skew-adjoint operator in (L2(R,))?
defined by

D(A)={{)e(H (R Plu-veHi(R )],

du
T oor

av

ar
We put S(r)=e", re®R, and S1) is delined by
u(—r)=v(r}
S (4= (¥4 with >0
(V) (\ (J-H)) Vi) =u(r)
We have, in D(A4) (with LP=(LP(R,))2, Hm=(H"(R.))?),

IS (0) (S ==l G = 1S @ ()l =1 ()l € R,
Now, let be F: D(A} — D(A), D(A) with the H' norm, defined by

i i —1
F (%) Z‘ﬁ[ - ](g) — k) (4.

This map is locally Lipschitz continuous. Hence, for(“f:,l)ED(A) there

exists 7>>0 and an unique (fj)eC([—T. T1.D(A}NC ([—T. T]; L2 such
that

() =sm()+[ so-n FL ] @

We have || F({ =@+ TN () lan and, for (&[=T. 7],

d d 2

= 2 = 2 _ - (142 12y 2 —
Y + 3 u+ pEs (-VIut 2k @+ vH)ur=0
g g

2
2 2
7RI Pl i ey

{t-V)v+ 24 (1P + v v2=0
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Hence, since (&2 )eC([ T.T1: D(A))NC ([=T, 7];L?) and k=0,

(55)(1)55(:)(553)-]S(r~ﬂ[ M(((L; 3 ) ()] dr. o, 11,
()OI == ell (459l = _fn (Dl i=d7,1€[0, 7).

() == cetrd, 1€[0, T) 2.2)

From (2.1) and (2.2) we easily obtain an estimate for H( )([)“HI for

t€[0, 7] (and also for 1&[—T7.0]) and we conclude that (V) 15 a global
solution, that is

(i) eC(R; D(A)NCI(R; L) and verifies (2.1) for 1€ R,

Furthermore, since F: ID{A)—D(A) is locally Lipschitz continuous and
D (A} is a Hilbert space (for the H' norm), we get (c[. [1]) (3)6(3‘ (R; D(A))
if
dv

(¥)e Dean={(y) e H2lu-ve H} (Ry), %%* ar

€Hj (Ry) }

Hence, by (1.2), we obtain, in this case ( )EC(ER D(A2)).

We need suplementary estimates for( ) For this purpose we assume that
r'ug 2
(rvn)e LZ, that i

(’d‘(‘]) < (L? () )2’ where L2 (Ry)=L2 (R, r2dr).

We easily deduce from (1.2), since k=0,

E 3 2
2 2y —— (12— Y+ 2 )=,
a’(u+v)+ > (12— v?) r+6(“ ¥?)

L (P v+ L ((r+8)? (= v2)) =0
dt or

By the integral of energy method we get, for R>0 , 0<lr <R,

—rt R R
[ rrortw rooar=f ot ud+ v dr <j(r+ B Wi+ v dr.

Hence (r+8) (4 v) € L= (R, L?) and
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1e+8) (lh=aan=c (G0} iz 1 (52 iz (2.3)
where ¢, does not depend on 8.

Now, let us consider the linear system in D:

du du 1
2 e Ty =0
dv ov !
3~ T wen=0

L. Tartar has pointed out to us that if we put

rw—ru + iM—Lv
o2 2
dus
, where u,_w,
wy,=rv,+ iV—Lu
1— r 2 2
aw aw
0 + ar =0
we obtain {formally):
an _8w, —0 '
at ar

Let us assume (u,, vo) € D(A2NLE and let (1, VIEC(R; D(AH)NCH(R;
D(A))NL= (R; L?) be the solution of (1.2) for a fixed §<]0,1[ and with
initial data (g, vy) (and boundary condition {1.3)). Let

w=(r+8u+ %u—%v
(2.4)

3
wy=(r+ 3) v,+—i—v——2-u
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We deduce., from (1.2). with 8 =4 (22 + 7).

dw an )
7+_31‘—_ —Ow—(r+8)8, u
(2.5)
I, — duy =—0w, —(r+6)ftv
dr ar
and (w, w))=C(R: (H' (0, RPN CHAR: (L]0, RD ). for each
Re] 0.+,
Furthermore, we have
d . .
T[ (r+ &) (utv)|=w-twu
(2.0)
{—v)+ j_.v[ (Frt8)(w—v)]=nw—u
and
d 5 !
a0 [{r+ 8 ul=(r+8)w+ T(r%— &) (u+ )
R
{2.7)

% [+ 8) v]= (4 8)w,+ %(,-Jr 8) (e +v)

By applving the Gagliardo-Nirenberg inegualities and the Sobolev
theorem to (r+8&)(u+v)eH' (0, R[) and (r+8)2 {u— vy W10, R[),
respectively, we can deduce [rom (2.6). (1.3) and (2.3} (cf.[3]. §3):

| . Jes
18 el + D o S R L w2, F Il T

where ¢ (R) does not depend on 6.

From (2.5) we deduce

J 1 b d 2 2
S ) e (= e ) =

=20 (w2 w200+ 50, (v + v (2.9)
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and @, =4 (12 v+ 2k (v, v vy=L (it v +2 *‘_;}i—a‘[u“' + vy —
-

3
— (et vt uv].
2
Hence,

% ]

=2(r+8)8, (tw+ v )=—2{r+8) (r—z)r'3(u2+ v (e ) —
ke 3 :
— 4kt v P —4 —1;'-‘[—?(1:3 F vy v (e vy
r
Then we deduce. [rom (2.9) and from the properties of &,
a 2 a 2 2 3 3 1

ettt [y 12) 4= (el D 8l v (] o )

(2.10)

where ¢ does not depend on é.

Furthermore, we have, by (2.3) and (2.8).

R
[ 88 Q101 (] + vy e drS e (R T2 2o

+ ||“'1||2|,:(]u,re[a] (2.1h

where ¢ (R) does not depend on 6.

Now, if we take 7> 0 we casily obtain, by applying the integral of energy

method to (2.10), and since |1\'||3(0.T)—|u'|3(0.r):26(—a—|u|1)(0,r)
(cf.[2]. §3). ot

- 27

f (Iw]2 w1 D O dr<e(Ty. for all 1[0, T].

4]

Hence, if O y={(r, Dre(0.—¢+2 T[.0]0, T 1,
we deduce

ful(ln'lz-f- [y Iy (0 dr dt = e (T) (2.12)
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where ¢({7T) does not depend on 8. A similar estimate holds for T<((. Now,
for every T>>0 and R>0, we deduce from (2.12), (2.7) and (2.3),

I (r+6)2u”L2(—T,‘l':ll'(](l. R[})S(' (R T)

(2.13)
[ (r+ 8P vllLor 7t qo g = (R T)
Hence, by (2.3), (2.13) and (1.2), we obtain
, du -
| (r+8) ? 2 7:1.20]0. R[)]f("(R’ T)
(2.14)

dv .
I+ 82 == lhzir razgorpn S (R T)

where ¢ (R, T) does not depend on 6.

Now, let

W(R T)y={ueL?(~ T, T: Hj, (10. D) 9% € L3 (=7 T:12(10, RD))

with its natural norm, where H{, (10, R[)={ueH (0, R[)|u(0)=0}. We
have (cf. [4]).

W(R T) G C(I— T, T1; 1L2(}0, R[)) (2.15)
and, by Aubin’s compactness theorem (cf. [4])
W(R T) G L.2(— T, T;1.2(]0, R[)), with compact injection (2.16)

Furthermore the map w— w(0) from W (R, T} into L?(]0. R[) is continuous
by (2.15).

Let, for each 8]0, 1[, be (w4, v4) the corresponding solution of (1.2) for
the initial data (u, vp) (and boundary condition (1.3)). We have, by (2.3).
(2.13) and {2.14),

{172 5l iR, T)g (R T)

(2.17)
|72 vl W(R. ]")S('(Ra T)

where ¢ (R, T) does not depend on 6.
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3. EXISTENCE OF A WEAK SOLUTION

Let us assume (g, vg) € D (A2 N2 With the same notation of the last part
of §2 for the couple (u;, vs), solution of the regularised problem, there exists,
by (2.3), a sequence §—0 and (u, v)€ (R, L2) such that

(g, vs) — (u, v) in I (R, L2) weak *
5—0

and
1 G Il = ¢ (e, Vo) ll 2+ g, Vo)) 1)

By (2.17), (2.16) and (2.15) there extsts, for each (R, 7)., a sub-sequence
(us, vs), 6 —0, such that

(rPus, rivg—(rtu,r’v) weakly in (W(R 1), strongly in
(L2A(—T 7, £2(]0. R[)))? and a.e. in ]JO, R[x]— T, T[, and (&, v) (0) = (2, v)
a.e. in R.. Furthermore, for each 7>>0, and by a diagonalisation method, we
can assume (by (2.16) and (2.17)) that

(15, v5) — (. v) ae. in Rex]—T, 7T7T.
6—0

In particular, for fixed T7>0, we have, for each R>0,

k(d+vd) ug—k(ur+ v, ae in]0, R[x]—T. 77T.
6—0

Otherwise, by (2.12) and (2.8), we have
1k g+ vB usll 20 mpa—r m=cllr? (gt ud) wsll 2o gpx -1 m=c (R T),
where ¢ (R, T} does not depend on §.
Hence, by lemma 1.3 in chap. 1 of [4],

k(v ug— k(124 v u, weakly in L2¢]J0, R[] — T, T1),
6—0

and similar conclusion for & (u} -+ v§) v,.

Now, take ¢€ Z(D(R ), D(R TYy={(r.0rel0, RL,1€1-T. T[}. we
have, by (1.2),
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R .
duig dug Hs— Vg s s L
ff[ ¢+ P P+ — 3 A} tvus ]thfth

el

By the previous considerations we can pass to the limit. when §—10
{subscquence) and we obtain, since R and T are arbitrary,
o du =y

’ RN =0 i S
3 + o + + L2+ vHu=0Iin (Dy.

The same technigue applics to the second equation, and so theorem 1.1 1s
proved.
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