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A Normability Condition on Locally
- Convex Spaces

8. ONAL and T. TERZIOGILU!

ABSTRACT. In a previous work [ 1] we introduced a certain property () on locally
convex spaces and used it to remove the assumption of separability from the theorem
of Bellenot and Dubinsky on the existence of nuclear Kéthe quotients of Fréchet
spaces. Our purpose is to examine condition (v} further and relate it to some other
normability conditions. Some of our results were already announced in [10].

1. PRELIMINAIRES

Our terminology and notation for locally convex spaces is quite standard
(cl. e.g. [5]). By U (F) we always denote a base of ncighborhoods of a locally
convex space (lcs) E which consists of absolutely convex and closed
neighborhoods. Consequently the topology of a Fréchet space £ 1s deflined by
4 basic sequence of seminorms, 1.€. an increasing sequence of seminorms
(1l 11z) such that the corresponding unit balls U, ={x& E:||x],= 1} form a
base of neighborhoods. A linear operator T: £~ F is bounded if T(U) is a
bounded subset of F for some neighborhood {/. In case every continuous
linear operator from a les E into a les Fis bounded, we write (E, F)& B A
complete characterization of those pairs of Fréchet spaces satisiying (E,
F)€ B was given by Vogt [16].

Following Nachbin, we say that a lcs £ satisfies the opennness condition
[12] if for every Uetd(£) there 1s a Vel (E) such that for each WS U (E)
there is a p=>0 with

Veps' () roW
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where p, denotes the gauge of U. A Fréchet space satisfying this condition is
called a guojection [2]. A Fréchet space is a quojection if and only if it can be
represented as the projective limit of a_sequence ol Banach spaces with
surjective linking maps.

A les E 15 said to satisly the boundedness condition (b) U for each
Ue U (E) there is a Ve li(E) such that for each Wel(E) we have

WON E[UYC ph?

for some p>>0([12], [8]). Here and throughout £[ %] stands lor the span of
UYin £’ Clearly a les E satisfies (b) if and only if for each UeU(E), VC U,
such that for each Weu(E) WCV, £V and E'[W'] induce the same
topology on £'[U°]. In this case the closure of E'[U% in E'{V] and in
E’[ W) is the same. Vogt has proved in [18] that a Fréchet space satisfies (b)
if and only if its bidual is a quojection. Hence we follow Moscatelli and call
a Fréchet space which satisfies (b) a prequojection. For a recent survey on
quojection and prequojections we refer to [7].

A lcs E has pr.operty {v) if there 1s a neighborhood U, €U (E) such that

AL T i00A {70
E= UeLaJ(E) ELUN U

where the closure is taken with respect 1o any topology Eoﬁlﬁalible with the
duality < E E’ >[1 1]. Condition (y) implies that £ [U?] is dense in £ and
therefore Pu 1 a contmuous norm on £. ,

Bellenot and- Dubmsky have proved in [2] that a separable Prechet space
which is not a prequojection, has a quotient space which is nuclear, admits a
continuous norm-and has a‘basis, i.e. it has a nuclear Kothe quotient. Infl1]
we have proved’ that if Fis a Fréchet space which has (y) and'if there is an
unbounded continuous linear operator T: E-=F, then there is a nuclear
Kdthe space A (A), asurjection Q: F— A (A4) such that QT E— A (A) is also
a’surjection. 'On the other hand, it is not difficult to show that (E, F}s Bif E
satisfies (b) and” Fsatisfies (y)[ 1 1]. In fact a Fréchet space is a prequojection
il and only if (£ A (A))e B for any nuclear Koéthe space )\(A)([IZ]) Hence
the assumption that £ 'is not a prequojection is also necessary in the theorem
of Bellenot ang Dubmsky However as a corollary of the main result in [11],
the' assumption of separdbﬂny in the theorem of Bellenot and Dubinsky can
be removed.

2. CONDITION () ..

We have already noted that condition ()) implies the existence of a
continuous norm. In this section we shall relate this condition to some other
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normability conditions. We recall first a condition introduced in [14] for
Fréchet spaces: A Ics Eis asvmptotically normable if there is a neighborhood
U, e U (E) such that for each Ve U (E} there is a WE U (E) so that for every
€>>0 one can find- M >0 with

2o (X)Z M p, () ep, (X).
Proposition 1. Every asymptotically normable lcs satisfies (v).

Proof: For Vel (FE), we choose WC IV by asymptotic normability and
polarizing obtain for each ¢ >>0

VOC E'[UY] +€ WO,

This implies however VOC E'[UY]N{(2W79).

We already know that a lcs which has the bounded approximation
property and a continuous norm also satisfies (v)[11]. In[14] a K&the-Montel
space A {A) is constructed which is not asymptotically normable. So although
this Kothe space has (), it is not asymptotically normable and therefore the
converse of Prop. . is false.

In case of Fréchet spaces condition (v) can be strengthened.

Lemma 1. A Frécher space £ satisfies (y) if and onlv it has a base of
neighborhoods (U, ) such that for each k there is an m with UPC E'[ U] U,

Proof: We construct the base (U,) so that the first one U, is as in
condition (¥} and let A,=E'[UMJN UL, Since U4 CAY, [AV:k=1,2,..}
defines a metrisable topology 7 on £ which is weaker than the given one.
However condition (¥} says £'=U;"_, A, and so by the weak homorphism
theorem ([5]), 7 coincides with the original topology of E

Behrends, Dierolf and Harmand [1] constructed a proper prequojection
which admits a continuous norm. We recall that a Fréchet space is countably
normed if it can be expressed as the intersection of a sequence of Banach
spaces. Mascatelli [9] (cf. also [7]) has devised a method for constructing
proper prequojections which are even countably normed (cf. also [4]). Such
a countably normed space £ cannot have (v), because it would then satisly (E,
E)e B[11]. However the converse 15 true.

Proposition 2. A Fréchet space which satisfies (v) is countably normed.
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Proof: Let (U/,) be a base of neighborhoods as in Lemma | and set /=
E"[UT {0} For each &, let || ||} denote the dual norm defined on ETU]
and ak =1/ ||ull D),'ue . We let A be the space of all scalar-valued functions
Jon I with '

Iffk=sgr; ([l ab<<+o0

for each k=1, 2,.... With these norms, A becomes a countably normed
Fréchet space. Defmc unow T:FE-A by Tr—(u(\')),,c; T is continuous and
by (v), it is one to one. Since for each & there is an m with U”C(Iﬁ Uly by
Lemma I, we have that T'is an isomorphism of £ onto a subspace of A, Hence
Eis countably normed,

Remark: Using a somewhat different approach, Vogt also proved that one
can imbed a Fréchet space with (v) into a weighted sup-norm space [19].

v R
_Following Komatsu'[—f’] we call a les £ a Komura space if for every
UEU(E) there is a Ve U () so that the linking mdp Prulsa weakly compact
map of the associated Banach spaces F, and £, We ‘now give a partial
converse of our last resull.

)

Proposition 3. Let £ be a Komura space. If there is a neighborhood
U, Eu(I:) with the property that for each USU{(E) there isa VC U, VELI(:L)
with p\,,I one (0 one, then F satisfies (v).

Proof: lLet ve £’ We may assume ve V' where p‘,,I 15 one to onc and
choose WEH(F) such that 3 P 18 weakly compact. The adjoint of Py, Which
imbeds E'[Uf]into E'[ V'], has a dense range. That is cl(E’[U”])-—I [ V9]
where ¢/ denotes the closure with respect to the duality < E’[V9), E,>. The
adjoint of '5,,., lmbeds E'[V9) inte E'[WO] and it is continuous if we tquip
E’[ V] with the Mackey topology u (E'[VY], E.) and E'[W?'] with its norm
topology. So we obtain
o B =d(E U CETON

o . 1

where bar denmes the closure with respect to the norm of E’[ W"] "Hence for
cach e>0 we have

VOC E'[U9]+€ WO

and this yields' (v) as in the-proof of Prop. I. TRV
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A les Fis called totally reflexive if every quotient space of E is reflexive.
Valdivia [ [5] has proved that a Fréchel space.is totally reflexive if and only
if it a Komura space. Hence we get the following result as a direct conse-
quence of Propositions 2 and 3.

Corollary 1. A rotally reflexive Frécher space satisfies (v) if and only if
it Is countably normed. '

In case £ is a Fréchet-Schwartz space, we know that £ is countably
normed il and only if it 1s asymptotically normable ([17]: 5.7. Lemma). So
both of these conditions and condition (¥} coincide in this case [11].

3. BOUNDEDNESS OF OPERATORS

In this section we give some results relating conditions (b} and ¢y} to the
boundedness of all continuous operators. For related results in the restricted
context of Fréchet spaces we refer to [3] and [12]. Vogt has proved that a
prequojection is always quasinormable [18]. Whether this is true in general
seems to be an open guestion.

Lemma 2. Let E be a les which satisfies (b). The following conditions are
equivalent:

(1) FEis quasinormable.

(2) For each USU(E) there is VEU(E), VC U, such thar E'|V°] and (F’,

B(E", E))} induce the same topology on E'[UY. : ‘

. . N I

(3) Foreach UCU(E) there is VEU(E) and a bounded subset B of E such
that BOOE'[UY]C VY,

Moreover in the situation of condition (2) the closure of E'[U°] in E'[ VY]
and in (E, B(E E)) is the same.

Proof: It is easy to see that (2) and (3) are equivalent and that condition
(3) implies that £ is quasinormable.

Assunie that E is quasinormable and fix Uc U (E}) According to
condition (b)) we {ind VEU(E), VT U, such that for each Weli(E), WCV,
£ [V and £ W] induce the same topology on £ {UY]. Now given V we can
find Wete(E), WCV, such that £ WY and (£, 8(F", F)) induce the same
topology on V9 Let 7 denote the topology induced by E'[ V0] on E'[UY]. We
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have that 7 is finer than 8(E’, E) on E'[ /"] but both coincide on VYN £7[UY],
which is:a 0-neighbourhood in (F'[/Y], 7). Consequently = (£", E} on
E[U"] and hence (£, B(E', E}) and E’[ V"] induce. 1he same topology on
LU

We present now our result on the boundedness ol all continuous
operators. We note that (i) is already proved in [11] and included here only
for the sake of completeness.

’ Proposntlon 4 - Each one of the following implies (E, F)€ B.
(i) E has (b) and F has (! ).

(i) E is a quasinormable lcs which satisfies (b) and F” with its natural
topo!og_v admr‘ts a COnnWoUs norm.

(ii)) "Ehas (b) and F is a B, (omplele Komura space which admits a con-
: “tinuous norm.

Proof: Let T: E— F becontinuous, £ and Fasin (it} If We&i(F)is such
that F/f WY is B(F' F)-dense in F, we find UgU(E) with T(U)C W. By
Lemma 2 there'is V'€ U (E) such that the closure of E'[U*] in E'[VY] and in
(E, B(E', ) 1s the same. We have

T(F)C T(F[W)C T (F[WNCETUIC EV)

where the first éloédre is taken in (F’, B(F", F}) and the second and the third
in (£, B(E", E)). Therefore T is bounded ([11], 1.2. Lemma).

Let T: E— F be continuous, £ and F as in (iii), W& U (F) be such that its
gauge 15 a norm on F and by continuity find Ue U (E) such that T(U)C W.
For this neighborhood we choose Ve U (£) as in condition (b). Let

M=T" (QO(E’[U”]+ ¢ V”))

I Since F"[W‘I’]CM thisis o (£, F)- dense in F”. 1{ we show M = F’, we then
get T"(F)C F’[V"] This will imply that ? 1s bounded (cf. [ll])

NOW to bhOW M=F, itis enough to prove that W9N M is o (F7, F)-closed
for every Wel (F): Let (v,).be a net in WM M with limit v. Since Fis a
Komura space, we can find W, € U (F)so that the corresponding linking map
Py 1s weakly compact. Hence W% is a o (F'[W?], ! )-compact subsct of the
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Banach space F'{ W{]. Therefore the o (F'[ W], £ )-topology cotncides with
o(F', F) on W and so (v,) converges to v in the o (F'[W]], £ )-topology.
This means that v is in the closure of WY™ M with respect to the norm
topology coming from F’{W{]. We now chose Uit (E) with T(U,)C W,.
Since the topologies defined by the balls VY and UP on E°{ UY] coincide by (b),

this means that 7" ve E'[ U%] where the closure is taken with respect to the
topology defined by the ball V% So ve M and the proof is finished.

One can easily derive several interesting results from Prop. 4. immediately.
For example [rom (i) one gets that a les satisfying (5) which has the bounded
approximation property and admits a continuous norm must necessarily be a
normed space (see also [8]). In fact using their methods for constructing
prequojections with specificd properties, Metafune and Moscatelli have
shown that 1o have the bounded approximation property is not a three space
property within the class of Fréchet spaces (cf. [7], [9]).

To study the relationship between the conditions ¢4), (1) and the bounded
approximation property, we need a somewhat technical result.

Lemma 3. Letr E be a fes with the bounded approximation property. Let
(T,) be a equicontinuous net of finite rank operators as in the definition of
bhounded approximation property. Then for each US U (E) there is VEU(E)
such that the inclusion

T (ETUC E' (VO]

holds for each a, where the closure is taken with respect 1o o (E', E).

Proof: For Ucl(E) we find VELU(E)so that T, (V3C U holds for each
a. We consider £/p-1(0) with the quotient topology. Let ¢: £— Efp-1(0) be
the canonical quotient map. The dual of E/p /(D) is pt (0= U If

we E'[UN WO for some Weld(F). WC U, then we have
|<T7 Q). x> | =] <u OT, x> <pou(QT, ).

Pow and pg,; are equivalent norms on the finite dimensional subspace Q7, (£)
and so there is some p, >0 with

| <7, Q (). x> = p, poiAQT, x).
I xeV, since T,(MNC U we get
| < T x> =< T Q7w x> < p,

and therefore T u<p, ¥V for cach a.
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One consequence of the above results is the equivalence of condition ()
and the openness condition when the space has the bounded approximation
property. This result was obtained independently by A. Galbis in his thesis
(University of Valencia, 1988).

Corollary 2. If £ has the bounded approximation property and satisfies
(h). then it also sarisfies the openness condition.

Proof: We will show that {or cach U=t (E) there 1s VU (L) so that
E'TUYC E'[VY] where the closure is taken respect to o (£, E). This is
equivalent to the openness property. By Lemma 3 we choose V,€L(E) so
that T (E'[U"])C £'[ V0] holds for each . For ¥, we find VeuU (£), as in
condition (b, i.e. for cach We U (E) we have

WO E[VO]Cp VO
for some p>0. Let u€ E'[ UM W for some W, €U (E). By equicontinuity
we [ind Weu (£) with T, (W) C W, for each a. So, o

TIue WM E'[VI]Cp VO,
Since w=lim T in o (£ E)-topology, we get u< E'[ V7).

Another corollary of Proposition 5 is the following result which was
already proved in [11].

Corollary 3. If E admiis a continuous norm and has the bounded
approximation property, then E satisfies {y}.

Proof: 1f &/ is the unit ball of a continuous norm on £, we have
E'=FE'TU%. By Lemma 3 we {ind U, (E) such that T) (E'{U*])C E"[ U]
for every a. So TJ(E)C E'[U?. For ueF’, by equicontinuity we find
Weu (E)sothat T) ue WP for each e. Since w=1im T u, and T u€ £'[U{]1N
WY we have shown that K satisfies (1),

We finish by giving by a generalization of the main result of [13]}.

Proposition 5. [Lei T:E— F be a continuous linear operator which is
unhounded, where E is a Frécher space and F a Fréchet space which saiisfics
(v). Then there is a subspace M of E which is isomorphic to a nuclear Kithe
space such that T: M — T(M) is an isomorphism.
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Proof: By the theorem in [L!], there is a nuclear Kdthe space A(4), a
quotient map Q:F—A(A) such that QT(F)=h(A) also. Hence QT is
unbounded. So we can apply the theorem of [13] to QT and find a nuclear
Kéthe subspace M of £ such that the restriction of @7 to M is an imbedding.
1t is ecasily seen that T(AM) is a closed subspace of F.
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