
REVI StA NI AlEM AlICA de la
ti ni<etsidad Cs>>ttpla>ct>sc’ dc’ M>,drid
‘.‘o>tttllen 4 tlttmers, 1 >991

A Norn”zability Condiition on Local/y
Convex Spaces
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ABSTRAC’I’. In a previaus wark [II] we introduced a certain propery <y) an loeally
canvex spaees ‘and osed it to remaVe tlie assumption of separ’ability from the theorem
of Bellenat and DubinskV Qn dic existenee of nuclear Kdthe qootients af Fréehet
spaces. Our purpose is to examine conditian (e) further und relate it to sorne other
narmability conditions. Sanie of our results were alre’ady unnauneed im [l0~

1. PRELIMINAIRES

Qur termitíology and natution lar loeally eonvex spaces is quite standard
(cf. e.g. [5]). By U (E,) we always denote a base of neighbarhoods of a locally
convex space (les) E which cansists of absalutely convex aud elased
neighborhoods. Cansequently Ihe topology of a Fréehct space Fis defined by
a basic sequence of semínarms, te. an íncreasing sequence of serninorms
(II lA) such that the corresponding unit balís ~jA=1 xE E: lIx~IA=Ij form a
base of neighborhaads. A linear operatar T: E—. F is boundcd if 77(1,) is a
baunded subset of E lar sorne neighborhoad U. lii case every continuous
linear operator from a lcs E into a les Fis bounded, we write (E. fle B. A
complete eharaeterization of thase pairs of Fréehet spaces satisiying (E,
F)cB was given by Vogt [16].

Following Naehbin, Wc say that ‘a les E satisfies the opeunnes» condition
[12] if br every UEU<’E) there is a VcU(E) such that for each Wcu<’E,)
there is a p>O with

VCp,71(0)±pW
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where p» denotes the gauge al U. A Fréchct space satisfying this condition is
called a cfiúijcctioti [2]. A Fréchet space is a quojection if and only if it can be
represented as the projective limit of. a sequence of Banach spaces witli
surjective linking maps.

A lcs E is said to satisfy the boundedne»s condition (b) u lar each
UEU(IS’>) tliere is a VcU(E) such that lar eacb WEU(E) we have

W0 A E’ [tI>flG p

for sorne p>0< [12], [8]). Here and throughout E’ [(10] stands lar the span of
(10 in E’. Clearly a les E satislies (b) u and only if lar each Uc u (E,), VC U,
sueh that for each Wcu(E3. WC 1’, £41’»] and E’IW><] induce ihe same
tapology on E’[U0]. In this case the clasure of E’[U9 in E’[V0] and in
E’[W>3] is the same. Vogt has praved in [18] that a Fréchet space satisfies (b)
if and only if its bidual is a quojection. Hence we fallow Moscatelli and calI
a Eréchet space which satislies <b) a prequojecl¡on. Far a recent survey on
quojeetion aud prequojeetions we refer to [7].

A les E has property (y) if there is a neighbarhood U~ su (E) such that

U E4(1?]flU~>
uc u (E)

where tIte closure is taken with respect to any tapalogy compatible with the
duality <E, E’>jjl 1]. Condition (y) implies that E’[Q] is dense in E’ and
tlierelorep»> is a continuous norm on E.

Eellenot and’Dubinsky have proved in [2] that a separable Fréchet space
which is ñat aprequojection, has a quotient space which is nuclear, admits a
contiiiuoús narnis’áñdihas abasis, le. it has a nuclear Kózhe quoLien!. In [II]
we’have proved’ thai u Fis a Fréchet space which has (y) andil there ís an
unhaunded continudus linear operatar T: E-. E, then there is a nuclear
Kóthe space A (A);a’sutjéction Q: E— A(A) such that QT: E—. A (A) is also
a sutjection. >Oñ the athef hand, it is not difficult to shaw that (E. F,)G Rif E
sattslies<’b) andF-áatislies (iQ[l 1]. In fact a Fréehet space isa prequajection
jI and only if (E. A (A))c fi for any nuclear Kñthe space A <A)([12]). Hence
the assurnption that Eisnot a prequojecti~n is alsa necessary in the theorern
df Béilenot and Dúbinsky. However as a corollary of the main result in [II],
th~assumptióhof>~e~átabi1ity in the theorem al Bellenot and Dubinsky can
be removed.

2. CONDITION (í’)

We have already noted that condition (y) implies the existence of a
continuaus norrn. In this section we shall rélate this condition to some other
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narmability conditions. We recalí lirst a condition intraduced in [14] for
Fréchet spaces: A les Lis aSSwmnp!o!ñ’a//v normabie if there is a neighborhood
U> E U (E) such that for each VE U (E,) there is a Wc U(E,) so that lar every
e>O one can find M>O with

Proposition 1. Evcrv astmpíoíic’al/s’ normabie les saiisfles (it>.

Proof: For VEU(E), we choase WC y by asymptotic normability and
palarizing obtain lar each e>O

V0GE’[Ufl+e ¡Y0

‘fhis implies however 1/OC E’ [ej?]n (2W0).

We already knaw that a les which has the baunded approxirnatian
property and a continuous norrn also satisfies (v4l 1]. In [14] a Kdthe-Montel
space A (A) is constructed which is not asymptatically normable. So although
Uds Kóthe space has (4 it is not asymptotically normable and therefore the
converse of Prop. 1. is false.

In case of Fréchet spaces condition <Y) can be strengthened

Lemma 1. A Fréclící space E salís/Ye» (it> «‘cm/ 0,11v it has a base of
ncighborhoods ((1,9 »uch !halfor cae!> 4 ihere is an ni >viíh UA~>C E’[U?]n Un,.

Proof: We canstruct the base (u,) so that the lirst one ~> is as in
condition <Y) and let AA=E’[U?]fl Uf?. Since UACA2, [A2:k=l 2
defines a nietrisable topology T on E which is weaker than the given one.
However condition (í’) says E’=U? r AA and so by the wcak hornorphism
thearem ([5]), r coincides with the original tapology of E.

Behrends, Dierolí and Harmand [1] constructed a proper prequojection
which admits a continuous norm. We recalí that a Fréchet space is couniablv
normed jI it can be expressed as the intersection of a sequence of Banach
spaces. Moscatelli [9] (cf. also [7]) has devised a mediad lar canstructing
proper prequojections which are even countably normed (cl. also [4]). Such
a cauntably normed space Ecannot have (it>, because it would then satisly (E.
E,>E B[l 1]. However dic converse is true.

Proposition 2. A Fréche! space which »aíisj¡es (¿y) is c’oun!ablv nortned.
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Proof: Let (Ug) be a base of neighbarhoods as in Lemma 1 and set 1=
E’ [~~?i~{O}: For each 4, let II ¡~A* denote the dual norrn delined on E’[U~]
and a~=(l/ I~HfIfl, tic!. We let A be the space al alí séalar-válued functians
fon Iwith

IfIA=sup iI’(u)t a~<+oe
‘Ej ¡

far each 4 = 1, 2 With <hese narrns, A becornes a eauntably normed
Fréchet space. Define naw T: E—A by Tx=(u(x)),,~1.~ Tis continuous and
by (1). it is ane ta ane. Since for each 4 there is an ni with U»C(IrYUg) by
Lemma 1, we haVe tbat Tis an ísornorphism of Eonta asubspacc of A. llence
E is countably normed.

Remark: Using a samewhat dilferent approaeh, Vagt also praved thai ane
can imbed a Fréchet space with <Y) into a weighted sup-norm. space [19].

1 >5

F’ollowing Komatsu [7]~ we cali a les E a Komura stae if for every
UCU(E,)tbere isa VcU(L) so that the Iinking map p,» isa wcakIycam~act
map al th¿ assdciated Banach spaces Ev and 4. We now gíve a purtial
converse al aur last result.

Proposition 3. Leí E be a Komura space. 1/ ihere is a ncighborhood
<j1 E U (E) widz dic propcrfl’ !hat frr cach lic U (E) ihere isa WC U. VE U (E)
wiíh ~>,,, O/le tu one, !hcn E sa!isf ¡es (it>. 5

Proof: Let vE E’. We rnay assume ve V~ where ~,,> is one to one and
choase W.EU(L)lu¿h tliat ~ is weakly compact. Theádjointol5 which
imbeds E’[U?] inta E’[V<fl, has a dense range. That is cl(E/[U?])~>E5[V0]
wliere ¿‘1 dendte=dic clasure with re~pect to dic duality <E’[J”

0]; E>. The
ádjdinial71ñ>,.<

5 imbeds E’[l/
0] inta E’[W0] und it is continuoús if WC équip

£4 Vn] witli the lvia&key topalogy p(E’[Vfl, Li) and E’[W0] with itsnarni
topology. So we obtain

‘‘~> . 5 5

where bar denotes the clasure with respect ta the norm al t[k~].>ñence lar

each e~”O wehave

V><CE’[U¶]±e¡Y0

ánd this yields (it> as in the proaf of Prop. 1.
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A les E is called tetally reflexive if every quotient space el E is reflexive.
Valdivia [15] has preved that a Fréehet space.is totally reflexive if and only
>1 it a Kemura space. Hence we get the following result as a direct cense-
quence of Prepesitions 2 and 3.

Corollary 1. A tota/Ir reflexive Fré’heí s’>ace sa!ts/¡es (it> ¡JI ami onlr if
it is countablí’ noríned.

In cuse E is a Frécbet-Scbwartz space. we know that E is countably
normed u and only il it is asymptotically normable ([17]; 5.7. l..ernma). So
beth of these cenditions and cenditien (y) coincide in tbis case [II].

3. ROUNDEDNESS OF OPERATORS

In this sectien we give sorne results relating conditiens (b) and (it> te the
beundedness of alí centinueus operaters. For related rcsults in the restricted
centext of Fréchet sp’aces we refer te [3] and [12]. Vogt has preved that a
prequejectien is always quasinormable [18]. Whether this is true in general
seems te be an epen questien.

Lemma 2. Le! Ebe a lis <hiel> sauis/jes (4 Thefr//owing condiuiotis are
equivalen!:

(1) E is qHasinorntab/e.

(2) For cach UEU(E,) !here is VEU(E’». WC U. such fha! £41’»] atid (E’,

/3(E’, E)) induce ihe sanie topologv ¿ni E’[U<>jJ. 5

(3) For caclí lic U (E) !here is VE U (E) atíd a boundcd subsel fi olE su¿’l¡
thaI B0fl E’[U<jC 1/0~

/ilorcover in ube siluaL ion of¿‘ondiuion (2) dic ciosure of E’ [(1<>]iii E’ [1’»]
and in (E’, ¡3 (E’, E)) Lv Ihe sanie.

Proof: It is easy te see that (2) and (3) are equivalent and that cenditien
(3) implies that E is quasínormable.

Assunie that E is quasinermable and fix UeU(E). According te
cenditien (b) we find VGU(E), WC U, such that far each WeU(E). WC 1’,
E’[ 1/»] and E’[ W»] induce the same tepology en E’[U’fl. New given Vwe can
lind WCU(E,), WC 1/, such that E’[W»] and (E’, /3(E’, E)) induce the sarne
tepelegy en 1’». Let T denote the topelegy induced by E’[ V><] en E’[U<fl. We



60 5. ¿Sial’ ‘II Terzioklu

havethat risfinerthan/3(E’, E) on E’[Ut>] but both coincide en W»fl E’[LI<>],
which isa O-neighbeurheed in (E’[U»], 4 Cansequently ‘r=¡3(E’, E) en
E/[UP] and hence (E’, /3(E’, E)) and E’[V<>] induce. the sarne topology en
E’ [U»].

We present now aur result en the beundedness of al! continueus
eperabors: We note that (i) is alreády preved in [II] andincluded here only
lar the sake of eompleteness.

Proposit¡on 4. Eaeh one of !hc/oiiowing implie» (E, F)E 8.
5 5

(i) E ha» <‘b) atid E has (ít>~

(u) E is a quasinorniabie les “‘hich satisfies (b) and E” with it» natural
!opologv adni it» a continuvus non.

(iii) ‘E has (b) and Fis a B~conipleíe Komura »pacc which admits a con-
tinuous non.

Proof: Let T: E—E be centinueus, E and Fas in (u). lf WC U (E) is such
that F’[W»] is /3(F’, fl-dense in E’, we lind UEU(E) witli T(U,)C W. By
Lernma 2 diereis VEU(E) such that the closure of E’[U<>] in E’[W»] atid in
(E~ (3(E’. E)) is tIte same. Wc have

T(fl)C T(E’[W»])C F(E’[W»])c E’[U»]c E’[W<]

where the lirst clesure is taken in (E’, /3(E’, E)) and the second and tIte third
in (E’,/3(E’, E)). Therelere 7’ is beunded ([1 1], 1.2. Lemma).

5 , 5 5

Let T: E— E be centinuous, E and Fas in (iii), WC U(E) be such that its
gauge is a norm on E and by centinuity find UcU(E) sucb that T(UJ}C W.
Fer ibis neighborltead we cheese VEU(E,) as in condition Ql Let

M— T’-> (A (E’[(J»]+ e I/O))

Since F’[ WIC M, this is a(E’, E>.dense in E’. lfwe shew M~ E’, we then
get T’(F’)C E’[W»]. This will imply that Tis beunded (cf [II]).

Newteshew M=E’, itisenoughto prevethat W<>flMiso(F’,E)-closed
fer every WEUU9: Let (v»).be a net in W<>fl M with limit y. Since Fis a
Komura space, we can lind W> c U (E) se that tbe corresponding’linking map

is weakly cempact. Hence 1V» is ,F,fl)-cempact subset of the








