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Cyclic Branched Coverings of Knots
and Homology Spheres

FRANCISCO GONZALEZ ACUNA and HAMISH SHORT

ABSTRACT. We study cyclic coverings of S branched over a knot. and study
conditions under which the covering is a homology sphere. We show that the
sequence of orders of the first homology groups for a given knot is either periodic or
tends to infinity with the order of the covering, a result recently obtained
independently by Riley. From our computations it follows that, if surgery on a knot
k with less than 10 crossings produces a manifold with cyclic fundamental group, then
k s a torus knot.

0. INTRODUCTION

A knot & in a homology sphere M naturally gives rise to an infinite
sequence of closed 3-manilolds, B, (k). the n-fold covers of M branched over
k. The n-fold cyclic cover of M — N (k) corresponds to the kernel of the
homomorphism m (M —k)—Z, induced via the abelianisation map. The
branched cover B, (k) is obtained by adding a solid torus whose core & covers
k. and whose meridian is a loop on the boundary which is an n—fold cover of
the meridian of & (see for instance [BZ], chapter 8).

We denote the order of the first homology group (all coefficients are in Z)
by b,=|H,(B,(k))|. Fox showed (see [ Web]) that this is the resultant of the
(first) Alexander polynomial A, ¢r) and the polynomial "—1 (with the
proviso that b, =cc when this resultant is 0).

Conversely, Fried [Fr} has recently shown that the sequence {b,} deter-
mines A; (1) if no term is eo, i.e. when no root of A, (7jis an n-th root of unity.

Gordon showed that the sequence {b,} is periodic if and only if all the
roots of Ay (2jare roots of unity, and asked ([Gorl], page 366) whether {$,} is
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cither periodic, or tends to infinity with 7. We answer in the affirmative. Let
u (p) denote the measure of the polynomial p(r)ie. u(pj=

lag| 11 max (1, ]a]), the product taken over all the roots «; of the polynomial
p according to multiplicity, where a, is the leading coefficient of p. Note that
wu(p)=11f and only if p 1s monic and all of 1ts roots have unit modulus, and
s0 by Kronecker’s theorem (see e.g. [P, p.118]), are all roots of unity,

Theorem 1.
hm y bn =H (AI\)
N — =
b, 70

Corollary

The sequence {b,} is either periodic or tends o infinity.

Proof of theorem: By definition, b,=|aj[[(e—1)] so that /b,=
=lal TT oy —1I.

[t is easy to see that if |« > 1 then lim /}a" 1| = || and that if |a| <1

) —oc
then lim /|a"—1| =1,

If a is an algebraic integer with |a| = | and |a"| 52 1 then (see [Ge] and [B,
p. 2-3])
S ooon /) 2 2p :
22 alt— 1| :231n(—2~| argo — ‘%2# )= - [ log e — -;rlog(—— 1|

> Cexp § — {(logn)s }

. , narga ) .. .
where p is an integer closest to ( 25 ) and C'is a positive constant depending

only on A, Hence, if A(e)=0 and |a|=1 then lim|e"—1|=1. The
theorem now follows. | _ ali s |

This result appears to be known in the context of dynamical systems; b,
is the number of points in the g-torus S'x §'x...x S' of period n under an
autohomeomorphism with characteristic polynomial A (see [L]). Here & is
monic. '

In §2 we use recent work of Mignotte and Waldschmidt 1o obtain an
explicit bound N (in terms of u(A) and the coefficients of A) such that {or
n> N we have b, 3£ 1. This bound is of the order of 10'¢ for knots with up to
10 crossings. In §3 we show how to use continued (ractions to reduce the
number of values of # for which &, may be | from N to approximately log,,N.
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Note that some of these results have been obtained independently by R,
Riley using similar methods [R3]. Part of this work was done at C.I.M.A.T
(Guanajuato, México). The authors would like to thank Arturo Ramirez for
very useful conversations and Wolfgang Lassner for help with high precision
computation of roots of some knot polynomials. Also many thanks are due
to Clifton Webb of 1.LB.M. and Greg Baran of M.S.R.L. for their help in
calculations using 1.B.M.’s Scratchpad 11 package.

1. PRELIMINARY RESULTS AND DEFINITIONS

Let &k be a knot in 53; we use (m, /) to denote a meridian longitude pair on
IN(k)in 83, and (k;p/qg) to denote the manifold obtained by p/g surgery on
k (adding a solid torus to 5 — N (k) killing the element m# 4). We refer to p/ |
surgery as infeger surgery, sometimes written p-surgery. Note that a knot
longitude and the Alexander polynomial A are well defined in a homology
sphere. We use B, (k) to denote the n-fold cover of 53 branched over the knot
k, and k£ to denote the inverse image of k. We shall say that the closed
3-manifold M is a meta-homology-sphere it H) (M) is finite, and = (M) has
perfect commutator subgroup. We say that M is flens-like if m (M) is cyclic
non-trivial and the vniversal cover ol M is $3. Note that if = (k; p/g)i=
Z,*% G (p#0), then (k;p/q) is a meta-homology-sphere.

Let f(t})=a,t‘a,_t+..ayt" gi)=b,+ b,_it+..byt" be polynomials

with integer coefficients, and with roots o), «y, ..., a,, and 8, 8,,..., B,. The
resuftanr of fand g is

res(f,g)=(ap- &) T1 (ei— B) = a T g (@) = (=)™ by TL/(B)
iJ i i

P A P a, o ... 0 W

0 ay P a,

0 0 dy d) ... ay,
=det

by b ... b, 0

0 by Birooool. b, 0

o ... 0 by by ...l b, J
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(This is an (m + n) X (;m+ n) matrix). Resultants have the following multipli-
cative and commutative propertics:

Res(f) f2, 8)= Res(f|,g) Res (f»,g). Res(f, g)=(—1)"" Res(g, ).

Here we shall always have one of the polynomials equal to rm—1,

b, (k)= Res(A, (1), 1" — 1}]. In this case, b,,(k) 15 the absolute value of the
determinant of the circulant matrix (a; ), where a; ;= a.4;_,, and 3705 a,ti is
A, (1) reduced modulo ¢ —1.

If p divides m, then »—1 divides t™—1, so b,(k) divides b, (k). by
multiplicativity of resultants. It can be shown that b, fk)= if and only if the
ideal generated by A, (7) and ™ — 1 is Z[¢]. Before obtatning access to the
1BM Scratchpad II program at M.S.R.1., Berkeley, California, the authors
implemented a Buchberger algorithm in (PASCAL) on a microcomputer
which can be used for small values of m to obtain a canonical basis for the
ideal, and thus sec if it is trivial (in this case the basis consists of the element
.1). For large values of m, the coefficients of the polynomials formed in the
reduction process rapidly become too large for PASCAL to handle, and the
algorithm ‘becomes very slow and impractical.

Proposition 2.
Let p and q be coprime integers with p> 1.

(1) (k; p/q)is a meta-homology-sphere if and only xfB (k) is a homology
sphere.

(2) If (k:p/q)is a lens-like space then w, (83— k) has a proper subgroup
of finite index isomorphic to a knot group.

Note: when & is not a cable about a torus knot the converse of (2) holds
(see [GW]).

Proof:

(1} The (unbranched) p-fold cyclic cover of M:(k;p/q) 15 a manifold
which we denote M Then SJ—~N(k) M— T, where T is the solid torus

added durmg surgery. Covering T'in M is a solid torus T, and B (k) — Nk)=

M— T, where £ is the preimage of & under the branched covering map
p:B,(k)— 53 The surgery curve m?j# on dN (k) lifts to the curve A1l¢ on

_ 6N(f€) where /7 is the preimage of m under p, and [ is a component of the
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preimage of / under p. Notice that / is homologically trivial in B, (k)—
int N(k), and therefore M and B, (k) have the same homology.

(2) In this case M is in fact $3, 50 that M— T= B, (k)— N (k) is a knot
complement. 1

In particular, if £ is a knot with tunnel number = 2 (for instance a 3-bridge
knot) and no torus knot polynomial divides A, (¢), then, for p > 1, (k; p/q} is
either irreducible, or a meta-homology-sphere ({GS] prop. 2.2.). By the above
proposition, to show that all surgeries on & give prime manifolds, it suffices
to show that 5,71 for all p> 1.

By the cyclic surgery theorem ([CGSL] corollary 1), at most 2 non-trivial
surgeries on a non-torus knot in S7 may give manifolds with cyclic
fundamental group, and these must be adjacent intéger surgeries, » and n+ !
say. By the above proposition, if there are two such surgeries, then b,=5,4.,=
I, and A, (—1)=5b5,=1, by the division of resultants. This in fact occurs with
the Fintushel-Stern example, where & is the (—2, 3, 7) pretzel knot, and (k;
18) and (k; 19) are lens spaces [FS);

A)=1—1+0 -3+ — 5+ 17—+ 410

(in fact, for <200, we have that b,="! exactly whenn=2,3,5,6,9, 10, 15,
17, 18, 19, 25, 34, 37, 43, 59, 74 — the last six of these values were computed
using IBM’s Scratchpad 1l program). The measure (see introduction) of this
polynomial is 1.176280821.... Lehmer’s conjecture (see [Bo]) states that, if the
measure of an integral polynomial P(t) is less than this number, then all the
roots of P(t) are roots of unity,

Thus we have

Proposition 3.

Let k be a knot in a homotopy sphere M such that M — k is not a Seifert
fibred space.

If two non-trivial surgeries on k give manifolds with finite cyclic
Jundamental group, then |4, (—1)]=1.

For example, for a 2-bridge knot, |A(—1)| # 1, so that at most one non-
trivial surgery on a non-torus 2-bridge knot yiclds a manifold with cyclic
fundamental group. Takahashi has shown [T] that if a non-trivial surgery on
a 2-bridge knot yields a manifold with finite fundamental group, then the
knot is a torus knot. '
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Proposition 4.

A plq surgery on a (r, s)}-cable knot about the knot K in §* gives a meta-
homology-sphere if and only if (p, rs)=1 and b,(K)=1.

Proof: Let &k denote the (r, s)-cable about K, and T, (1) the Alexander
polynomial of the (r, s)-torus knot C,,. Then A (0)=T, (1) Ay (). The
p-fold covering of $% branched over C, ; is the Brieskorn manifold M (p, r, s).
This is a homology sphere if and only if the integers p, r, s are pairwise
coprime (see for example [GW, §5]), which means in this case that (p, rs) =1
(r and s are already assumed to be coprime, in order that the cable be a knot).
Also b, (k)=b,(C, ). TI7Z) Ax(£7); the first factor is 1 if and only if
(p, rs)=1. It follows then that £ is a primitive p-th root of unity if £ is, so that
the second term is b, (K).1

The followling proposition is useful when dealing with non-monic
Alexander polynomials.

Propasition 5.

Let h (1) be a polynomial in L[] such that h(1)= | and such that there are
integers «, B, g satisfying h ()= «a f(1)+ Btt. Let a, be the coefficient of 1% in
S

Then for all odd values of p greater than max {g, deg(f)— g}, we have that

b,= Res(h, tr —1)=(—1)*' (g4 p.a 7~ a;,(mod &?).

If in addition h(—1Y>>0, then the result holds for all p > max g, deg (f) —g}.

Proof: let ¢ be a primitive p-th root of unity. First note that when p is
odd,

{1h€)=h) I @)L

as the roots occur in conjugate pairs. This is a positive number, so that

Res (h, 17 —1) = T1 h (€)
i=1
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(no absolute value needs to be mentioned). When p is even, this product must
be multiplied by A(—1), so remains positive if this number too is positive.

By supposition
r P P
_I_Il hi§)= -I—]: (af(£) +BE) =(=1)P" ! (BF + a B! -§| SEYE) ol A

where A is an algebraic integer (being an algebraic function of the £, which
are all algebraic integers). But this is equal to

P Jeg(f')
(—)r+ ! (Br+aprt S (E a,-ffff‘-g)))JraZA.
3(3

=1 \j=0

When j— g<{p, we have that §0—2/is a d-th root of unity, lor some d dividing
p. It follows that 37  £7(=#)=0 except when j=g, whence

Res(h, i —1)=pr+apafr—"+a? A.

But if two integers are conguent mod «? in the ring of algebraic integers, then
they are congruent in the ring of integers, and the result follows. 1

An application of proposition 5

If A(t)is an Alexander polynomial of degree 2 (normalized to have
positive leading coefficient), then there is a positive integer « and a choice of
e==1 such that

Aft)=at’ H(e2a)ita=a(i?+ 1)+{e-2a)t
If € is negative then the roots are real, and the sequence {b,} is monotonic
tacreasing.

We can apply the proposition to the remaining case, where e=-+1, g=1,
and a, =0. Notice that now we have A(~—1)=4a — >0 and so the proposi-
tion applies to cases odd p> 1.

b,=(1—2)?=1—2pa(mod a?).

But 2pa=0{mod o?) if and only if «|2p. For example, if « is odd and &,>> 1,
then 6,21 for all n2> 1.

Hartley has in fact shown that 5,=1 for a degree 2 knot polynomial for
some p, only if the polynominal is > — 1+ I, using Plans’ theorem (see [H,
Prop. 1.7]).
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For example, the knot 94 has an Alexander polynomial which can be
expressed as follows:

Aft)=3—61+T2— 603+ 3r=3(1 — 2t — 28+ 9+ 72
so b,=77 mod 9. But 7 has order 3 in Zj, so that
tb,=1 mod 9iff p=0 mod 3.

Also by=100 so that by, > 1 for all p. Thus no cyclic cover of S* branched
along 94 is a homology sphere.

The following proposition is useful when A(7) has no roots on the. unit
circle. For example, it can be used to show that if £ is a 3-bridge knot with
less than 10 crossings, and A, (¢) has no roots on the unit circle, then b, (k)> |
for all n>>1.

Proposition 6. If A (1) has no roots in the annulus 1 < |z} < Wats
. 2
then b,>1 for n=ny.

-Proof: lfn =p and o is a root of A with |a| > 1 then |a”| >H‘f
and it follows that | (a"— l)(a'"—* DI>1.

2. NUMERICAL ESTIMATES

Lef ft)=ay+a;_ t+ ...+ apt? be a polynomial with integer coefficients
such that a;ta, f(1) and f(—1} are not zero. Suppose that (counted
according to multiplicity) there are d” roots of modulus 1, and & roots of
modulus different from 1. Denote the roots of modulus 1 and argument
between 0 and w by o ,..., @,> and the roots of modulus different from 1 by.

BI [ARRE] Bd
We set L, = |ag .(I—B")I and S,= =117 1 ai"lz; il  (resp. d")is 0

then set L, (resp. S,) equal to 1. We then have | Res{(f(t), 1" )| =L, S,, and
we call L, (resp. 8,) the large (resp. small) part of |Res(f(1), 1" —1)|. Clearly
S, <24

It is easy to find a lower bound for log I, (Lemma 7). We shall use results
from transcendental number theory to obtain a lower bound for S,. We
~ estimate the numbers involved for 94, to give an idea. of the orders of
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magnitude involved, and we show that for this knot, b, > I for n>> 10", For
knots with less than 11 crossings whose Alexander polynomial has a root that
is not a root of unity, b,>1 for n>2.6Xx 10'S,
Let M denote the measure of the polynomial f,
"
M=u()= ||l max {1, |8}

4

Let
R=max {|8;] 18| <IJU{I8;]~": 18] >1}}.

If & =0then R is defined 10 be 0. Notice that R<1. The following lemma is
an improvement on proposition 6.

Lemma 7. An estimate for the Large Part.
i) (1 =R Mr<=L,<(1+ R M~

ii) lim /L, = M.

A—og

Proof: Write §,=; if |81 <1, and =8 if |B;]>1.
Then R=max{|B]}, and '

i d’ -
Lo=1ag 11 (181 = bar T OB
I =

Jj=

Since (1— Ry =TI, il—,@;.’i‘_:(l-i-R")ﬂ", the first part of the theorem
follows.

Assertion ii) is a consequence of i).1

We now want to estimate S,,.

Lem'mar 8. ([W,Lemma 2.4])

nargA
20

Suppose that \\| =1 and p is an integer closest to

2
Then |1 A= 1122 log (— 1) —log (V).



106 F. Gonzdlez Acufia-H. Short

Proof:
- AN = 1 n — 1 ﬂf_ o
[1—A" =2sin(|arg A |/2)—23m(2| n27T arg A|
2n  2p ) _2n 2p
2?|—E— rr—drg)\[ﬁ?l—n—log(—])—log,\l.
|

Assume now that [A| =1, 0<largx <m, A is algebraic and A7 1. Again
let p be an integer closet to 248n z;;r A, We obtain a lower bound for | —2‘C;Tr*logA|
by applying Mignotte and Waldschmidt’s main theorem [MYV] with the
following substitutions (assuming »n=3):

SU=l+logn D(;:l

S] =1 + ke Dl = l

S$;=D-+A D,=D=degree of the minimal polynomial for A

where A= max { log/(A), arg A}, and A(A), the height of A, is the maximum

of the absolute values of the coeflicients of the minimal polynomial {or A.
Now we need that

T=5+log(Dn(1+ =) (D+ A))

eD{(1+m) e(D+A) e
,€
T ToargA

e< ESmin{

e(DLt A)

arg can be

i : . !
The term €3 can be omitted if n3_>—2? DUY and the term

omitted if arg A< (14 7—'— D=1)~".

Making these substitutions, the main theorem of [MW, p. 242] gives:

Lemma 9.
If n=3, then

| %? log(—1)—log | >exp{—5.108(1 + =) D*(D+ A) T*(log [)—* ]
Because of the multiplicity property of resultants, to estimate b,, it suffices

to estimate |Res(f(¢), ¢"— )| when f(r} is an irreducible factor of an

Alexander polynomial. Morcover, if 4, (1) is the m-th cyclomotic polynomial,
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one can actually calculate Res(®,, (1), "—1). It depends only on m and §,
where 8 =(m, n). One has (see [A, page 460]):

pcb(m)f(b(%i)‘ ir =p®, p prime, a>0
Res(®,, (1), 1"—1) = o
es (P, (1) ) 1, otherwise,

where ¢ is Euler’s function.
For these reasons the next theorem, which gives a lower bound for

| Res(f(t). t"—1)|, is only stated for primitive, irreducible, noncyclotomic
polynomials.

Theorem 10,

Lef f(t)=ay+ay_, 1+ .. ayt? be a primitive, irreducible, noncyclotomic
integral polynomial of degree d>1. Let

ey d°f2 &

ay ,13. (1~ o) };II (t—ai') ![=I] (t—B)
be its factorization over C, where o) =1, 0<arge; <m,(i=1,...,d") and
1Bl =1, (j=1...4).
Ler
M be the measure of f{1),
R=max{|B18] <HU{IBI=": 81> 1},

a=max{loglayl....log|a,|, arg oy, .., arg o ;]

d(l+m d+a }

e,=1 +10g(mm[ p- arg e,

i~
-3

2

o= 3 &7

v

c=10°(1 + ) & (d+a) o (log M)~!

h=5+log((1 +m)d(d+a)).

If n 2 max {3,21—5.(1”2} then
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29 (1 = RM M7 =| Res(f (1), 1"—1)]

=>(1— R (2_:)d” Mn—cthtlogn?

Proof: |Res(f(t).r"—1)|=1,S, and L,=(1+ R M" (by Lemma 7),
and $,<2¢ from which the first inequality follows.

a.
Let p; be an integer closest to L. Using Lemmas 8 and 9 we have
: . ) m .
o2
S,=11 1—oyl?
i=1
2., 92 i
= G U | | I—'nJrL log(—1)—loga,|?
i=l

I d2
2T exp{—10° (1 +m) d*(d+a)
i=1 .
(5+log((1+md(d+a))+logn)ie?}
___(2?’?)“"’ Mfc(h+lugn)2

Since, by Lemma 7, 1,= (1 — R")¥ M" the second inequality follows.

Corollary 11.

Suppose s is a positive number satisfying es—2s=h+loge.
Ifn = ee® then Res(f(1), 1"—1)| = (1 — R« (-2;)"".

(As pointed out by Santiago Loépez de Medrano, ¢ —2s=h+logc holds

fs=l+vh—1+loge.)

Proof: We may assume that 4”>0. Then n= ce? s>> max {3, —2% d'?} and

+

| Res(f(1), P D =(1 _Rn)rd'(%n—)d" Mn—cth—logn)®
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Now m=—ce¥ where t=s5=In 2. Then e¢'—2i=e—2s=h+log ¢ and so
e=h+log c¢+2t which 1mp11es that ce?=c(h+loge+26)2. that is
n=c(h+log n}. Heuce

Mr—cth-logn? > | and | Res(f(1), i"— 1)} = (1— R")¢ (%’)di

Example For the knot 9, we have that A()=1-—-7¢+ 1112717+ 14,

7—V13 )
4

There are two roots of unit modulus a, @—!, where arg a=cos—'(
and there are two real roots, 8, 8~ where

B=(7+V13+/46+ 14\/13)/4=5.109646....

We have M=p8, R=8"", —log(l!) e=t+tlogd(i+="), o=ey,
€=55.092935... x 10% and h=9.6633438...

The inequality ef—2s=h+log ¢ holds if s=3.73444. Thus if n=ce?=
9.6558226... x 10%3 one has b, = (1 — Ry (Z—Tn)2>9.8 x 102,

Using table | of [BZ] and table | of [Bo] one obtains the following bounds
for noncyclotomic irreducible factors of Alexander polynomials of knots with

less than Il crossings: d=&§, d+a§8+‘1r,a$3(l+log(!+%))—3 and
M=1.6355731 (M= 1.75 for degree 8 polynomials). Hence A+

" log ¢=40.929691 and &*— 25= h+ log c holds if s =3.88571. One can conclude
that, if #=2.6x10'0 then b,>>2.7x 1032 Thus n=2.6x10'% and & is a knot
with less than 11 crossings such that A, (z) is not a product of cyclotomic
polynomials, then the n-fold cyclic cover of S? branched over k is not a
homology sphere.

3. USING CONTINUED FRACTIONS

When o is a complex number of unit modulus, the denominators of the

argo
convergents of
2

unity. In order to discover for which values of # b, may be 1, we study
continued fraction expansions of the arguments, divided by 2, of the roots
of unit modulus of A; (7). This shall enable us to reduce significantly the -
upper bound of {n|b,(k)=1} given in §2. Thus, for example, if & is a 3-

are the values g such that « is “near™ a g-th root of .
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bridge knot with less than [0 crossings, and A.(z) is not a product of
cyclotomic polynomials, then b, (k}>> 1 for n>11.

To an irrational number & one associates a sequence of integers ¢y, ¢, ¢3 ...
{with ¢;>0 il j>0) as follows:

ne =0, ¢;=integer part of n;, n;y — —ae
i

Then 0=[¢y, ¢5,¢0 .=+ 1/{c;+ /(e +...}) is the continued fraction
eXpar_lsion of 4.

Also if 8 =[c¢y, ¢y, ¢y, ...] and j is a nonnegative integer we set

B —egyersen =g He F 1+t 1/c) )
4y

where p;, ¢; are relatively prime integers, and g;>> 0.

The numbers % %, %, ... (resp. gy, 4/, qa, ...) are called the conver-
voq g2
gents (resp. denominators of the convergents) of 0. One has ¢;=¢;g,_, + ¢;_,
for j>1.

We denote by || x|| the distance from the real number x to the integers, Le.,
[|x]| =inf |x—p|. The denominators of the convergents of & have the
pEL

following properties:
1} If j=1, g;4 is the smallest positive integer such that ||g;, 8]} <l g,8]|.

2) i j=1, then ||g, 0l = ¢irall g1 011 + g4, 611

Lemma 12,

Let 8 be an irrational number in (0, 1), let [0, ¢;,¢;...} be its continued
Sraction expansion, and let qq, q,, ... be the denominators of its convergenis.
Suppose that B> 1 and that j is an integer such that | ;011 > B-4. Then

) |n8)| > B if g = n<gpy.

) g1 011> B~ jf ¢y + 1S BYj+i—4
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Proof: The first assertion is a consequence of the fact that [|n8]l > |{g, 8|
if g;=n<g;+,. To prove ii) notice that

e 01 > 11 giafll =11 g, 01l — ¢z || g4, €l
and therefore

G741 01> (oot D" [l g011 > Bttt B4 = Basi1.

Now let f(t)=a;+a,_, i+ ..+ at? be a polynomial with integer coeffi-
cients such that ;2 0 and a, 0. We assume that no root of f(7)is a root of
unity. We follow the notation of §2.

Lemma 13.
Iiin 2By > p-niv (i=1,...,d"|2) then \Res(f(1), 1" — 1)| >
4:1’(1_Ru)1!"_
Proof: Since |a'—1] =2 sin(r || n —%ll), and by Lemma 7,
m

L,Z(1— R M7, we have

L, S, Z(1—R7)* M(2 sin (mr min j|n ZEX )"
A2 2

. ) 2 T arg «; .
Using sin x E?X for0 =x=-—, and |in#| > M- ane sees that
211'

the right hand side is greater than 49" (1 — R™). 1

Theorem 14.

Let w and v be positive integers with the following property:

When GE{EE;%, s -E-l%”— L and [0, ¢\, 3, ... ] is the continued fraction
expansion of 8, and gy, 4, qa, ... are the denominators of the convergents of 0,

D lig 0l > M- if g =u<g;y) and

i) ¢t 1= Mg —qid” i u<qgpy and q;<v.

Then |Res (f(t), 17— 1)| > 44 (1 — R for usn<v.
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Proof: This follows from Lemmas 12 and 13, taking B= M(JI_".I

- Assuming that the Alexander polynomial of the knot & is not a product of
cyclotomic polynomials, Corollary 11 provides a number v such that
b, (k)>11{or n=v (one may take v=2.6x 10'0if k£ has less than ! | crossings).
Then Theorem 14 provides a number v such that b, (k)>1 1 u<n<v (for 3-
bridge knots with less than 11 crossings one can take « = 290). To determine
for which values of n {smaller than u} b,, (k)= 1 the following observations are
useful:

Remarks

1) One has the inequalities
d£72 . )
| Res (f(1), t"— 1) =(1 — R M7 24 ][ sin? (|| a%f*n)
-1

LEX 1= 1lg —"ngfu where g, is

smaller than #.

(implicit in the proof of lemma (3) and ||n

arge;
2

2) As noted before, if b, (k)= 1 then b,, (k}=1 for every m diving n. Thus
if fn>>1]&,(k)=1} is not empty, the smallest element of the set is a prime
number.

the largest denominator of a convergent of ||

HIL,S,=1and L,,<L,then S,<S,. Thusif L,S,=1and £,>max L,
(=m<n
then §,<C min §,. One can show that, if /() is reciprocal, then
1=m<n

L,> max L, holds lor

1=m<n

log (1 — RT)—log(l + R~%)

ri

log R
and so, if in addition L,S,=1, we must have §,< min §,,. Notice that, if
1=m<n
d” =2, the values of n satisfying §,<< min S, are precisely the denominators
1=Zm<n
arg a;
of the convergents of —=-L,
g —27]_—

4y b,(k)=1 if and only if the image of A&, (r)eZ{Z) in the group ring
Z(Z,) is a unit. I{ <<7 and ns£ 35, then all units of Z(Z,) are of the form *¢
where 7 generates Z,,.
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Applications

We consider the 34 3-bridge knots with less than 10 crossings. For 10 of
these knots, A7) has a quadratic, non-cyclotomic, reiprocal factor and so, by
[H, Prop. 1.7], b,>1 if n>>1. For 9 of the remaining 24 knots, A(7) has a
reciprocal factor with no roots of unit modulus, and it is not difficult to
show, using Prop. 6 that b,> 1 1f n>>1. For three of the knots (8, 8,5, and
8s0) A(1)1s a product of cyclotomic polynomials and b,=1 if and only if
n==1 mod 6. Handling the remaining 12 knots (the knots in Table 1)
requires Corollary 11, Theorem 14, and high precision computation,

For purposes of calculation it is easier to approximate the roots of the
Conway-like polynomial P¢x) where Pr+:-1)=A(); a real root of P
between -2 and 2 corresponds to a modulus one root of A. This means that
a real Newton’s algorithm can be used for P. Denoting by @ a modulus one
root of the Alexander polynomial of one of the 12 knots of Tabie 1, and

assuming that « is not a root of unity and 0 <arg a <, a continued fraction

expansion for A8 % was obtained by finding values ¢ such that |1 — 9| <

ki
m<ini I—o™|. These calculations were checked by calculating the arcosine of
m<q
half of the root of P (using Borchardt’s algerithm to obtain the required
number of digits), dividing by 2, and then calculating the continued fraction
of this by the standard procedure:

1

ni—¢;

ci=integer part of ny, n;y = —

Calculations were done using a Mumath symbolic package, mainly for its
ability to handle arbitrary precision arithmetic.

This work was subsequently checked at M.S.R.L. using the LB.M.
Scratchpad program on an 1.B.M. RT, where all these calculations were
much easier to implement,

For the 12 knots referred.to above, Table | shows the polynomial
F(t)=A()/(cyclotomic factors) of the knot, the measure M of F(r), the
greatest modulus R of the roots of F (1) inside the unit circle (R=0 if no such
roots exist), the number o (resp. d”) of roots of F(¢} off (resp on) the unit
circle, the continued fraction expansion of ABY where a; are the modulus

Wi

one roots of F(r} with argument between 0 and m, a few denominators of
argo;
27
Theorem 14 is satisfied..

convergents of and values of w and v such that the hypothesis of
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85 and 942 ./‘(I):f4—2f3+f2—21+|
M=1883203 .., R=0.531011...,d'=2, d"=2

arzgffq =[0,3,1,1,7,1,1,4,4,1,7,1,1,82,1,3,5,5, 1, 3,
14,7,2,3,1,1,3,2,..]

q;=3, q2:4, (]3:7, q4=53, qS:6O....,q2033.1 x 1016
u=>53, v=2.6x10'

816 f()=1°—4r3+8s4—93+ 82 —41+
M=3.219439 ..., R=0557326..., d'=4, d"=2

arg o,
2

=[0,4,2, 1,17, 1,1,6,2,4,5,3,3,1.2.2, 1,2, 1,2, 3,
5 L5 1, 0,1,2, 1,129, 2 3,3, 231, 1, ..

g =4, q2:9, 3= 13, q4:23(), C]5:243,..., qH%z.l % 107
=13, v=2.6x10'0

9% fl)=21"—303+32-3:+2
M=2 R=0,d'=0,d"=4

S =073, 1,2,26,3.6,1,10,5,2, 1,6, 12,8,3, 1,2, 1,
5, 1,2,401, 17,10, 18, 3, ...]

q]:3, g,=4, g;=11, q4=2907 gs=8%1, ..., qzsgz_gx 1017

arz—m2 =[0,13,3,2, 1, 1,3, 1, 1,11,6,1,7,1,54,3, 1, 1,2, 3,
m
6,1,3,1,26,3,30, 1. 1, 1.5, 1,8 1...]

g1 =13, g;=40, g;=93, g, =133, gs=226,..., g5, =T7.1 x10®
u=290, v=2.6x10' '

9y FO)=9=55+ 10— 11+ 102 —-5r+
M=4.53532..., R=0.469565..., d' =4, d"=2

2 |O: Is Is l, ly ], 2: l: ], 25, l, l, l, 4, l! 2, l, l$ 3’ 4! l’ l, I,
-;! I! » la Js l, Ia 2, 3, 2, 2, 15, l, 2, -;2, 2, [, 30, |,|
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i =4, gr= 17, q3:21, q4=38, q5=59,...,Q4()%2.9X 1017
=4, v=26x10'6

Oy f()=3r—1203+712—12¢+3
M=06.304498..., R=0.475851...,d'=2,d"=2

2]] * 1’ 81 11 31 6-; 37 g, I, 3,2,
’ ]’ I, I': 21 l’ 1,40, 2, 3, 2._...'

g, =8, =129, . =395, qs =524, s =919, ..., g =2.9x 10'0
u=28, v=2.6x101

9y J()=10—6:5+ 1409 — 1703+ 142 — 61+ |
M =5.562469..., R=0.424001..., d'=4, d"=2

arzgoz! =f0,5,8,9,4,4,1,32,1,2,22,2, 1, 1.5,6.299, 1,
m
2,1,4,10,6, 11, 1,7,65,.]
ql =5, qz=4l, q;=374, g4 = 1537, q5:6522,_._’ qzsz l.l X 1017
u=>5, v=26x10

Oy f()=15—505+ 84 =903+ 82 -5r+1
M=3.165265..., R=0.315928..., d'=2, d"=4

S (0,3, 1,3, 1,6,4, 183,91, 1.8, 1,5, 1,2.9. 1,6,
L5 112,811, 1,1,3,2,5,3,..]

q) :3, (12:4, q,= IS, Ga= 19’ gs= |29’l“,q30%5x lOl(\

azgf =[0, 11,8, 1.1, 1,23,5,1,2,22, 1. 1. 1.3. 1, 1. I1.6. 2.
1,2,10,7, 1,42, 114, 1,1, 1, 1.7, 3,..]

g=11, =89, =100, ¢,= 189, g5=289, ..., g, ~8.8 10
u=_89 v=2.6x10'

93 [O)=10—35+214—13+212 =31 +1
M=2225868..., R=0.449263.... d'=2, d" =4
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ﬂiﬂ =[0,2, 1.4, 1,3,447, 1,116, 1,3.1,10,3,3,3, 1, I, 1, 2.
m
3,3,1,2,1.4,5,5.6,1,1.1,3.1, .]]
q :2, CI223, = |4, gs= 17, q5:65, . q‘\zg:{.l X 10”‘

—5—33; z =[0,4,13, 1,7, 11,6,3,1,2,2,1,2,42 3, 1,1,7, 17,
T
1,13, 1,3,2, 1,27, 1, I, 10, 1,..]

g1=9, g =118, g; =127, gs=1007, gs= 1134, ..., gr=4x10'¢
u=127 v=2.6x10'®

Qs fl)=0—063+912— 61+ 1
M=4.174674..., R=0.239539..., ¢&'=2,d"=2

arz—a:[osga]a]a2a3n4s 1123116! 1339 l, 112>2’41]5153’2a25297!3&
i
2,00, 0,0, 2,0,62, 1,3, 1,1, 1,6, 1,6, 3,...]

§1=9, g=10, g3 =19, g. =48, gs=163, ..., ga=~1.6x 1017
u=9, v=2.6%10'

97 S)=1"—45+ 614 —50 + 62— 41+ |
M=3832725.., R=0.510795..., d'=4, d"=2

%—ﬂl =[0,3,2,2,81,1,29,4,1,5 14, 1,1, 1, 1,2, 2.1, 11,
w
2,2,2,2,1,5,8,297, 1, 4,2,..]

g =3 g.=7, g;=17, q,= 1384, g5= 1401, .., ¢u==2.8x 10
u=7, v=2.6x 10"

O JO)=0—T341112— T+ 1
M=5.109646..., R=0.195708..., d'=2, d"=2

arg o

2

=[0, 11,3, 1,2,6,2, 1,1, 13,244, 3, 1,2, 4,4, 1, 1,2,
26,1,5,52,3,4, 1,2, 1,17, 1, ...]

g =11, g,=34, gy=145, q.= 124, g =789, ..., =24 10"
u=11,v=26x10'"
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Using Corollary 11, Theorem 14 and the remarks above, it was found that
the only values of (k, n) such that &, (k})=1, n>> I and & is one of the knots
appearing in Table 1 are (85, 7), (916, 11) and (9,2, 7).

Using this, we show now that p/g-surgery (g+0) on a nontrivial nontorus
knot with less than 10 crossings produces a manifold with noncyclic
fundamental group. Since such knots are known to have property P by
[CGLS, Corollary 7} and [AM], we may assume that |p| > 1. By the cyclic
surgery theorem ([CGLS, Corollary 1]) g=1. Also nontrivial surgery on
nontorus 2-bridge knots produces manifolds with infinite fundamental group
by [T]. Thus, by proposition 2(1), the only pairs {(k, p} that need to be
considered, where & is the knot and p is the surgery, are (85, £ 7), (916, L 11),
(942,i7), (8[0, p) and (82(}, p) with pEi 1 mod 6 (HO[iCe that 8]9 iS a torus
knot).

By [R2, p. 282]if & is 8,y or &, there is an epimorphism from the group
of k onto PSL (2, Z) sending the longitude to the trivial element and the mer-

idian to ((l) }) and therefore m (k;p), with p==x1 mod 6, projects onto

PSL (2, Z,)), pi a prime divisor of p.
Recall that if M3 is a homology 3-sphere and M bounds a smooth orien-

ted 4-manifold Y such that #,(Y) has no 2-torsion and the quadratic form of
Y is even then u (M):ﬂgD mod 2. This is well defined by Rohlin’s theorem

([Ro]). If & is a knot in 87 then u (B, (k) ) can be computed using [C, Theorem
5] or [K, Theorem 12.6].

Also if & is a knot in a homology 3-sphere 22 then the Acfl invariant x (&)
2_
of kis b =1 1hod 2 where b is the order of the first homology group of the

2-fold cyclic cover of 23 branched over k([ Le]. [M]).

Proposition. [f = p/1-surgery on a nontorus knot k produces a manifold
with cyclic fundamental group then u(B, (k))=x (k).

Remark. One can prove the stronger assertion that the Casson invariant
([AM]) of B, (k) equals = A" (1) where A(s) is obtained by symmetrizing the

p—1
polynomial JT A(wi#7), A(s) is the Alexander polynomial of & and w is a
i=0

primitive p-th root of unity,
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Proof. We use the notation of the proof of Prop. 2(1). The manifold M
is a homotopy 3-sphere and so, by Casson’s theorem ([AM]). w(M)=0. Now
M (resp. B, (k)) is obtained from B, (k)— it N (k) by adding a solid torus 7'
(resp. N(k})in such a way that /A/*! (resp. /%) bounds a 2-disk in the solid
torus. Hence, by [Gor2. Theorem 2|, u(B, (k) )= x (F), where ¥ is the core of T.

2

R . W
BUT X (FT(Tesp. x (KT TS

b3 =\
mod 2 (resp. T_ mod 2) where b,=

| H, (B, (k))|. The numbers b, and b,, are odd and, by [H, Lemma 2.1]

2 . .
" is the square of an integer. It follows that x (F)=x{4) and therclore

b 2

w(B,(k})=x (k). ¥

One has pu(B;(85) )= 1. x (85)= 0. u(B;(943) ) =0. x (Y42} = | and therelore.
m (8, £7) and (945, = 7) are not cyclic.

Finally if & is 9, then 7 (S'—k) has a Wirtinger presentation with
generators x,....,.xy and relations

XX =X X0 = X5 X3 = Xg X5,
X3 N = X X3 = V7 Xy = Xy X7,

X3 X)) = X Xy = Xy X5,

An epimorphism from m (k;—11) onto S1.{2,23) (essentially due to Riley
[R1, p. 609]) can be defined by sending x| and x; to (10 ’I) and x;to (g% ?)

and there is an epimorphism from  (k: 11} onto the alternating group A,
sending x, to (23576), v, 1o {36574) and x; to (12654). The last epimorphism
was found using the program CAYLEY {We thank Gerardo Raggi for help
with CAYLEY). Hence m; (9, = 11) is not cyclic.

Therefore, if m) (k;p/q) is cyclic, g # 0 and & is a nontrivial knot with less
than 10 crossings then &4 is a torus knot.
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