3-Manifold Spines and Bijoins

LUIGI GRASSELLI

ABSTRACT. We describe a combinatorial algorithm for constructing all orientable 3-manifolds with a given standard bidimensional spine by making use of the idea of bijoin ([BG], [Gr]) over a suitable pseudosimplicial triangulation of the spine.

1. INTRODUCTION

Throughout this paper, all spaces and maps are piecewise-linear (pl) in the sense of [GI] or [RS]; all 3-manifolds are supposed to be compact, connected and orientable.

If M is a 3-manifold with non-empty boundary, then a bidimensional polyhedron K such that M collapses to K is said to be a spine of M; if M is closed, a spine of M is a spine of $M-B$, B being an open 3-ball in M.

Given a group presentation $\Phi = \{x_1, \ldots, x_r, r_1, \ldots, r_s\}$, denote by K_Φ the bidimensional complex constructed as follows:

- K_Φ has only one 0-cell (vertex);
- the 1-cells (resp. the 2-cells) of K_Φ are in one-to-one correspondence with the generators (resp. the relators) of Φ; denote them by α_i (resp. β_i);
- each 2-cell β_i is attached to the 1-skeleton by the formula given by the corresponding relator r_i.

K_Φ is said to be the standard complex associated to Φ; of course, the factor group of Φ is $\Pi_1(\{K_\Phi\})$. We will not distinguish between a relator r_i and any

__Work performed under the auspices of the G.N.S.A.G.A. of the C.N.R. (National Research Council of Italy) and within the project "Geometria delle Varieta' Differenziali" of the M.P.I. (Italy).__

cyclic conjugate of it or its inverse, since the associated complexes are the same. The above construction may be obviously reversed and each standard complex K induces a group presentation Φ_K of the fundamental group $\Pi_1(\partial K)$.

It is well known that every 3-manifold M has a standard spine K_0, for some group presentation Φ, and the factor group of Φ is clearly $\Pi_1(\partial M)$; nevertheless, not every standard complex K_0 is a spine of a 3-manifold. Every group presentation Φ such that K_0 is a spine of a 3-manifold (resp. of a closed 3-manifold) is said to be geometric (resp. strongly geometric).

In [N] Neuwirth gives an algorithm for testing if a balanced group presentation (same number of generators and relations) is strongly geometric. The same algorithm is restated by Osborne and Stevens ([OS], [S]) by making use of a graph-theoretical tool, the presentation-graph or P-graph P_Φ, which can be associated, by a one-to-one correspondence, to the standard complex K_Φ of a group presentation Φ. Namely, P_Φ is essentially the boundary of a regular neighbourhood of the unique vertex of K_Φ and it is easy to prove that Φ is strongly-geometric if and only if a planar imbedding condition on P_Φ holds. Moreover, as pointed out by Montesinos in [M], a Heegaard diagram of a 3-manifold M gives rise to such a planar imbedding of the P-graph P_Φ associated to a suitable group presentation Φ of $\Pi_1(\partial M)$; in fact, this is nothing else than the Whitehead graph of the group presentation Φ of $\Pi_1(\partial M)$ coming from the given Heegaard diagram of M. Thus, a group presentation Φ is geometric (resp. strongly-geometric) if and only if there exists a Heegaard diagram of a 3-manifold (resp. closed 3-manifold) M whose associated presentation for $\Pi_1(\partial M)$ is Φ.

In [M] Montesinos describes an algorithm for checking if a given group presentation is geometric; such an algorithm seems to be completely different from Neuwirth’s one, since it makes use of branched covering techniques.

In the present paper, we give a combinatorial algorithm for obtaining all 3-manifolds with a given standard spine K_0 by making use of the bijoin construction ([BG], [Gr]) applied to a graph-theoretical structure representing a pseudosimplicial triangulation of K_0. This construction allows us to unify, in a common geometric description, both Neuwirth algorithm and Montesinos one; namely, the necessary and sufficient conditions for the geometricity (or the strong-geometricity) of a group presentation obtained in [N], [OS], [OS2], [S], [M] can be all derived from the bijoin construction.

2. EDGE-COLOURED GRAPHS AND ASSOCIATED COMPLEXES

The term pseudograph includes loops and multiple edges, while a multigraph (or simply a graph) allows multiple edges only.
A (generalized) coloration on a pseudograph \(\Gamma = (V(\Gamma), E(\Gamma)) \) is a map \(\gamma: E(\Gamma) \to \Delta_n = \{0, 1, \ldots, n\} \); if \(\Gamma \) is a graph, \(\gamma \) is said to be proper if \(\gamma(e) \neq \gamma(f) \), for each pair \(e, f \) of adjacent edges. For each \(\gamma \subset \Delta_n \), set \(\Gamma_\gamma = (V(\Gamma), \gamma^{-1}(\Delta_n)) \); each connected component of \(\Gamma_\gamma \) is often called an \(\gamma \)-residue. For each \(i \in \Delta_n \), set \(i = \Delta_n - \{i\} \).

The pair \((\Gamma, \gamma)\), \(\Gamma \) being a graph and \(\gamma: E(\Gamma) \to \Delta_n \) a (generalized) coloration, is said to be an \(n \)-dimensional crystallized structure ([G]) if, for each \(i \in \Delta_n \), the \(i \)-residues are cliques (complete graphs). If all these cliques are of order two, i.e. if \(\gamma \) is proper and \(\Gamma \) is regular of degree \(n + 1 \), \((\Gamma, \gamma)\) is simply called an \((n + 1)\)-coloured graph ([F]).

An \(n \)-dimensional pseudocomplex \(K \) is an \(n \)-dimensional ball complex in which every \(h \)-ball, considered with all its faces, is isomorphic with the complex underlying an \(h \)-simplex; for this reason, each \(h \)-ball of \(K \) is called \(h \)-simplex. The disjoined star \(\Std(s, K) \) of a simplex \(s \) in \(K \) is defined to be the disjoint union of the \(n \)-simplexes of \(K \) containing \(s \), with reidentification of the \((n-1)\)-faces containing \(s \) and of their faces; the subcomplex \(\Lk(s, K) = \{ \tau \in \Std(s, K) \mid \tau \cap s = \emptyset \} \) is called the disjoined link of \(s \) in \(K \).

As shown in [G] and [F], every \(n \)-dimensional crystallized structure \((\Gamma, \gamma)\) represents a homogeneous \(n \)-dimensional pseudocomplex \(K(\Gamma) \) constructed by the following rules:

- take an \(n \)-simplex \(\sigma(v) \) for each \(v \in V(\Gamma) \) and label its vertices by \(\Delta_n \);
- if \(v, w \in V(\Gamma) \) are joined by an \(i \)-coloured edge, identify the \((n-1)\)-faces of \(\sigma(v) \) and \(\sigma(w) \) opposite to the vertices labelled by \(i \), so that equally labelled vertices are identified together.

Every \(h \)-simplex \(s \) of \(K(\Gamma) \), whose vertices are labelled by the distinct colours \(c_1, \ldots, c_h \in \Delta_n \), corresponds to a unique \((\Delta_n - \{c_1, \ldots, c_h\})\)-residue \(\mathcal{R} \) of \((\Gamma, \gamma)\) and vice versa; its associated pseudocomplex \(K(\mathcal{R}) \) is \(\Lk(s, K(\Gamma)) \).

Moreover, \((\Gamma, \gamma)\) is an \((n+1)\)-coloured graph if and only if \(|K(\Gamma)|\) is a closed pseudomanifold ([ST]), which is orientable if and only if \(\Gamma \) is bipartite ([CGP]).

The construction of \(K(\Gamma) \) gives a coloration on the vertex set \(S_n(K) \) of \(K(\Gamma) \) by means of \(n + 1 \) colours (i.e. a map \(\xi: S_n(K) \to \Delta_n \) which is injective on each simplex of \(K(\Gamma) \)). Given a homogeneous \(n \)-dimensional pseudocomplex \(K \) with such a coloration on its vertex set \(S_n(K) \), the construction can be easily reversed yielding an \(n \)-dimensional crystallized structure, denoted by \(\Gamma(K) \).

It is easy to see that \(\Gamma(K(\Gamma)) = (\Gamma, \gamma) \); moreover (see [G]), \(K(\Gamma(K)) = K \) if and only if \(K \) satisfies the following property:

(*) the disjoined star \(\Std(s, K) \) of every simplex \(s \) of \(K \) is strongly-connected.
A homogeneous n-dimensional pseudocomplex satisfying (*) and admitting a coloration on its vertex set by means of $n+1$ colours is said to be a **representable n-pseudocomplex**, since it is uniquely represented by an n-dimensional crystallized structure.

An n-dimensional crystallized structure (Γ, γ) (or its associated pseudocomplex $K(\Gamma)$) is said to be **contracted** if Γ is connected, for each $e \in \Delta_n$ (i.e. if $K(\Gamma)$ has exactly $n+1$ vertices). A contracted $(n+1)$-coloured (bipartite) graph (Γ, γ) is said to be a **crystallization** of a closed (orientable) n-manifold M if $|K(\Gamma)| = M$. Every closed n-manifold admits a crystallization ([P]).

For a general survey on manifold representation theory by means of edge-coloured graphs, see [FGG], [BM], [V].

3. THE BIJOIN CONSTRUCTION

If Γ is an oriented pseudograph and $\gamma: E(\Gamma) \to \Delta_n$ is a (generalized) coloration, the pair $(\overline{\Gamma}, \overline{\gamma})$ is called an n-dimensional oriented structure ([BG]) if, for every $i \in \Delta_n$, the $\{i\}$-residues are elementary oriented cycles, possibly of length one or two.

By deleting all loops in $E(\overline{\Gamma})$ and by replacing, for every $i \in \Delta_n$, each elementary oriented i-coloured cycle in $\Gamma_{\{i\}}$ with a clique on the same vertex set, it is easy to associate an n-dimensional crystallized structure (Γ, γ) to every n-dimensional oriented structure $(\overline{\Gamma}, \overline{\gamma})$. Of course, there are, in general, many oriented structures associated to a fixed crystallized structure; they can be easily obtained by reversing the above construction. If $(\overline{\Gamma}, \overline{\gamma})$ is an oriented structure associated to the crystallized structure (Γ, γ), we set $K(\overline{\Gamma}) = K(\Gamma)$.

The following construction, given in [BG], allows to obtain an $(n+1)$-coloured bipartite graph $(B(\overline{\Gamma}), \beta)$ from an $(n-1)$-dimensional oriented structure $(\overline{\Gamma}, \overline{\gamma})$:

- $V(B(\overline{\Gamma})) = V(\overline{\Gamma}) \times \{0, 1\}$;
- for every vertex $v \in V(\overline{\Gamma})$, join $(v, 0)$ with $(v, 1)$ by an edge e of $B(\overline{\Gamma})$ and set $\beta(e) = \gamma(e)$;
- if $\overline{e} \in E(\overline{\Gamma})$ and $\overline{e}(0) = v$, $\overline{e}(1) = w$, then join $(v, 0)$ with $(w, 1)$ by an edge e' of $B(\overline{\Gamma})$ and set $\beta(e') = \gamma(\overline{e})$.

Note that the choice of the opposite oriented structure, obtained by reversing the orientation of each $\{i\}$-residue, for every $i \in \Delta_{n-1}$, gives rise to the same graph. The construction in an adapting to the edge-coloured graphs of a standard method for associating a bipartite graph to an arbitrarily given oriented graph ([BHM]). The $(n+1)$-coloured graph $(B(\overline{\Gamma}), \beta)$ (and its
associated pseudocomplex) is said to be the h-bijoin over (Γ, γ), h being the number of the n-residues in $(B(\Gamma), \beta)$; if $h = 1$, $(B(\Gamma), \beta)$ is simply called bijoin.

Given an $(n+1)$-coloured bipartite graph (Γ, γ), it is easy to (uniquely) construct, for each $i \in \Delta_n$, an $(n-1)$-dimensional oriented structure (Γ^i, γ^i) such that $(B(\Gamma^i), \beta^i) = (\Gamma, \gamma)$ ([BG]); thus, every closed n-manifold can be obtained as a bijoin over a suitable $(n-1)$-dimensional oriented structure. A refinement of this result, in dimension three, obtained by making use of «normal crystallizations» ([BDG]), is contained in [Gr].

Extending [M], a closed orientable n-dimensional pseudomanifold N (triangulated by a pseudocomplex K) is said to be a singular n-manifold if the disjoined link of each k-simplex, $k > 0$, is a sphere and the disjoined link of each vertex is a (closed) connected $(n-1)$-manifold. A vertex of K such that its disjoined link is (resp. is not) an $(n-1)$-sphere is said to be regular (resp. singular).

Every singular n-manifold can be obtained by capping off each boundary component of an n-manifold by a cone. In the other sense, if K is a pseudocomplex triangulating a singular n-manifold N and $W \subseteq S_n(K)$, let $M(K, W)$ denote the space obtained by removing from the barycentric subdivision K' of K the open stars in K' of the vertices belonging to W; then W contains all singular vertices of K if and only if $M(K, W)$ is an n-manifold whose boundary components are $Lk(v, K')$, with $v \in W$.

Note that, in dimension three, the pseudocomplex $K(\Gamma')$ associated to an arbitrary (bipartite) 4-coloured graph (Γ', γ) always triangulates a singular 3-manifold.

Proposition 1. Let (Γ, γ) be a 4-coloured bipartite graph such that all c-labelled vertices of $K(\Gamma)$ are regular, for every $c \in \Delta_3$. If W denotes the set of all 3-labelled vertices of $K(\Gamma)$ and (Γ', γ') is the 2-dimensional oriented structure such that $(B(\Gamma'), \beta) = (\Gamma, \gamma)$, then $K(\Gamma')$ is a spine of the 3-manifold $M(K(\Gamma), W)$.

Proof. It directly follows from the bijoin construction that $K(\Gamma')$ is the subcomplex of $K(\Gamma)$ consisting of all simplexes of $K(\Gamma)$ whose vertices are labelled by colours different from 3. Thus, for a sufficiently small $\varepsilon > 0$, the ε-neighbourhood \mathcal{B}_ε of $K(\Gamma)$ in $K(\Gamma')$ is an ε-neighbourhood of $K(\Gamma')$ in $M(K(\Gamma), W)$ too. For the collapsing criterion for regular neighbourhoods ([RS], corollary 3.30), the polyhedron $|\mathcal{B}_\varepsilon| = M(K(\Gamma), W)$ collapses on $|K(\Gamma')|$.

Corollary 2. If \((\Gamma, \gamma)\) is a 4-coloured bipartite graph representing a (closed, orientable) 3-manifold \(M\) such that \(K(\Gamma)\) has a unique 3-coloured vertex (in particular, if \((\Gamma, \gamma)\) is a crystallization of \(M\)), then \(|K(\Gamma')|\) is a spine of \(M\).

4. NEUWIRTH ALGORITHM VIA BIJOINS

Set \(N_k = \{1, 2, \ldots, k\}\).

If \(\Phi = \{x_1, \ldots, x_r\} | r_1, \ldots, r_g\) is a group presentation, denote by \(\lambda(x_i), i \in N_g\), the number of occurrences of the generator \(x_i\) in the relators of \(\Phi\) and by \(\lambda(r_j), j \in N_r\), the length of each relator \(r_j\); the length \(\lambda\) of \(\Phi\) is defined by \(\lambda = \sum_{i \in N_g} \lambda(x_i) = \sum_{j \in N_r} \lambda(r_j)\). For each relator \(r_j\), take a 2-cell \(\beta_j\) and triangulate its boundary by «reading» the relator \(r_j\). Thus, we obtain a complex \(H_j\) triangulating \(\partial \beta_j\) with \(\lambda(r_j)\) labelled vertices, each of which is labelled by a generator and has a suitable orientation. Label each vertex of \(H_j\) by the colour 0, take the barycentric subdivision \(H'_j\) of \(H_j\) and label all the barycenters by the colour 1. Note that each oriented \(x_i\)-labelled edge \(\alpha\) of \(H_j\) splits into an ordered pair \((\alpha^-, \alpha^+)\) of oriented \(x_i\)-labelled edges in \(H'_j\); more precisely, if \(b_0, u_0, v_0\) respectively denote the barycenter, the first and the second endpoint of \(\alpha\), the ordered pair \((u_0, b_0)\) (resp. \((b_0, v_0)\)) represents the endpoints of the oriented edge \(\alpha^+\) (resp. \(\alpha^-\)). By starring \(\alpha\) from an inner point \(C_\alpha\) (labelled by the colour 2) over \(H'_j\), we obtain a pseudocomplex \(K_\alpha\) triangulating \(\beta_j\) with a coloration on its vertex set by the colours 0, 1, 2 (fig. 1). Now, take the disjoint union \(\bigsqcup_{\alpha \in N_\Phi} K_\alpha\) and identify the oriented edges \(\alpha^-\) (resp. \(\alpha^+\)) of its boundary labelled by the same generator so that identified vertices have the same colour. Let \(\bar{K}_\Phi\) be the resulting representable 2-pseudocomplex and let \((\Gamma', \gamma)\) be its associated crystallized structure.

The 0-adjacency (resp. 1-adjacency) in \((\Gamma', \gamma)\) induces a fixed-point-free involution \(B\) (resp. \(A\)) on the set \(V(\Gamma')\) and the set of the vertices belonging to the same \([2]\)-residue of \((\Gamma', \gamma)\) can be thought of as an orbit of a suitable permutation \(C\) on \(V(\Gamma')\). These permutations are the homonimous ones associated to \(\Phi\) in \([N]\). The assignment of such a permutation \(C\) gives rise to a particular 2-dimensional oriented structure \((\Gamma_C, \gamma_C)\) associated to the crystallized structure \((\Gamma', \gamma)\); in fact, \(C\) induces a cyclic ordering in the vertices of each \([2]\)-residue of \((\Gamma', \gamma)\) which are the only \([c]\)-residues of order possibly greater than two. Thus, the geometrical meaning of the choice of a particular \(C\) is to give an ordering to the 2-simplexes of \(\bar{K}_\Phi = K(\Gamma')\) containing the same 1-simplex.

We always assume this ordering system with the property that the two cyclic orderings on the \(\lambda(x_i)\) 2-simplexes containing the two distinct
3-Manifold Spines and Bijoins

x_r-labelled edges of \bar{K}_Φ are opposite; this is equivalent to require the property $BC = C^{-1}B$ for the permutation C. Let $\Omega(\Phi)$ denote the set of all permutations C on $V(\Gamma)$ whose orbits are the sets of vertices belonging to the same $[2]$-residue of (Γ, γ) and such that $BC = C^{-1}B$.

From now on, the symbol $|P_1, \ldots, P_m|$ will denote the orbit number of the group generated by the permutations P_h, $h \in N_m$, acting on the same set.

Note that, for every $C, C' \in \Omega(\Phi)$, $|A, C| = |A, C'|$; in fact, the number $|A, C|$ only depends upon A and the orbits of C.

The cellular structure of the pseudocomplex \bar{K}_Φ immediately shows that $|K_\Phi|$ is the quotient of $|\bar{K}_\Phi|$ obtained by identifying the 0-labelled vertices of \bar{K}_Φ. Moreover, the number of these vertices, i.e. the number of the $\{1, 2\}$-residues in (E, λ), is $|A, C|$. As a consequence, we have:

Proposition 3. The pseudocomplex \bar{K}_Φ is a (pseudosimplicial) triangulation of the standard complex K_Φ if and only if $|A, C| = 1$.

Remark. Given a group presentation Φ, the number of connected components in the associated P-graph P_Φ is $|A, C|$ ($|\Phi|$); moreover, it is easy to verify that every 3-manifold admits a standard spine K_Φ such that the associated P-graph P_Φ is connected.

Thus, there is no loss of generality in restricting our study to those group presentations for which $|A, C| = 1$ and in supposing that \bar{K}_Φ triangulates K_Φ.

With the above notations and assumptions, let C be a given permutation in $\Omega(\Phi)$ and let $(\bar{\Gamma}_C, \bar{\gamma}_C)$ be the 2-dimensional oriented structure associated to (Γ, γ) and generated by C.

Proposition 4. Let $(\bar{\Gamma}_C, \bar{\gamma}_C)$ be the h-bijoin over $(\bar{\Gamma}_C, \bar{\gamma}_C)$ and let W be the set of all 3-labelled vertices in $K(\bar{\Gamma}_C)$.

(a) $h = |AC, BC|$;
(b) the space $M(K(\bar{\Gamma}_C), W)$ is a 3-manifold, having K_Φ as a standard spine, if and only if $|AC| = \lambda - 2g + 2$;
(c) if (b) holds, the Euler characteristic of $K(\bar{\Gamma}_C)$ is $g - s + h - 1$;
(d) if $g = s$ (resp. $g = s + 1$) and (b) holds, then $|K(\bar{\Gamma}_C)|$ is a closed 3-manifold (resp. $M(K(\bar{\Gamma}_C), W)$ is the exterior of a knot), having K_Φ as a standard spine, if and only if $|AC, BC| = 1$.

Proof. If $\mathcal{F} \subset \Delta_2$ (resp. $\mathcal{F} \subset \Delta_3$), the symbol $g_\mathcal{F}$ (resp. $g_\mathcal{F}'$) will denote the number of \mathcal{F}-residues in (Γ, γ) (resp. in $(\bar{\Gamma}_C, \bar{\gamma}_C)$).
Luigi Grasselli

Since the number of 2-simplexes in each K_i is $2\lambda(r_i)$ and $\sum_{i} \lambda(r_i) = \lambda$, then

$$\text{Card}(V(\Gamma_c)) = 2 \cdot \text{Card}(V(\Gamma)) = 4\lambda. \quad [1]$$

Each $\{c\}$-residue $(c \in \Delta_i)$ in (Γ, γ) is a complete graph of order two and $g_{\{c\}} = g_{\{1\}} = \lambda$; in fact, in each K_i there are exactly $\lambda(r_i)$ edges whose endpoints are labelled by the colours 2 and c and they are faces of exactly two 2-simplexes.

Hence:

$$g'_{\{0, 1\}} = g_{\{0\}} = |B| = \lambda \quad [2]$$

$$g'_{\{1, 3\}} = g_{\{1\}} = |A| = \lambda.$$

For every $i \in N_g$, there are exactly two $\{2\}$-residues in (Γ, γ) which are complete graphs of order $\lambda(x_i)$. In fact, there are exactly two x_i-labelled edges in $\overline{\mathcal{K}}_b$ and the number of 2-simplexes of which each x_i-labelled edge is a face is the number $\lambda(x_i)$ of occurrences of the generator x_i in the relators of Φ. Hence:

$$g'_{\{2, 3\}} = g_{\{2\}} = |C| = 2g. \quad [3]$$

Recall that an alternating path in an oriented graph $\overline{\Gamma}$ is a path whose adjacent edges have opposite orientations. In an oriented structure $(\overline{\Gamma}, \overline{\gamma})$, for every pair h, k of distinct colours, a weak $\{h, k\}$-cycle ([BG]) is an alternating cycle of $(\overline{\Gamma}, \overline{\gamma})$ whose edges are alternatively coloured by h and k. If \overline{g}_{hk} denotes the number of weak $\{h, k\}$-cycles of $(\overline{\Gamma}_c, \overline{\gamma}_c)$, we have $g'_{\{h, k\}} = \overline{g}_{hk}$, for each $h, k \in \Delta_2$.

The number of the $\{3\}$-residues in (Γ_c, γ_c) is the number of the orbits in the permutation group generated by AB, BC and AC. Since $AB = (AC)(BC)^{-1}$, we have:

$$h = g'_{\{3\}} = |AB, BC, AC| = |AC, BC| \quad [4]$$

and this proves (a).

If $P(c)$, $c \in \Delta_2$, denotes the permutation on $V(\overline{\Gamma}_c) = V(\Gamma)$ induced by the c-adjacency, it is easy to see that $\overline{g}_{hk} = |P(h)^{-1} P(k)| = |P(h)^{-1} P(k)| = \overline{g}_{hk}$, for each pair of distinct colours $h, k \in \Delta_2$. Thus, the following equalities hold:

$$g'_{\{0, 1\}} = \overline{g}_{01} = |AB^{-1}| = |AB| = 2\lambda \quad [5]$$

$$g'_{\{0, 2\}} = \overline{g}_{02} = |B^{-1} C| = |BC| = \lambda$$

$$g'_{\{1, 2\}} = \overline{g}_{12} = |A^{-1} C| = |AC|.$$
Note that, \(|BC| = \lambda\) since \(BC = C^{-1}B\) and hence \((BC)^2 = 1\).

For each \(j \in N_a\) there is one \([0,1]\)-residue in \((\Gamma, \gamma)\) which is a bicoloured cycle of length \(2\lambda (r_j)\); in fact, the \([0,1]\)-residues in \((\Gamma, \gamma)\) are in one-to-one correspondence with the inner vertices \(C_j\) of \(\beta_j\). Hence:

\[g'_1 = g_1 = |A, B| = s. \]

[6]

For each \(i \in N_c\), there is one \([0,2]\)-residue in \((\Gamma, \gamma)\) with \(2\lambda (x_i)\) vertices, in fact, the \([0,2]\)-residues in \((\Gamma, \gamma)\) are in one-to-one correspondence with the barycenters in \(\partial K_c\). Hence:

\[g'_0 = g_0 = |A, C| = g. \]

[7]

Finally, since, as pointed out for the proof of Proposition 3, the 0-labelled vertices in \(K_c\) are in one-to-one correspondence with the \([1,2]\)-residues in \((\Gamma, \gamma)\), the assumption \(|A, C| = 1\) gives:

\[g'_0 = g_0 = |A, C| = 1. \]

[8]

Let us now compute the Euler characteristic \(\chi(K_d)\) of the pseudocomplex \(K_d = K((\Gamma_c)_{\lambda})\), for each \(d \leq \Delta_c\), by making use of the equalities (1) - (8) and by recalling that the number of 2-simplexes (resp. 1-simplexes) in \(K_d\) is \(\text{Card}(\bar{V}(\Gamma_c)) = 4\lambda\) (resp. \(3 \text{Card}(\bar{V}(\Gamma_c)) = 6\lambda\)).

\[\chi(K_d) = 4\lambda - 6\lambda + (g'_{[0,1]} + g'_{[1,2]} + g'_{[2,3]}) = -2\lambda + (|AC| + \lambda + 2g) = |AC| + 2g - \lambda; \]

\[\chi(K_1) = 4\lambda - 6\lambda + (g'_{[0,1]} + g'_{[1,2]} + g'_{[2,3]}) = -2\lambda + (\lambda + \lambda + 2g) = 2g; \]

\[\chi(K_0) = 4\lambda - 6\lambda + (g'_{[0,1]} + g'_{[1,2]} + g'_{[0,1]}) = -2\lambda + (\lambda + \lambda + 2s) = 2s. \]

As pointed out in section 2, each \([d]\)-residue in the 4-coloured graph \((\Gamma_c, \gamma_c)\) represents the disjoined link of the represented \(d\)-labelled vertex in \(K(\Gamma_c)\). Since the equality [6] (resp. [7]) states that the number of \([2]\)-residues (resp. \([1]\)-residues) in \((\Gamma_c, \gamma_c)\) is \(s\) (resp. \(g\)), the equality \(\chi(K_d) = 2s\) (resp. \(\chi(K_0) = 2g\)) proves that the disjoined link of each \(2\)-labelled (resp. \(1\)-labelled) vertex in \(K(\Gamma_c)\) is a 2-sphere. Hence all 1-labelled and 2-labelled vertices of \(K(\Gamma_c)\) are regular. Moreover, the disjoined link \(K_0\) of the unique 0-labelled vertex of \(K(\Gamma_c)\) is a 2-sphere if and only if \(\chi(K_0) = |AC| = 2g - \lambda = 2\), that is if and only if \(|AC| = \lambda - 2g + 2\). This result, together with Proposition 1, proves (b).

The Euler characteristic computation of \(K(\Gamma_c)\) gives:

\[\chi(K(\Gamma_c)) = (g'_0 + g'_1 + g'_2 + g'_3) - (g'_{[0,1]} + g'_{[0,2]} + g'_{[0,3]} + g'_{[1,2]} + g'_{[1,3]} + g'_{[2,3]}) + \text{Card}(\bar{V}(\Gamma_c)) = \]

\[(1 + g + s + h) - (2s + \lambda + \lambda + |AC| + \lambda + 2g) + 8\lambda - 4\lambda = \lambda + h + 1 - s - g - |AC|. \]

Thus, if (b) holds, \(\chi(K(\Gamma_c)) = g - s + h - 1\).
Finally, if \(g = s \) (resp. \(g = s + 1 \)) and (b) holds, \(\chi(K(\Gamma_0)) = h - 1 \) (resp. \(\chi(K(\Gamma_0)) = h \)) and hence \(|K(\Gamma_0)| \) is a closed 3-manifold (resp. \(M(K(\Gamma_0), W) \) is the exterior of a knot) if and only if \(h = 1 \); proposition 1, corollary 2 and equality [4] complete the proof of (d).

\[\square \]

Proposition 5. Let \(M \) be a 3-manifold having \(K_8 \) as a standard spine. There exists a permutation \(C \in \Omega(\Phi) \) such that \(M = M(K(\Gamma_0), W) \).

Proof. If \(\alpha \) is a 1-simplex of \(K_8 \), the embedding of its star \((\alpha, K_8) \) in the (arbitrarily oriented) 3-manifold \(M \) induces a cyclic ordering of the 2-simplexes of \(K_8 \) containing \(\alpha \). Thus, a permutation \(C \) on \(V(\Gamma) \) or, equivalently, an oriented structure \((\Gamma_C, \gamma_C)\) can be associated to the crystallized structure \((\Gamma, \gamma)\) representing \(K_8 \).

Note that the embedding of \(K_8 \) in \(M \) directly gives \(BC = C^{-1}B \) and hence \(C \in \Omega(\Phi) \). Let \((\Gamma_C, \gamma_C)\) be the \(h \)-bijoin over \((\Gamma_C, \gamma_C)\); note that the choice of the opposite orientation in \(M \) gives rise to the opposite oriented structure but to the same graph \((\Gamma_C, \gamma_C)\), as pointed out in section 3. If \(M \) denotes the singular 3-manifold obtained by capping off each boundary component of \(M \) by a cone, then \(M = [K(\Gamma_0)] \) and hence \(M = M(K(\Gamma_0), W) \), \(W \) being the set of all 3-labelled vertices in \(K(\Gamma_0) \).

\[\square \]

If \(\Omega'(\Phi) \) denotes the subset of \(\Omega(\Phi) \) consisting of all \(C \in \Omega(\Phi) \) such that \(|AC| = \lambda - 2g + 2 \), then proposition 4 and proposition 5 lead to the following result:

Corollary 6. The complex \(K_8 \) is a standard spine of a 3-manifold \(M \) if and only if there exists a permutation \(C \in \Omega'(\Phi) \) such that \(M = M(K(\Gamma_0), W) \).

\[\square \]

The above result directly produces an effective algorithm for testing the geometricity of a group presentation, extending Neuwirth's one to non-balanced presentations.

Example. Let \(\Phi = <x, y \mid x^3 y^2> \). In this case, \(g = 2 \), \(s = 1 \) and, with the notations of fig. 1, the permutations \(A, B \) can be written in the following way:

\[A = (1 \ 2 \ 3 \ 4 \ 5), \ B = (1 \ 3 \ 5 \ 2) \ (3 \ 1 \ 4) \ (4 \ 5 \ 3) \ (5 \ 4) \ (5 \ 3). \]

Moreover, the orbits of the permutation \(C \) are \(\{1, 2, 3\}, \{1, 2, 3\}, \{4, 5\}, \{4, 5\} \).
The choice of \(C = (1 \, 2 \, 3) \, (3 \, \bar{2} \, \bar{1}) \, (4 \, 5) \, (\bar{3} \, \bar{4}) \in \Omega(\Phi) \) produces the 4-coloured graph \((\Gamma_C, \gamma_c)\) drawn in fig. 1 and \(M(K(\Gamma_C), W) \) is the exterior of the trefoil knot.

Figure 1a.

Figure 1b.
Figure 1c.

(Γ', γ)

Figure 1d.

(Γ'_c, γ_c)
5. MONTESINOS ALGORITHM VIA BIJOINS

We sketch Montesinos algorithm described in [M].

With the notations of the previous section, let Φ be a given group presentation whose associated P-graph P_Φ is connected; make Φ positive and call the new presentation Φ again.

Take the permutation $\tau = (1, 2, \ldots, \lambda (r_1)) \cdot (\lambda (r_1) + 1, \ldots, \lambda (r_1) + \lambda (r_2)) \cdot \ldots \cdot (\ldots, \lambda (r_k) \cdot (\lambda (r_k) + 1, \ldots, \lambda (r_k) + \lambda (r_{k+1}) \cdot \ldots \cdot (\ldots, \lambda (r_s) \cdot (\lambda (r_s) + 1, \ldots, \lambda (r_s) + \lambda (r_{s+1}))))$.

(\ldots, \lambda (n))$ on N, and the set of all permutations σ on N_n whose orbits d_1, \ldots, d_k are defined as follows: the number $j \in N$ belongs to d_i if and only if there is a relator r_k whose $(j - \lambda (r_{k-1}))$-th letter is x_i. Let $\Sigma (\Phi)$ denote the subset of all such σ satisfying $|\sigma, \tau \sigma \tau^{-1}| = 1$ and $[\sigma, \tau] = \lambda - 2g + 2$.

If $\Sigma (\Phi) \neq \emptyset$, then, for each $\sigma \in \Sigma (\Phi)$, construct the singular 3-manifold $N(\sigma, \tau)$ by taking λ copies t_1, \ldots, t_λ of the standard tetrahedron t whose bidimensional faces are denoted by $S, \tilde{S}, T, \tilde{T}$. Label the faces $S, \tilde{S}, T, \tilde{T}$ in the copy t_1 as $S_{i\alpha(\tilde{t})}, S_{i\alpha(\tilde{t})}, T_{i\alpha(\tilde{t})}, T_{i\alpha(\tilde{t})}$ respectively; identify S_{t_i} with S_{t_i} and T_{t_i} with T_{t_i} by an orientation-reversing linear homeomorphism respecting the edges $S \cap S$ and $T \cap T$.

If W denotes the set of all singular vertices of $N(\sigma, \tau)$, then $\{ M(N(\sigma, \tau), W) \mid \sigma \in \Sigma (\Phi) \}$ is the set of all 3-manifolds M^3 admitting a Heegaard diagram whose associated presentation for $\Pi_1 (M^3)$ is Φ.

Since P_Φ is connected, the representable 2-pseudocomplex \tilde{K}_Φ triangulates K_Φ; now, it is possible to label the vertices of the crystallized structure (Γ, γ) associated to K_Φ by the set $N_\lambda = \{ 1, 2, \ldots, \lambda, \tilde{1}, \tilde{2}, \ldots, \tilde{\lambda} \}$ so that:

$$A = (12) \cdot (23) \cdot (\ldots, (\lambda (r_1) - 1, \lambda (r_1) - 1) \cdot (\lambda (r_1) + 1, \lambda (r_1) + 1) \cdot \ldots \cdot \lambda (r_s) \cdot (\lambda (r_s) + 1) \cdot \ldots$$

$$\cdot \lambda (r_s) + 1, \lambda (r_s) + 1) \cdot (\lambda (r_s) + 1, \lambda (r_s) + 1) \cdot \ldots \cdot (\lambda (r_s) + 1, \lambda (r_s) + 1).$$

Moreover, if C is a permutation on N_λ satisfying the following properties:

- j (resp. j) belongs to the orbit d_i (resp. d_j) of C if and only if there is a relator r_k whose $(j - \lambda (r_{k-1}))$-th letter is x_i,
- the ordering of the elements j in d_i is opposite to the ordering of the elements j in d_j,

then $C \in \Omega (\Phi)$.

Thus, the choice of σ induces an associated C_σ (and hence an oriented structure $(\bar{\Gamma}_\sigma, \bar{\gamma}_\sigma) = (\bar{\Gamma}_c, \bar{\gamma}_C)$) in a standard way and vice versa.
Proposition 7. The singular 3-manifold $N(\alpha, \tau)$ is PL-homeomorphic with $|K(T_0)|$, (T_0, γ_0) being the h-bijoin over (T_0, γ_0).

Proof. If t is the standard tetrahedron, subdivide it into four tetrahedra in the following way. If V_5 (resp. V_7) is the barycenter of $S \cap \bar{S}$ (resp. $T \cap \bar{T}$), join V_5 with V_7 by an edge whose interior is contained in the interior of t and subdivide S, \bar{S} (resp. T, \bar{T}) by joining V_5 (resp. V_7) with the endpoints of $T \cap \bar{T}$ (resp. $S \cap \bar{S}$). Label V_5 by 1, V_7 by 2 and the endpoints of $S \cap \bar{S}$ (resp. $T \cap \bar{T}$) by 0 (resp. 3) (fig. 2).

![Diagram](image)

In this way, $N(\alpha, \tau)$ is triangulated by a representable 4-pseudocomplex K' in which each t_i splits into four tetrahedra.

If (E', γ') is the 4-coloured graph representing K', it is straightforward that the oriented structure (E', γ') is isomorphic with $(\bar{E}_0, \bar{\gamma}_0)$ and hence $N(\alpha, \tau) = |K(T_0)|$.

Since $|\sigma, \tau| = g' = g$, $|\sigma| = g$, $|\tau| = s$, $|\sigma, \tau\sigma^{-1}| = g'_0 = |A, C|$, $|\tau, \sigma\tau^{-1}| = g'_3 = h = |AC, BC|$, all results in [M] can be restated in terms of spines or in terms of bijoins and edge-coloured graphs.

It appears as evident that the graph-theoretical bijoin construction is the idea which unifies both Neuwirth and Montesinos algorithm.
3-Manifold Spines and Bijoins

References

