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ABSTRACT. We study contact normal submanifolds and contact generic normal
submanifolds in Kenmotsu manifolds and in Kenmotsu space forms. Submanifolds
mentioned above with certain conditions in Kenmotsu space forms are shown that
they are CR-maniflolds, spaces of constant curvature, locally symmetric and Einstein-
nian. Also, the non-existence of totally umbilicial submanifolds in a Kenmotsu space
form—1 is proven under a certain condition.

0. INTRODUCTION

The differential geometry of CR or semi-invariant submanifolds in
Riemannian manifolds such as Kachlerian (including Hermitian), Sasakian,
product Riemannian and locally product Riemannian manifolds have been
studied by many geomelters (concerning the above, see [1] and [10]) Also,
Quaternion CR sub-manifolds of quaternion manifolds and QR-submanifolds
of quaternion Kaehlerian manifolds have been studied ([1]). We studied
symmetric twofold CR-submanifolds in a Euclidean space R** which is a
special quaternion Kaehlerian manifold with global Kaehlerian guaternion
structure ([6]). Also we studied semi-invariant sub-manifolds in K-manifolds,
S-manifolds and T-manifolds ([5]), [7]).

On the other hand, Kenmotsu studied a class of almost contact
Riemannian manifolds ([3]). The almost contact Riemannian manifolds
which belong to the class mentioned above are nowadays called Kenmotsu

manifolds ([2]), [4]). [8]).
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Examples of them were given in [3] and [8] which we state in the
following: let N be a Kaehier manifold and- fTR—R béa iunctmn defined bv
f(t)=ce', where c€R. ¢2»0. Then the warped product M_R><,N Is a
Kenmotsu manifold.

- . ot

We studied submanifolds in Kenmotsu manifolds whose structure vector
field & is tangent to the submanifolds ({4]). Papaghiiuc studied submanifolds
in Kenmotsu manifolds whose structure vector field € is tangent to the
submanifolds and normal to them extensively ([8]). - Fhus, it is natural to
study them further.

The purpose of the present paper is to study, what we call, contact normal
submanifolds . and contact generic normal submanifolds in Kenmotsu
manifolds and mainly those in Kenmotsu space forms (the notion of
Kenmotsu space forms is the one which is analogous to Sasakian space forms
in Sasakian geomeiry and the notion of contact normal submanifolds
corresponds to that 0f§~-submdnif0lds in [8]). One of the typical examples of
Kenmotsu space lorm ¢, M{c), is the hypcrbahc space of canstant curva-
ture—l(when(——l) : :

In Section |, we survey the fundamental properties of Kenmotsu
manilolds, give the fundamental formulas of submanifolds when the ambient
manifolds are Kenmotsu space {orms and definitions of contact normal and
comntact generic normal submanifolds in Kenmotsu manifolds and finally siate
the result which was obtained in [8] for later use.

In Section 2, we treat totally umbilical contact normal submanifolds and
point out thatthey are extrinsic.spheres (totally umbihical submanifolds with
parallel mean curvature vecior) if dim. D> [ (for the definition of . IDL, see
Section ). Also we prove the non-existence of totally umbilical contact
normal submanifolds with dim. D+> | immersed in- M. (¢) with ¢ — | and
that the submanifolds with the same conditions mentioned above are CR-
manifolds (for CR-manifolds, see [1]).

in Section 3, we (treat.contact normal submanifolds of codimension 2
mainly in M(c) We prove that if M is a contact normal submanifold of
codimension 2 in A (¢) and if either the second (undamental form:is paralle]
or the mean curvature vector field 1s parallel, then ¢= —1 or M is anti-
invariant and that M is locally symmetric. And we also prove that if Misa
totally umbilical contact normal submanifold in M {c);.then M is a space of
constant curvature if A is proper (the assumption that dim.D>1 is
excluded, cf. [8]). .

In the final Section 4, we treat contact generic normal submanilolds and
contact generic normal products mainly in M (¢). Several results concerning
contact generic normal products-such as the integrability conditions of the
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distributions induced on the submanifold. propertics ol leaves of them and
properties of the canonically induced structures on M elc are obtained. At the
end of this section, we treat hypersurfaces in Kenmotsu manifolds whose
structurc vector field is normal to the hypersurfaces. Main results in this case
are that (1) il a hypersurface M normal to the structure vector {icld £ is in
M(c), then M is locally symmetric. (2) M is flat if and only if c= — | and (3)
it M s in M (¢) with ¢ — 1, then M 1s Emnsteinnian.

1. PRELIMINARES

Let M =M+ be a (2m-+ l)-dimensional almost contact metric
manifold with structure (¢. &, n,<<,>), where ¢ is a (1, |) type tensor fields,
£is a vector field, 7 is a 1-form and <, >> is the associated Riemannian metric
on M. Then, by delinition ([9]), we have

(LY P=—Itn@&fn(f)=1.6{=0.n0¢=0,
(1) <X, oV>=<X, V>—n(X)n(N), n(N)=<X, &>,
where | 1s the identy tensor field and X. Yarc vector fields in M . Let M be an

n-dimensional isometrically immersed submanifold in M. Let T(M} and
T(M}* be the tangent bundle and normal bundle of A respectively.

Definition 1. M iscalled 1o be a contact normal submanifold in M if the
structure vecior field & is normal 10 M and if there exists a differentiable
distribution D on M such that '

(13)  T(M)=D@ D, ¢D=D. $D-CT(M)-,

where DL is the complementary distribution of D in T(M).
L f . L

_ Definition 2. M is called to be a contact generic normal submanifold in
M if the structure vector field & is normal 10 M and

(14)  S(T(M)MC T(M),

holds.

Definition 3. A contact normal submanifold M is called ¢—invariant
(resp. anti-invariant) if DY =0 (resp. D=10).
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We call a contact normal submanifold M is proper if it neither ¢—inva-
riant (DL =10) nor anti-invanant (D =0).

Now, we recall that M is called a Kenmotsu manifold if
(1.5) (Vi V=<oX. F>¢+ n(P)eX, Vo= X—n(Xe,
where ¥ is the covariant differentiation on M.

Now, the formulas of Gauss and Weingarten are given respectively by
(1.6) 9, Y=V,Y+B(X Y)
(1.7 . Uy N=—A,X+VLN,
where V is the Riemannian connection determined by the induced metric
<,> on the submanifold M, Y+ is the metric connection on T (M }* and both
B and A are called the second fundamental tensors (or forms) satisfying
<B(X Y) N>=<A4yX, Y>>, X, Y being tangent vector fields to M and N
being a normal vector field to M.

The mean curvature vector field H is defined by

(18)  H=-trace B
n

M s called minimal if H=20, rorally umbilical it B(X, ¥)=<X, Y>H
and totally geodesic if B=10 identically. And, the mean curvature vector field
H is called parallel if Vi H=0. Let R(resp. R} be the curvature tensor of
M (resp. M). Then the equations of Gauss, Weingarten and Ricci are given
respectively by

(1.9 <RX. V)2 W>=<R(X,V}Z W>—
< B(X, W), B(Y,Z)>+< R(Y, W), B(X Z)>,

(1.10)  (R(X. ¥)2)=(VxB)(Y, Z)— (Vv BI(X. 2),

(1.11)  <R(X, YN N>=<R X, VINN>—<[Ay, Ay] X, Y>>,

~ where (R (X, Y)Z)" in (1.10) is the normal component of ﬁ(X, Y)Z, and where
(1.12) (VxBi(Y,Z)=VLB(Y, Z)— BNy Y. Z)-B(Y.V, Z)

(L13)  RE(X Y)=V 9=V 05— Vi,

(1.14) [Av Av]=Ax Ay — Ay Ay,
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N and N’ being normal vector fields to M. The second fundamental tensor B
is called parallel i{ Vy B=0 identically. And, if R*=0 identically, then we say
that the normal connection of M is flat (or trivial).

Now, we recall that if M is a Kermotsu space form ¢, then the curvature
tensor of A7 has the form

(1.15) 4R(X, V) Z=(c—3<Y,Z>X—-<X,Z>V+
e+ DIn(X)n(Z)Y —n(Y)n(D) X
+a(V)<X,Z>E—n(X)<V,Z>(+< X 0Z>¢ 7 —
LV @7 >R 2< K o7 > 7).

We denote a Kenmotsu space form_c¢ by M({c). Then. if the ambient
manifold is a Kfnmotsu space form M(c¢) and M i1s a contact normal
submanifold in M(¢), from (1.9), {1.10), (1.11) and (1.15) we have

(1.16) <R(X, Y>Z W>:Il(c—3)(<Y,Z><X, W>—< X, Z><Y, W>)
+7"((-+ DX, pZ><dY, W —<Y,pZ><dpX, W>+
+2C X GY><HZ W)

+<B(X, W), B(Y,Z)>—<B(Y. W), B(X, Z)>,

117 @ B(Y. D =Ty BX. D)=L+ D{<X, 62> (& 1)
—L Y, pZ> (X)) 2< X Y (P2) ],

(1L18) < RLX, NN, N'> :~4]—(c'+ (<X, GN><PY, N'>—
—<Y, ¢pN>TpX, N'>)
+<[Ap Ax1X, Y>>,

where (¢ ¥)* in (1.17) denotes the normal component of ¢ ¥, etc.

Now, we recall that M is called a CR- manifold if there exist a
dlfferentlable distribution D on M and an endomorphism J such that
JAf=—1on D, IV J] (X. Y) 0 and [JX,JY]—[X, YI€eD) (X, YED){J, J}
being the Nuenhms tensor of J(see [1]).

The following result 1s used later.
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Proposition A([8]). Ler M be a comtact normal submanifold in a
Kenmaotsu manifold. Then we have

(a) A X=—X, (b) V:£(=0. (c) <H.{>=—1, (d) M is never mini-
mal,

(e} M is rotally umbilical if and onlv if B(X, Y)=—<X, Y= § provided
that dim. D> 1.

2. TOTALLY UMBILICAL CONTACT NORMAL SUBMANIFOLDS
AND EXTRINSIC SPHERES IN KENMOTSU MANIFOLDS

Let M be a proper contact normal submanifeld in a Kenmotsu manifeld
and let Ny=¢ Ny .., N.(r=2m+1—n) be the orthonormal vector fields
normal to M. Then the second fundamental tensor B is expressed by

Q.1)  B(X Yj:ﬁ]<Aj,\’, Y>N=—<X, Y>.f+i)<A_,X, Y> N,
i= =2
where we put Af:Ai\-i. Then the mean curvature vector ficld H is given by
(2.2) HZI—I? trace 3:54—22 (trace A;) N,
And, the length || H|} of H is given by
23 |H|I2=1 +i2 (trace A
=

Now, from Prloposition A, (2.1) and (2.3) we immediately have

Proposition 2.1 Let M be a proper contact normal submanifold with
dim. D->1 in a Kenmotsu manifold M. Then M is totally umbilical in M if
and only if

(2.4) Aj={trace Al (j=2,....7).

Proposition 2.2. A totally umbilical proper contact normal submanifold
in @ Kenmoisu manifold is necessarily an extrinsic sphere provided that
dim. D+>> 1. E -

Theorem 2.3. There exist no proper totally umbilical contact normal
submanifolds in a Kenmotsu space form M(c) with o — 1 if dim. D' > 1.
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Proof. If A is totally umbilical with dim. D+> 1, we have B(X, ¥)=
=<X, Y>H=-<X, Y>¢ by Proposition A Also since ViE=0 by

Propositions A, we have (Vy 8) (¥, Z)=0 and hence from (1.17) with Z= X,
we have

ozi((-+|)< X bY> (X

from which we must have e = —1 because M is neither ¢-invariant nor anti-
invariant, completing the proof.

Lemma 2.4. Let M be a contact normal ¢-invariant submanifold of
codimension r>2 in a Kenmortsu manifold. Then

2.5) (@) UydpV=¢V VY (e=2Viod=0),
T ) B(X. V) —bB(X, Y)=< X, Y>¢

holds.

Proof. Using the first equation of (1.4), we have
(Vi) Y=<oX, Y>E—n(Y)oX=<¢X, Y>¢
On the othe% hand. we have
Fvd) Y=V, 0Y— ¢V, Y=V, @Y+ B(X, ¢ Y)— ¢V Y —dB(X. ¥)

Since M is ¢-invariant, we see that ¢ B (X, Y)e T (M)"'. Thus, comparing the
above two equations and taking the tangent and normal parts respectively, we
have our assertion, completing the proof.

Theorem 2.5. Let M be a contact normal rotallv umbilical submanifold
with dim. DY>> 1 in a Kenmortsu manifold. Then M is a CR-manifold with
CR-structure (¢, D).

Proof. This follows (rom Lemma 2.4 and the definition of CR-
manifolds.

Remark. The assumption that the codimension r>>2 in Lemma 2.4 is
essential because there exist no contact normal ¢-invarinat submanifolds of
codimension 2 in Kenmotsu manifolds (see Theorem 3.5 in the next section).
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3. CONTACT NORMAL SUBMANIFOLDS
OF CODIMENSION 2 IN KENMOTSU MANIFOLDS

Let M be a submanifold of codimension 2 in a Kenmotsu manifold M.
Since M 1s of cadimension 2, we may put

(3.1 B(X. Y)=<{AX. YN+ <A. X, YN,
where N and N’ are orthonormal vector fields normal to M.

From (1.16) — (1.18) and (3.1), the equations of Gauss, Codazzi and Ricci
are given respectively by

(3.2) <R(X,NZ W>=<R(X, Y)Z W>—<B(X, W), B(Y. Z)>+
+< B(Y, W), B(X, Z)>

=<RX, V)Z W —<AX W><AyY 22>~
- <AN’X, W><AN' Y, Z>

T<LANY, WA, 72+ <Ay Y. W <Ay X, 2>,
(3.3) (R(X. V)ZPr=FB)(Y. Z)—(V, B)(X. 7)

=AY, ZSVN—<ANX, Z>VEN+ <Ay Y, Z>VEN —
— <Ay X, Z>VEN

F (S (VA Y. 7 —<(Vy AV X, 2>+ <AgL ¥, 2>
— <Ay X, Z>)N

(T Ay Y, 2> =< (Vy A X, >+ < Agivy, 2> -
—<AgivX, Z>)N’
(3.4) <R(X,. YN N>=<RYUX, NN N>-<[Ap Ay]X. Y>>,
where (Uy )Y =WyApY—Agiey — 4,V Y. 1t is seen that VyB=0¢>
(VyA)a=0.

Now, if the ambient Kenmotsu manifold M is a Kenmotsu space form
¢, then from (1.16)—(1.18) and (3.1)—{3.4) we have

(3.5) <R(X.Y)Z W>:%(c—w3)(< Y, Z><X, W>—
X, ISV, ZSY, W)
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+7‘|:-(c'+ N X, GZ><PY, W> <V, pZ><pX, W>+
2L K, QY S<HZ, W)

<A, WSCALY, I+ <Ay X, WS <A ¥, T —
— <Ay Y, WS<ALX. 7>

— <A Y, W< AN X, T

(3.6) ALY, Z>VsN—<AWX, Z>ViN+ <Ay ¥, Z>VN' —
— <Ay X, Z>UEN’
+(<(V\'A);\’K Z>_<(V)A)A' X, Z>+<AV:\ Y, Z>—

CAgh X, Z>)N

+(<(V5‘A)N'Y,Z>—<(V}A)N'X, Z>+<AV(-\ Y.Z>_

<Agiv X, Z>)N'

=4i(c+ DX, $Z> (N =< Y, dZ>($X)-+2< X, b ¥ > (7).
(3.7) <R=(X, )N, N'>=Z'(c+1)(<x.¢1v><¢y, N>

— LV GNSLHX, N'>) +<[ Ay, A ] X, Y>>,

Hereaftier we take £ and £ as unit orthonormal normal vector fields to M.
We [irst note that -

(3.8) (VyA); Y=V A Y—Agle Y — A,V Y ==V, Y+ Uy ¥Y=0
by virtue of Proposition A. Now, differentiating <Z£, { 2> =10 covariantly, we

have <, V+{> =0 because ofVif 0. Since we easily see that <V3{,{>=0,
we have

Lemma 3.1. [ is parallel in the normal bundle T(M)-.

Hereafter we assume that M is a contact normal submanifold of
codimension 2 with dim.D+>1 in a Kenmotsu manifold and put A=A,
Then the second fundamental form B is expressed by
(39) BX.Y)=<A; X, Y2 E(+<TAXN Y2 =—<X, Y>¢(+TAX YL

Then, taking account of V1£=VL{=0 and using (3.9), we have

(7, B)(X, Y)=VEB(X, Y)— B(V, X, Y)— B(X,V; V)
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= (<X Y X Y2 EH (VA X Y+
CAVGX, YSEF<AX, Y, Y>>
<X Y E— <AV X, Y EH<X, O, Y E—
AN, Y=< (VA X, Y>L

Therefore, by (3.8) and the above identity, we have

Lemma 3.2. The second fundamenial form B is parallel if and only if

Now, the mean curvature vector field # is given by

Zm—1
trace B= — S | <e, 0> b+< Ae, e, >}

m—1 2m—1 2

(3.10) H=

=—§¢+ (trace A) (L,

[
2m—I1
where {e;} is an orthonormal basc of 7'¢A). Then from (3.10) we have

3.1 ||H|IP=<H, H>=l+(Tnl.T)2 (trace A)%

Therelore, from (3.10) and (3.11), we have

Lemma 3.3, The following conditions are mutually equivalent:

(3.12) (a) trace A=0, (b) H=—¢, (c)||H| =L

Remark 1. [ M is otally umbilical then we have (3.12).

Now, differentiating (3.10) covariantly, taking account of V3 {=V+{=0
and Proposition 4, we have

|

2m-—1

(313) (@ AX=X+ (trace VyA){

1 1
F wH=
—1 {(trace AYAX, (b)V‘ \

Therefore, from Lemma 3.2 and (3.13), we have
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Lemma 3.4. The following conditions are mutualty equivalen::
(3.14) (a) B is parallel, (b) H is parallel, {(c) VyA=0.
We are now in a position to prove the non-existence of contact ¢-in-

variant normal submanifolds in Kenmotsu manifolds. We have

Theorem 3.5. There exisi no contact ¢-invariant normal submanifolds
of codimension 2 in a Kenmotsu manifold.

Proof. It is clear that ¢p{e T(M) because of <l E>=<PL, {>=0.
Assume that M is a contact @¢-invariant normal submanifold. Then, for
XeT(M), we have <&, X>=—<{, p X>=0, which implies ¢ {=0. Hence
we have { =1, which is a contradiction.

Hereafter we confing our submanifold M to be a contact normal
submanifold of codimension 2 in a Kenmotsu space form M {c). Then, putting
N=~Fand N'={1n (3.5)—(3.7), we have
3.15) <R(X.Y)Z W>=El(c'+l){< VLZ><X, W>—<X,Z><Y, W>}

F <X, TSP Y, W>— <Y, pZ><pX. W>+
+2CX, GY><HZ W)

F<AX, WS<AY, Z>—<AY, WS<AX, 7>,
C(316) (KT A) Y, Z>—< (T AV X, Z>)1

=3"—(c+ S X, $Z> (V) —< ¥, $Z> (3 X) +
F2<X, G V> (7

(3.17) < R~(X, NE =0,

because of V=V {=0,A4; X=— X and [Ag A;]=0.

Remark. We see from (3.17) that the normal connection ol M is {lat,

Also, we have

Theorem 3.6. Let M be a contact normal submanifold of codimension 2.
in g Kenmotsu space form Mc). If the second fundamental tensor B is
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parallel or the mean curvature vecior field H is parallel or Vx A =0, then
c=—1 or M is an anti-invarianr submanifold.

Proof. By assumption and Lemma 3.4, the left handside of (3.16)
vanishes. Since ¢ { is a tangent vector field to M, putting Z=¢ { in the right
handside of (3.16) we have

R.H.S. of (3.16) :4i((-+ X, 2> (D) —< Y, 2> (dX) -+
+2< X, V> (820)*)

=4i(('+ D{—<X.I[>(@N++<Y. > (X)L —
<X, bV
:—zl(c+!)<x,¢y>g,

from which we see that ¢==—1 or M is an anti-invariant submanifold,
completing the proof.

Theorem 3.7.  Let M be a contact normal submanifold of codimension 2
in a Kenmotsu space form M(c). If the second fundamental tensor B is
parallel or the mean curvature vector field H is parallel or Vy A =0, then M
is focally symmerric.

-

Proof. By assumption and Theorem 3.7, from {3.15) if ¢ =—1, we have
RX.Y)Z=<AY, Z>AX—<AX, Z>A4Y.
Thus, taking account of Vi{=0, we have

(VeRIX NZ=VWRX, NZ—RVy X. NZ—R(X.VyNZ—
—R(X, NV, Z

=V <SAY, Z2AX—<AX, Z>AY)—<AY, Z> AV, X+
+<AVX. Z>AY -

LAV Y, ZDAX+<AX, 2> AV Y —<AY.VyZ> AX+
+<AX,VyZ>AY

= (VA Y Z2AX+<AV VL Z2AX+<AY.Vy Z>AX+
+<CAY, Z> AV, X
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VYAV K, ZDAY <AV X, Z>AY - <AX V7> AY —
—<AX, Z>(UyA) Y

—CAX, Z> AV Y —<<AY, Z5 AV X +<AVy X, Z>AY

AV Y. ZDAXFCAX, IS AV Y —<AY, U Z>AX -
—<AX, Ty Z>AY=0,

which shows that M is locally symmetric. In case when M is an anti-invariant
submanifold, then (3.15) becomes to

R(X, wz:%(w DR (X, V)I+<AY,Z>AX—<AX Z>AY,

where we put R(X, NZ=(XANZLZ=<Y, Z>X—-<X,Z>Y. It is easily
seen that ¥y R"=0. Therefore, we see that in this case we have Vy R=0,
completing the proof.

As a corollary of Theorem 3.6, we have

Theorem 3.8. Let M be a contact normal submanifold of codimension 2
in a Kenmotsu space form M) with ¢s5—1. If the second fundamental
tensor B is parallel or the mean curvature vector field H is parallel or
Vi A =0, then M is an anti-invariant submanifold and the Ricci tensor S and
the scalar curvature s are given respectively by

(3.18) S(X, Y):—é (m—D(c+ D<X, ¥Y>+(trace A)<AX, ¥>—
CAX, AY>,

(3.19) szé (m—1)(2m—1)(c+ 1) +(trace AY — trace A2

Finally, for totally umbilical submanifolds of codimension 2 in A';?(c), we
have

Theorem 3.9. Let M be a proper totally umbilical contact normal
submanifold of codimension 2 in a Kenmotsu space form M(c). Then M isa

space of constant curvature £ (¢+ 1) if dim. D+>> | and a space of constant
curvature ~1 if dim. D= 1. '

Proof. We first assume that dim. D*>>1. Then we have 4 =0 and hence
VyA=0. Thus we see that M 1s anti-invariant by virtue of Theorem 3.6. Thus

from (3.15) we see that M is a space of constant curvature L(c-!— 1). Next we
assume that dim. D*=1. Then we see that D" ={¢{}. Calculating ﬁxqbg in
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two ways by using (1.5), (1.6) and {1.7) we have Vi @¢l+ B{X. ¢ )= —¢dpAX.
where Xe D. Since M 15 1otally umbilical, B(X Y)=<X.YZ>H=<X.Y>
=&+ T

B(X, qu)-—() and whence we have v,\-’(;»g: — ¢ AX. Then we have

(lrace A)¢). Putting Y=¢ in the above t,quatlon. we have

@ BHX. 4D =(V:B)(X. 1) B(V. X, 60— B(X. %.60)
— CUX G —<X, v:¢g>§+ﬁ <T X, pL> (trace A)L

+2——I<X V. q&() {trace A)§+—< N, dpI > {(Ztrace AVL
ni—

=0.

'l;hus, from (3.3). (3.6) with Z=¢{ ;1nd taking account of the above
identity, we have %(('-i- 1< X, ¢p¥Y>=0, from which, since M is proper, we
see that M is a space of constant curvature — 1, completing the proof.

'Ren'lark If M with d1m D+>1 s in M (—1), then we see from (3.15)
dlrectly that M is flat. Also we see that there exist no totally umbilical
contact normal submanifolds with dim. D=1 in M(c) with ¢7#—1.

4. CONTACT GENERIC NORMAL SUBMANIFOLDS IN
KENMOTSU MANIFOLDS

Let M be a contact generic normal submanifold (not a hypersurface so
that dim. D+>> I, where D1 =¢ 7'(M)*) in a Kenmotsu manifold. We denote
bv D the orthogonal complementary distribution of D+ in T(M) so that we
may put

(4.1) T(M)=DgD* (direct sum).
! Fbr a“vcct'o'r ‘field Y tangenl to M, we put
(42) ¢Y=PY+FY, |
where PY({resp. FY) is the tangent {resp. normal) part of ¢ Y. Then we have
(la) LPY. X>=—-<PX, Y> (b) PPY=—Y+&F Y {c) FPY=0,

(4.3)
(b) POT(MML=1{0}, (e) P Y+ PY=0.
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(¢) is obtained by applying P to both handsides of {(b) and taking account of
{d). Condition (¢) shows that the P is an f-structure on M (see, [1] or [1C]).

The following lemma is valid {(see [8]):
Lemma 4.1. Let M be a contact generic normal submanifold of a
Kenmotsu manifold M. Then we have
fa) AgyY=AuvX for X, YEDL (b) D* is always integrable,
(4.4) (c) Disintegrable if and only if B(X, ¢ V) — B(¢X, )=2<¢X, Y >¢,

(dy M is rorally umbilical if and only if B(X, Y)= —<X, Y>> for
vecior fields X, Y tangent to M provided that dim. D+~>>].

Now we have
Theorem 4.2, [f the disiribution D is integrable, then the leaves of Dare
totally geodesic in M if and only if
(4.5) B(X.oV)=<PX, Y>¢ for¥YX YeD.
Proof). For Z=dN(N& T(M)+), we have
U Y, Z>=<U Y, NS> = —<¥, Uy gN>= — <V, (Vi p) N+ Uy N>
=LY, <PX N E~n(N) X — PpA X T dVEN>
=<V, pXSn(N)+<Y, PAyX> <Y, V= N>
=Y, PX>n(N)—<B(PY, X), N>
=Y, PX>EN>—<B(PY, X), N>
=Y, PX>E(—B(PY X), N>,
from which we see that the leaves of D are totally geodesic in M if and only
if (4.5) holds.
Theorem 4.3.  The leaves of the distribution D' are torally geodesic in M
if and only if

(4.6) <B(D, DY, ¢D*>={0}.
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Proof. Let Z=¢N, W=¢N (N. N'e T(M}") and X<D. Denote by B’
the second fundamental form of a maximal integral submanifold M+ of D+
in M. Then we have

<B(Z, X), WS> =<V X, pW>= — <X,V p W>=
= —<X, (V) W oV, >

=— <X, <$pZ W>E— (W) PZ+ ¢V, W+ dB(Z. W)>
=— <X, ¢V, W =<dpX. V; W>=<¢X, B'(Z. W)>,

from which we see that the leaves of DL are totally geodesic in M if and only
if (4.6) holds.

We now put (Vy P) Y=V PY — PO Y and (Vy )Y =VL FY— FUyY. We
call P (resp. F) is parallel, if (Vy P) Y =10 (resp. (V. F) Y=0). We have

Lemma 4.4. The following relations hold:
(4.7) (WP)Y=A;y X+¢B(X, 1),
(4.8) (Vi F) Y= — B(X, PN+<PX, Y>¢

Proof. We have

VoY=V, PY+ 9, F¥=V, PY+ B(X, PY)— Apy X+VLFY
— (WP Y+ PO Y+ BX, P — Ay XH (O B Y+ FY Y.

On the other hand, using (1.5), we have

Ve Y=y ) Y+ oV, Y=<¢pX, Y>¢—n(N)@X+ ¢V Y+ SB(X. 1)
=<PX, Y+ PUY+ FULY+GB(X, Y).

Thereflore, comparing the above two equations and taking the tangent and
normal parts, we have (4.7) and (4.8) respectively.

Proposition 4.5, If Fis parallel, then the distribution D is integrable and
its leaves are totally geodesic in M.

Proof. Since F is parallel, from (4.8), we have B(X, PY)=<PX, ¥Y>¢
for¥X, YebD> and hence we have B(X, PY)— B(Y PX}=<PX, Y>§{—
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<PY, X>§=2<PX, ¥Y>¢, which shows that D is integrable and its leaves
are totally geodesic in Af by virtue of (c) of (4.4) and Theorem 4.2, which
completes the proof.

" Lemma 4.6. The S-structure Pis paratlel if and only if

(4.9) <B(D.D), $D+>=1{0} and < B(D, D+), $D*>={0}.

Proof. Foratangent vector field U to M, making an inner product from
this with (4.7), we have

(WP Y US=<A; X, U>—<B(X, Y), 6 U>.
Thus, if we put U= WeD*, then we have

(WP Y, WI=<Apy X, W>—<B(X, V), pW>.

:<AFY W, X>—<A,r.'w Y, X>=<Apy W7A1~'W Y, X>=0
by virtue of (a) of (4.4). And, il we put U= V&D, then we have

WP Y VD=<Apy X, V>—<B(X, ¥), V>

—<App X, V>—<B(X. V), FY>=<B(X, V), pY>.

Since X is a tangent vector field to M, we see that P 1s parallel if and only if
{4.9) holds, which completes the proof,

Corollary 4.7.  If the f-structure P is parallel, then the leaves of D* are
totally geodesic in M.

Corollary 4.8. If both P and F are paralle!, then D is integrable and the
leaves of borth D and DY are totally geodesic in M.

Definition. M is called to be a contact generic normal product if D is
integrable and M is locally a Riemannian product of an invariant sub-
manifold M and an anti-invariant submanifold M+, where M (resp. ML) is
a leaf of D (resp. D).
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Theorem 4.9.  The following statemernis are mutually equivalents.
(a) M is a contact generic normal product.

(4.10) (b) B(X. ¢V =<X, Y>Eand Ap,Y=0for¥ X, YED and Z& D+,
(©) B(X.d V)=<oX.Y>tand B(X, Z)=0for¥ X, YeD and ZED*.

Proof. Assumc that (a) holds. Then we have

B(X.¢Y)— B¢ X N=<o¢X, YE— <Y X>E=2<pX, Y>¢,
from which we see that D is integrable and its leaves are totally geodesic in M
by virtue of {¢) of (4.4) and Theorem 4.2, Moreover, making an inner product
with W&D~-in Ap, Y=0, we have

C=<Ap; Y W>=<B(Y W) FZ>=<B(Y, W), $Z>,
that is, <<RB(D,D~), ¢ D+>=1{0}, which shows that the leaves of D' are
totally geodesic in M by virtue of Theorem 4.3. Thus M is a contact generic
normal product. Conversely, assume that M is a contact generic normal
product. Then we have Vy X€D and VYV, ZeD* for XD, Z€D-* and
UeT(M} Pulting ¥=7Ze D+ and X=U in (4.7), wc have

Ny PYZ=y PZ— PV, Z=Ar Ut $B(U, Z),
from which we have

(*) AFZU: _d’B(U’ Z)'

because of PZ=0 and V;Z= DL Then, making an inncr product from this
with ¢ Y (Ve D), we have

LAp U, p Y > =—<opB(U. 2, dY> = —<B(U,Z), Y>+n(B(U Z))n(Y)
={.

Putting Z=¢N (N T(M)*) in the above equation, we have

0=<Ap, U, dY>=<B(U, oY), FZ>=<B(U.¢pY). 2 N>=
LB(U,GY), —N+n(N)E>

=—<B(U, Y N>+n(N)<B(U ¢Y)E>

=< BU GY)N>—n(N)< U V>
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=—<B(U,dY) N>—<EN><U V>
=—<BU.GY)+<U, ¢ Y>E N>,

from which we have

(¥¥)  B(U.oYV) = —<U dpY>é=<olU, Y>E

Setting U= X€D in the above equation, we have B(X. ¢ ¥)=<o X, Y>¢.
Replacing ¥ by ¢ ¥ in this equation, we have BfX, ¥)=<X, Y>¢£. Thus we
have.
(FH®y LA X, Y=< B(X, Y) FI>=<B(Y, Y). ¢ >=

=X, Y2 EZ>=<X, Y <E pZ > =)

Also, setting U=Z€& D+ in (**), we have B(Z. ¢ ¥)=0. Then, replacing ¥
by ¢ Y in this equation, we have B(Z, ¥)=0. Therefore, for WeD* we have
LApp Y Wo=<Y Ap,W>=<Y, AppZ>=<B(Y, Z), FW>=0. This,
together with (¥**), implies A;,Y=0. Finally, to show A,,X=0

= B(X.Z}=0, we look back at (*) and put U=X€lL Then we have
0=A;,X=—-¢B(X, Z). Applying ¢ to 0=0¢B(X, Z). we have

0=¢*B(X. Z)=—B(X. Z)+ n(B(X. Z)})§=— B(X. Z}+<B(X, Z),§> ¢

=—B(X, Z)+<X.Z>f=—B(X. 7).

Thus, (a) &» (b) is established, which completes the proof,

Remark. A contact generic normal submanifold with parallel P and F is
a contact generic normal product (Cor. 4.8).

Proposition 4.10. A rotally umbilical proper contact generic normal
submanifold in a Kenmotsu manifold is a contact generic normal product if
dim. D->> 1.

Proof. Since M is totally umbilical, we have B{X, ¥Yj=—<X, Y> ¢
Then we have B(X. ¢Y)=—<X. VY>> ¢(=<¢X, Y>¢& Moreover, for a
tangent vector field U/ to M we have

LApy X UZ=<B(X, U) FZ>=<—<X, U>{dZ>—
—< X V><EpZ>=0.

Whence, by Theorem 4.9, we see that M is a contact generic normal product.
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Theorem 4.11.  Let M be a proper contact generic normal product in a
Kenmotsu space form M(c). Then c=—1. and

(4.11) <R(X. VIZ W>= (<Y, Z><X, W>—<X, Z><Y, W>)+
+<B(X, W), B(Y,Z)>

— < B(Y, W), B(X. Z)>,

(4.12) S(X, Y)=-(n-D<X, ¥Y>+n<B(X, ¥). H>—
S <B(X.e). B(Y.e)>,
=1

(4.13) s=—(n—Dn+n2<H H>-3 || Ble,e) ™

ii=1

where {e;} is an orthonormal basis of T(M).

Proof. Since M is a contact generic normal product we have (Vi B)
(Y. Z)=0for X, YED and 7€ D+ by virtue of Theorem 4.9. Therefore, (2.21)

reduces to %(('-F <X, PY>FZ=0. Replacing Y by PX in the above
equation, we have (c+ 1){| X||?FZ=0, from which, since M is proper, we

have ¢ = —1. Then (4.11)—(4.13) follow from (1.16) with ¢ =—1, completing
the proof,

As for the normal connection of M. we have

Proposition 4.12. Let M be a contact generic normal product in a
Kenmotsu space form M(c). Then ¢ =—1 and the normal connection of M is
Sflat if and only if Weingarten maps are commuative, i.e., [Ay, Ay]=0.

Proof. This follows [rom Theorem 4.9 and (1.18).

Theorem 4.13. Ler M be a 1otally umbilical proper contact generic
normal product with dim. D*>1 in a Kenmotsu space form M(c). Then M
is flat.

Proof. By assumption, we have B(X, Y}=-—<(X, ¥Y>¢{, so that substi-
tuting this into (4,11} of Theorem 4.11, we have R=0, which means that M
1s flat.
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Hereafter let M be an orientable hypersurface in a Kenmotsu manifold A
whose structure vector field € is normal to M. It is easily see that H=—¢,
because M is a hypersurlace. First, we have

Theorem 4.14. Let M be a hypersurface in a Kenmorsu manifold M
whose structure vector field £ es normal to M. Then M is an extrinsic sphere,
that is, M is totally umbilical and the mean curvature vector field H is
parallel.

Proof. Differentiating / =— £covariantly with respect to a tangent
vector field X, we have

ﬁ\'H:“"‘HX*‘V}H:—§\-§=A§X—V;§,

from which, comparing the tangent and normal parts and taking account of
A X=—X and V;£{=0, we have A, X=X and V: H=0. Thus, M is an
extrinsic sphere, completing the proof.

Theorem 4.15.  Let M be a hypersurface in a Kenmotsu space form M(c)
whose structure vector field € is normal to M, Then we have

(4.14) R(X. Y)Z:?I (c+F<Y.Z>X—<X. Z>Y+<X, ¢pZ> YV —
—< Y, QLS PX+2LX, Y > SZ Y,

(4.15) S(X, )’)2%((%~ D{m+1H<<X, Y>>,

(4.16) s={ct+Dym(m+1).

Proof. Since M is totally umbilical by Theorem 4.14, substituting
B(X, ¥Y)=<X, Y>H into (1.16) and taking account of <H, H>=1, we
obtain (4.14) directly.

Theorem 4.16. Let M be a hypersurface in a Kenmotsu space form M {c)
whose structure vector field £ is normal 1o M. Then M is locally symetric.

Proof. Since (ViR (X, NZ=VyR(X,. Y)Z—~ RNuwX, Y)Z—
R{X.VywY)Z— R(X, Y)VuZ, by direct calculations, we have
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(VuR) (X, ) 2‘:7‘( (c+ DIKX, (T P) 2> PY =< Y, (UyP) 2> PX+
+<X, PZ>(VyP) Y :
— <Y, PTS (VD) X2 X, (T P) Y>> PZ+2< X, PY> (Vo P) 7}
' :4l(;_-+ DS X dB(W, Z)> PY—< Y. $B(W, Z)> PX
' +<X, PE>GB(W, ¥)—< ¥, PZ>SB(W, X)
T2X, pB(W, Y)>PZ+2<< X PY>HR(W, Z)}
=0 (since ¢B(X, Y)=0, etc.),
which shows that M is locally symmetric, completing the proof,
Theorem 4.17.  Let M be a hvpersurface in ¢ Kenmoisu space form M (c) '

whose structure vector field € is normal 1o M. Then M is flar if and only if’
o= —1 or, equivalently, the scalar s of M is 0.

Proof. Il ¢=—1, then we have R=0 by (4.15). Conversely, we assume
that M is flat, R=0. Then, putting Z= X and ¥==¢X in (4.15), we have

0:7}(('+1){<¢>x, XX <X X>AX A <X, pX>p2Y —
—< X, XS PN+ 2< X, PLX> DX}
=—(ct ) X[[? dX
from which we have ¢= —1. And, ¢c=—le=s=0 15 trivial by (4.16),

completing the proof.

Coroliary 4.18. A hypersurface M in a Kenmoisu space form M(c) with
c#— [ whose structure vecror field £ is normal 10 M is Einsteinian.

Proof. This follows from (4.15).
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