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About ihe Existence of Integrable Solutions
of a Funetional-Integral Equation <“a

G. EMMANUELE

ABSTRACT. We improve (in sorne seose) a recent theorern due ro Banas aod Knap
([2]) ahout thc existeoce of integrable solutioos of a fuoctiooal-iotegral equation.

1. INTRODUCTION

Let l = [0,1] be. We consider the following functional-integral equation

x(Q=gW+f (¡. J k(t, s)xÚ,a(s))ds) r~ ¡

where ]‘: Ix R~~RL=[O,±oo),k: Ix1—R~, g: I—.R ~: I—I are functions
verifying special hypotheses (see section 2) aod we Iook-for solutions xE L1 (1).
As remarked in the paper [2] this equation has been considered by a number
of authors because of its importance in problems in physics, engineering ané
econornies; further, problems in the theory of partial differential equations
lead, sometimes, to the study of the equation (Y). Recently, Ranas ané Knap
([2]) gaye a result of existence of integrable solutions to(l). ‘rhey were forced
by the techniques used to consider certalo monotonicity assumptions on
g. f k (see hypotheses i). ji) ané iv) in [2]). that we are able to eliminate
completely here. However, we must observe that Banas ané Knap obtain a
monotone solution, a fact that doesn’t follow frorn our hypotheses. Prof
Ranas also observed that uoder our hypothcses we don’t need to use the
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measure of we’ak nonco mpactness he consideredin [2] because ihe operator
we defioe followiog [2] actually has a relaiivelv weakly compac range. So it
is eoough to apply. Tychonofl’ fixed point Tbeorem. ([5]). ‘Wé lake ibis
opportuoity to tbank blm verv much for ibis rernark tbat made our proof
símpler.

2. PRELIMINARIES ANÍ) MAIN RESULT

As in the paper [2] we define the following four operators

(KV (t) zz)’ 1< (t, s) x(s) ds

([lv) U) =f (r. x (Q)

(Hx) (t) = f (~. fi ti Ú ,s) x (s) cts)

x = A x = + lix (y) = g + FM (.

We consider dic followiog hypothescs

(1) gEL1 (1).

(II) f: Ix R —~-R1 sarisfies Caratheodary hvporhcscs (i.c.fis measurable with
rt>S¡)út’r to tel. fi>,’ allÁ-E 1< ant? c’ontinuous in xC R.jór aa. El) ant?
diere are a E 1. ¡ (1) h > 0 suc’h thai

j’(t.x)=a(t)+bIxI tEl, xER

(this last ioequality is a necessáry ané sufficient condition fól F, aod so II, to
takevalues in LI (1) when acting 00 elements of LI (1): see Theorem 1 lo [2])

(iii) ti verif ‘Íes Caratheodarí’ hí’poíheses ant? thcrc is RE LII) suc’h mhar

k(t,x)=X<’t) 1 att in L xER

(under (iii)the linear operator K maps LI (1) into U (1) continuously; lct us

denote by II KJ¡ its operator norm)
(iv) y: l—lis abso/urclv continuvus and diere exisis R>O such thai y’(t)=fi

j’oru.a. ¡El.

(y) bIJKI¡/B<I.
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The tcchnique used in [2] is thc following: under thc aboye assumptions A
is a wcakly continuous operator from a suitable B¶ into itself; furthermore
there exists Le [0,1] such that /3(A (Y))=Lf3(Y), (/3 the measure of weak
noncompactness introduced in [3]), for ah nonempty subscts Y of B~ ané
hence results from [1] aud [6] can be apphied to get a fixed point of the
operator x—g±FK«íp). Thc differcnce bctween Ihe rcsult in [2] and our
Theorem below resides in the technique wc use to obtain thc weak continuity
of A; indeed, Banas ané Knap consider sorne monotonicity hypotheses on
g, f ti we are able to dispense with. Further, wc do not makc use of the
measure of weak noncompactness introduced in [3] as remarked in dic
Introduction.

Theorem. Under ¡he assunzp¡ions 1)-y) ahoye dic equation [1] has al
least a so/abon xE LL (Y)

Proof. As in the paper [2] we can prove that A fi,— fis. where
s=(¡Ig¡¡±~¡a¡¡)/(I—bu K¡¡Bí). Furihermore. it Ls not difficult to see that the
set A (B~.) is relatively weakly compact ([5]), since it is boundcd and
uniformly integrable. Hence Tychonoff fixed point Theorem ([5]) wiII
conclude the proof once we have the weak continuity of A. So, we need only
to show that A is weakly continuous from B. into 13~, i.e. A maps wcakly
convergent nets(xa)c 8, into weakly convergent nets <A (xj). It Ls clearly
enough to show that H Ls weakly continuous. So let (.x

0), XíIC R~. be with
x0

12.x
0; if we prove that for any E>O, any y*EL~~(j) ¡¡y*¡¡ <1 and any

subnet (x,,) of (xc), there is another subnet (x ) for which 1< H(xq
—1-1(x0), y*> ¡<6 we are done (proceeding by contradiction, of course)<

To reach our target, we start by noting that the operator x— xGp) from
L

1 (1) into itself is bounded ané linear; hence it Ls weakly continucus ané so
x

0(g)’2i’.Xo(<,o) in L’ (1). Since fi, Ls bounded in L
1 (1), the set { x

0(4), xo«p)lis
even bounded in LI (1), by a number M. Now, given e>O choosc

8>0 such that meas (D) <8, 2 [a (Q-i- (¡>1] dr ~. Furthermore,bX < 2

choose a closed subsel I~ CI, meas (I\I~) <4~ with X¡~ continuous (use Lusin
Theorem, [4]) Q=rnax X. Againconsideraclosed subset 12c 1, meas (l\12)<
8 continuous (and so uniformly continuous) and a

__ xv~th ‘112Y[—QStQM]
closed subset 13C 1, meas (1\I3)<-~-. with ti1 continuous (aná so uniformly

continuous) (use Scorza-l)ragoni Theorem, [6]). Put 10=fl 1,. I~> isa closed
1=

subset of 1. Now, observe that, for 0, (‘E l~, if í/t0 (0=1 ti O. s)x0 ~p(s) ) ds.

ti (, s)x0(g(s))ds, one has
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1 =jItiOts)—tiO”s)lIx(YeP(s)) ‘/5

(the same is true for íJt0). Since ti is uniformíy continuous ané (x4C B~,
Kxí

dic set ~ ~‘oIis equicontinuous in Cíí(10). It Ls very easy te see that the same
set is beunded by QM in the norm of O’(I~j, hende the Ascoli-Arzeíá
1’heorem can be appíied to get a reíatively coffipact subset of C(10). The net
(Q ) admits a converging subnet (~Ú ). On thc otherhand, for le l~,

2 2,

(D=j ti(7.s)x<~(<1o(s))ds””~ ~‘oWZrjti (ts)xo4p(s))ds

since x<~«p)
1xo«p) in LI (1) and s—ti(7, s) is in L~(I). Hence ~‘,, — ~ in the

mt,
O —norm on le>. New, recalí that is uniformíy coñtinuous ané
se we have lííXI~Q.t/.Q4l]

hm /(í, 4i~, (í)) =J’(m, ~(m)) uniformly on I~ (2)
y It.,

¡ v~ U) [fU>t
2Q)) —fO’. O’) ) di

__ [Y(0 IIf(. (0) —fU> 4’ (r) ) di +

j ¡0(t) f’(r, 4’ah (0 ) f(” 4’~~ (¡) ) di =
u ‘1

¡¡‘(1, 44,í) ) —fU. 4i~(m) >1 dt ~f\I 2 [a(m)+bX (1)] di

New, recaíl that (2) is true and observe that

meas ~> l\l, 2
4

Hence the Iast member of the chain of inequalities written aboye is smaller
than e for y sufficicntly large. This is what we need to show that H is weakíy
continuous en B~ We are done.
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