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Projective Limits of Vector Measures

FiDEL J. FERNANDEZ and P. JIMENEZ GUERRA

ABSTRACT. A necessary and sufficient condition for the existence of the projective
limit of measures with values in a locally convex space is given. A similar theorem for
measures with values in different locally convex spaces (under certain conditions) is
given too (in this case, the projective limit is valued in the projective limit of these
spaces). Finally, a result about the projective limit of vector measures is stated.

1. INTRODUCTION AND NOTATION

In [26] L. Schwartz has proved the Prokhorov’s theorem about the
existence of the projective limit of a projective system of finite (scalar) Radon
measures (of type (3#')) on Hausdorff topological spaces. This result has been
extended in [16] for arbitrary (scalar) Radon measures of type (&) on
topological spaces.

As it is weil known the Prokhorov’s theorem has a very important role in
the study of cylindrical measures and in general in probability theory.

The main object of this paper is to prove a Prokhorov’s type theorem for
vector Radon measures. This has been made here for Radon measures of type
(&) on an arbitrary topological space E with values in a complete locally
convex Hausdorff space X. Of special interest are the following particular
cases: (1) Eis a Hausdorff topological space and < is the class of all compact
subsets of E, and (2) X is a Banach space.

In the last section we give the relation between the projective limit of a
system of product measures (u; ®v,);; and the tensor product of the limits of
the systems (u,);.; and (#,);,. This result remains valid in general without any
assumption about the regularity of the measures. A theorem of this type for
scalar Radon measures has been proved in [12].
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Let X be a complete locally convex Hausdorff space whose topology is
defined by a saturated family % of seminorms, and denote by E, ¥, % and
% a topological space and the classes of its open, closed and Borel subsets
respectively.

If u:% — X is a (c-additive) vector measure, and pe &, the p-

semivariation of u will be as usual the mapping ||ul|,; & —=R+U{+co}
defined by

ullp(B)=supp(3 Gud))  (Be @)

where the supremum is taken over all partitions of B into a finite number of
disjoint sets {4} ;7, C &4 and all finite collections of elements f;} ;21 C'R with
[l =1 for every j=1,...,n. It is easily proved that

. .
[l1, (Bj=sup (ZIIX'P(A,-)I) (Be &)
J|=
where the supremum is taken over ail finite partitions {4} ;2| C % of Band

all x’€ X" such that [x"(y) | =<p (¥} for every y€ X, where X’ denotes the dual
space of X ; and

Hell,(B)=2sup {p(u(A}):Ac B ,ACB}

for every borel subset Be 4.

2. EXISTENCE THEOREMS FOR PROJECTIVE
LIMITS OF VECTOR MEASURES

Definition 1. A4 borel subset BE & is said 1o be p-compact if for every
open cover {G};.; of B, every seminorm p< P and ¢ >0, there exists a finite
subset JC I such that

Hullp(B—U G =e [1.11

Definition 2. Ler & be a family of closed subsets of E. We say that u is
a Radon measure of type (&) if the following statements hold :

2.1. Every HE& is u-compact.

2.2. For every B€e &, pe P and ¢>>0, there exists HE S such that
HCBand ||il|, (B~ H)<e.

If 4 is a Radon measure of type (&) then it is easily proved that every
Borel subset of E is u-compact.
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Definition 3. Ler E be a projective limit of the projective system
(E, IL;);;c; of topological spaces and denote by 1l; the corresponding
projection from E into E; (i€ l). If for every i€l, u;:%;— X is a Radon
measure of type (¥;) (¥; denotes the Borel family of E;; and &, a family of
closed subsets of E;, which is closed under finite unions), we say that (i;);.; is
a projective system of Radon measures of type (&), if I;(u)=p: (i.e.
u (B )= uj(nL{ (B;)) for all B,.cB,) for every i,jc I with i<j; and a Radon
measure of type (') u:%— X is said to be the projective limit of the
measures (it;);; (it is immediately proved that if the projective limit measure
exists then it is unique) when 11, (u)= u; holds for every i€l (ie. u;(B;))=
=u(Il/(B;)) for every B,€ %, and icl).

Let us introduce the following conditions:

3.1. & is closed under finite unions, HN Fe & for every He & and
Fe % II,(H)e & for every He & and iel, and for every He &7 there
exists iy e/ such that I, (H)e &, for every i= iy

3.2. For every ief and pe &, there exists a non negative and finite
measure 7 %, — R* such that

3.2.1. II,;(vP)=v? forevery pe ¥ and i, je I with i< j.
FANY i

3.22. wP(B)=inf{v?(G): B, CG;e ¥}, for every iel pe? and
Bied,

3.2.3. For every ¢>0 and pe % there exists i, e/ and n>>0 such that
Uil |, (B )=e for all i=i, and B;e &; with v¥(B;)=n.

Lemma 4. If the Radon measure of type (&) u: B— X is the projective
limit of a projective system (u,);.; of Radon measures of type (%) and
conditions 3.1 and 3.2 are verified, then

w(H)y=1lim w;(11;(H}) [4.1]
P=Ziy
for every He &4 Moreover, u is of bounded semivariation if and only if the
semivariations of the measures p,(ie l) are uniformly bounded.
Proof. It follows from conditions 3.1 and 3.2 that for every He &,

(1;(IL;(H)) );=;,, is a Cauchy net in X.

Let us set

AH) = ‘_lgn u; (11, (H) ). [4.2]
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(If the semivariations (||p,-[|p),-t, are uniformly bounded (for every pe &),
then (u;(I1L;(#)) )iz, 15 a bounded Cauchy net in X and so the limit [4.2]
exists also assuming only that the space X is quasi-complete.)

Let He&, pe & and ¢>>0. Then

ief
=

H=N 7' (=N 1= (T8
I =0 107 (I (H)),

iZiy
and there exists i, ,...,#{, ¢ I such that
a1, (L) (T, T — H)N(O 115! (T, TH)) ) <ee
Therefore, if i e/ is such that iy=i, and i,<<i, for h=1,...,r, then
e, (I (H)— H)<e
for every ie I with i=i,, and
P (IL(H)) — p(H))=p (u (I IL(H) ) — u (H)) =
=p (7 T (H) — H) < { el [, (17 T (H) — H)<e
for every ie [ with i,<i So, p(A(H)— u(H))=<¢;
from where it follows immediately that u (H) = A (H).

Moreover, if u is of bounded semivariarion then the measures y; (i e I} are
of uniformly bounded semivariation since

Heil |, (BY= 11l ,(T17(B))

for atl pe & and B;e &, Conversely, if for every p e & there exists K>>0 such
that || w,||,(E)=< K for every ie I, then for every ¢ >0 and Be &, there exists
He & such that H C Band ||ul |, (B — H)=¢; therefore ,

p(r(B))=p(p(B—H)+pu(H)=||ull,(B—H)+
+p(/\(H))“—:e+S_uPII#;IIp(E;)SE+K;

iZiy

and ||u]],(F}<2-sup{p(u(B)):BeB }<2K<+oo .

Theorem 5. Let (i), be a projective system of Radon measures of type
(<), and assume that conditions 3.1 and 3.2 are satisfied. Then the projective
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limit u of the system (u;. ; exists and p :#— X is a Radon measure of type
(&), if and only if the following statements hold:

5.1. Forevery pe?, ¢>0, Hest and open cover {Gi};.; of H, there

exists a finite subset J'CJ and i, I such that i,2 iy, with H;= HMJ&JJ, G;,
and

il (T (H=Y Gy))<e
Jor every i =1,

52. Foreverype?® ¢>0, ie Iand H;e 7, there exists H e &7 such that
HCII; (H) and

oo || (1) (H)—T0,, (H) )<,
Jorevery i'el withi’=iand i'= iy

Proof. The condition is necessary, Consider pe ¥, >0 and He & If
{G;};.; 1s an open cover of H, there exists a finite subset J'CJ such that

Set Hi=H —~_Uj, G; e &, then as we have seen in the proof of Lemma 4,
- - je - -
there exists i, e f such that i,=iy and

el (I TL(H ) — Hy) <¢/2
for all ie [ with i=i,. Therefore, we get
H#.-IIP(U.-(H—}‘JJ, G = |, (I I, (H) ) <
S ull, U I CH) — H)+ el (H) e,
for all i=i,(i ¢ ), and 5.1 hoids.

Moreover, for ie I, H;¢ &, pe % and €0, there exists H e & such that
HCII7 (H,) and

ol 1, (O (H) — H)<e.
Therefore we get, if j=i and j=iy4 (e 1),
N, (5 CH) = TL(H) < ||l |, (07 (XL (H) — IL(H)) )=

= pll, AT (H) — T T (H)) < [ e, (17 (H) — HY<e€, and 5.2 holds.
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The condition 1s sufficient. Let A be defined as in [4.2]; then we have:
) M H,, H,e& satisty H{NH,=0, then
AMHUH)=MH)TA(H). [5.1]

In fact, H,C E— H2=_UI(E— ;1 (II;(H,)) ), and it follows from 5.1 that

for every seminorm pe % and ¢>>0 there exists i, ¢ f such that
Nl (H;(B))<e for every Be% and jel such thae j=i,

BC H NI (IT,(H,)) and IL(B) e %,. Therefore,
PNH)TAH) —A(H I UHy))=

=P (ll_i:}l (i (TG (H ) )+ s (I (HR) ) — wi(IL(H VU H) ) )=

iy ey w0 H,

=lim pp(IL(H)NTL (M) )=sup L], (ILH) NI (M) =
i€ L L)
iZiHI,r'Hz,fo [

=sup a1 (TLCH NI L (HD) ) )<,
and :lllech‘c;{Ga}ity [5.1] holds.
i) Forevery He ', pe % and ¢>>0, there exists Ge & such that HC G
e pPNH)—ANHT)— A (H) )=
it H H e, HCH and '— GCH"CH — H.

To prove this, let us remark first that for every He <, pe % and ¢>0,
there exists i, iy (i,e I} such that if k= 7=, (k, jel), then

il | (15 (TG (H)) — TL (H) ) <€/ 2.

Moreover, there exists >0 and i) e f such that ||g;|(,(B)<¢/2 for every
=i (iefl) and Bje &, with vifB)=mn.

Let us consider j=i,, . Since i,= iy, Il,(H)e %, and then
V(I (H)) = inf{ 2P (G): IL(H)C Ge %)},
and there exists G, e ¥, such that II;(#)C G, and v2(Gi—11,(H))<7n.

So we have
vE(IHG) — TG (L, (H)) Y)=v2(G;— I, (H))<n,
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and
Hail 1, (TG — T (H)) <
= il 1, (I (G) — T TL(HD ) + |l |, (TL TL (D — T, (H) ) <
=e/2t+€/2=¢,
ifi=j (iel.

Set G=1I;'(G); then HC G and
IL(H)—IL(H)CIL; (G if H°, Hes', HC H”,

— GCH”CH — H and i2j. Therefore,
PAH)~AH)—-AH)=pA(H)-AH"UH))=

=p{lim (i (1L, (H))— w,(L,(H"UH)) ) )=

e g g

=lim P (IL(H) - IL(H"UH)))=

gy g

=sup Nl QL) = (IL(HT U ILED) ) )=

=gy
=sup Hull, (0L (G) —TL(H) =«
as stated.
iii) If (H));,C & is a decreasing filtering net then
‘)‘(jO,Hf)zlf,m'\(Hf) .

Let us suppose first that ﬂ H;=90. In this case H,C U (E H)) for every

reJ; and it follows from 5. r that for every pe % and 650 there exists ke J
and i, e [ such that
Hpdl o (TL(H ) ) =€

for every r=k (reJ) and i=4,, iy (iel). Therefore,
p(A(H))y=lim  p(u;(IL;(H,)))=sup pal |, (AL:(H ))<= €
iZi,, H iz JH

for every r=k (reJ); hence

lim A(H)=0=\ ().
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Let us consider the general case. Let pe % and € >0. As we have proved
before, since ﬂ H;e &7, there exists Ge & such that ﬂ H,CG and, if H',
es%’venfy ﬂ H,CH and H'~ GCH"CH' — N H;, then we get
jeJ

PONH) = N(H") = A (H))S¢/2.
Therefore, if for every jeJ we introduce H;= H;,— G, then we get
PONH) = N(H)—X (), H,)=e/2.

Moreover, since ﬁj H; =9, there exists j,¢J such that p(A(H))<¢/2 for
Je
every j= j,(jeJ);, and therefore,

PNCHY =AM H))SpN(H)= MO H)—A(H])) + p(M(H]) )=

for every j= j,; and
A(Q H)=lm A(H}.
Je f)

iv) For every Be 4, the net (A (H)}uepeain sy 1S convergent,

In fact, for every pe 92 and ¢>>0, there exists n>>0 and i, ¢ f such that
[lpill, (B)=¢€/2 for every i=i, (iel) and Bie B, with v7(B)=n.

Set
Ao (H)=inf (w8 (TL;(H)):iZ= iy}
for every He <7, then
re=sup{A,(H):BDHe } <+

for everv Be %, and there exists H,e & (with &= P(B)() such that
—n/2=AN(H,)=rg; and so,

0= A, (H)— Ay (H,)< /2
holds for every He & with H,C HC B.
Moreover, there exists r€ I such that r=i,, iy, iy and
Ao (H)S o (T (H) Y<K, (H)+n/2
for all j=r (fe J). Therefore,

vP(L(H)—~11;(H,) )= vt (TL;(H) )= v8 (T (H,) )<
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S A (H)+nf2— A, (H)<n
for all j=r. Then,
PONH)=N(Hy))=1im  p (o (T (H)— T, (Ho) )=
Ssup (L H)— 1L (H,) )=¢€/2,

FZrigy
v

and
PONH)—N(H})=¢

if H H'e %%, H,C HC Band H,C H’C B. The result now follows immediately
since the space X is complete.

V) The mapping

ur @A
B

X

B)=li A(H
K (B) ;{rrlg%()

is well defined, and clearly u (H)= A (H) for every He &
¥i) For every Be &, the equality
p(B)=p(BNF)+ u(B—F) [5.2]

holds for every closed subset FC E.

In fact, let Be 44, F be a closed subset of E, pe & and «>>0; then there
exist H, H,, H,¢ & such that HC B,

H C BNF H,CB—-F, p(AMK)— u(B))<¢/4,
pA(K)—u(BNF))<efd and p(A(K")— p(B-—-F))=¢/4 for every K, K,
K"e & such that HCKCB, HLCK'CBNFand H,C K"CB—F.

Moreover, as we have proved in ii), there exists an open subset G C E such
that #\J(HNF)C G and

PONH)—N(H")—A(HU(HNF)) )<e/4

if A, He & are such that H U(HN F)CH and
H—GCHCH'— (H\U(HNF}).
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Let be H’=HUH/UH, and H’=H,J(H—G). Then H', H” ¢,
HVUHNF)CH, H— GCH"CH —(H/U(HNF)) HC H’C B,
HCHU(HNFICBNF and H,C H”C B— F; and therefore,
Pu(B)—u(BONF)—p (B—F))=
=p(u(B)—A(H))FTp(M(H)—A(H")—MHUHNEF)) )+

+pN(H”)—u(B—F))+p(HUHNF))— (BN F))<e,and [5.2] holds
trivially.

Vi) If (A,), . »C % is a decreasing sequence then

p(NA)=lim p(A4,). [5.3]
ne N 7t —+oo

Let pe & and €>>0; then there exists H, e & such that H,C A, and

PONH)=A(H ) )=¢/8
if He & and H, C HC A,. Thus, if HedZ verifies HC A, — H,, we get
PINH))=pN(HUH)—A(H|))=¢/8,
and therefore, p(u (B))<¢/8 for every Be & with BCA,— H,.
Moreover, there exists H,e<# such that H,C A,N H; and
PA(H)~ AN(Hy))=¢e/16 if Hely and H,C HC A,N H|. Consequently, if
He& and HyC HC A; we have
pPA(H)=N(H))=p (A (H)—NHNH) )+ pANHOH)—A(H))=<
=pAH)—MNHOH) )t €e/16=p(u(H—H))+e/16=
<e/8(1+1/2).
So, if He& and HC A,— H, then
PONH))=p(ANHIH) —A(H))=€/8 (1 +1/2);
and p(u{B))=<¢/8 (1+1/2) for every Be @ with BC A,— H,. In particular,
P (4 (A2)— N (Hy) )= p (1 (Ay — Hy) ) <e[4,

Proceeding in this way, we construct a sequence (H,),.»C & such that
H,CA,NH,_, for n=2 and
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n—1
P(#(B))Sew(fb 1/27)  (<e/4)
J:
for every Be '# such that B C A, — H, (and in particular,

Pr(A)—NH)=p(u(A,— H))<e/d)  (neN*)

Since (H,), y is a decreasing sequence, we get

NN H)=lm A(H,),

R—+ o0

and there exists n,e N such that

POM(Hp) =N () Ho))Se/6

for every m=n,,.

Moreover, there exists H e &7 such that ’QN H,C HCHONA,, and
PONCH)—p (1) A))<e/6;
the sequence (HO H, ), n C & is decreasing, and there exists 77, € ¥ such that
PONHO Ho)— () H,) )<e/6

for all n=n,.

So, if m=max(ny, ny), then
Pu(Ap)— (M) A))=
=p(u(An)— N(H)Fp(N(Hp)— N H))F
TP H)—N(HMHy) )+ p (NHNHp) = M (H))+
TPONH)—p (N A))<e;
and [5.3] holds.
S ={AeDB u(B)=u(BNA)+ u(B- A4)for all Be B}

is an algebra.
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iX) I (4,),.~C & is an increasing sequence, then ’};JN A, e & and
P(Bn(nng An)):’llif}rw#(BnAn)
holds for every Be 4.
In fact, if (4,),.x C % is an increasing sequence and Be 4,
then m(?N((Bﬂ (HLSJNA,,))— A,)=0 and
0=lim i (BN(Y. A,))— Ap)=
= (BN, A,))— lim s (BN A,0);
and therefore,
#(BQ(ENAH))“I'M(BﬁREJNAn):
=1im (BN Ay} +1im (B~ A,)=pu (B),
and ’};JN A &L

%) Evidently, u is a finitely additive vector measure and % is a g-alge-
bra.

Xi) u is a Radon measure of type (&)
Let Ae 8, pe & and >0, then there exists He & such that HC 4 and
POMNE)—AN(H))=€[2
if Fe&# is such that HC FC A. Thus, if Fe & is such that FC A — H then
PNF))=pN(FUH)—A(H))=¢/2,
and p(u(B))<¢/2 for every Be % with BC A — H. Therefore,
[Wul,(A— HY=2 sup{p(u(B)). Be b, BCA— H}=<e.
Moreover, every He & is u-compact, since for every open cover { G}, of
H, pe ¥ and ¢>>0, we get from condition 5.1 the existence of a finite subset

J'C Jand i el with i,=iy, with H = H— L}' G, such that
Fi
Hesl (II,-(H—L{P G;))=¢/2 for every i=i,
Je

So, if H'¢e& and H'C H— LJJr G, then
Je
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pu(H))=lim PG@L(H)))<sup |l (TLH))Se/2;

J'Zr“, iy iZi,, iH-
and

“""HP(H_,H G)=2sup{p(u(H"): Hes, HC H_JH-GJ'}SE'
xii) It follows from the last results that u is o-additive.

%iii)
p (I (H) Y= p 4] [5.4]

for every iel and H,e &7,

In fact, it follows from the condition 5.2 that forevery ie I, H,e &7, pe &
and €>>0, there exists He ¢¢ such that HC II, ' (H,) and

el |, (L5 (H) — 1L (H) )< ¢/ 2

for every j =i, i,;. Moreover, there exists H'e & such that HC H’CII7' (H))
and

pu(IT (H)) —N(H))=¢/2.

Therefore,
p{p (17 (H))— p (H))=

Spu(ITH(H))=AMHE)) +pWNH) —p(H) =

Se/Z"‘}i}m o P (L(H) ) — i(H) )=

=0 Ty by

=e/2+im  p (L ()= w11 (H)) )=
==, !H N lH-

=e/2+sup ||l (I (H)—TL(H))<
=i gy, iy

Sfﬂ‘*‘ﬁfwllmllp(ﬂﬂ' (H) 11, (H))=¢;

and p, (H)= p (107 (H)).
%¥i¥) Let us prove that u is the projective limit of (u),.;.
For this, we consider the family

Fi={Aie Bip(A)=p('(4))}  Gel)
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Then, if F;is a closed subset of E, then for every pe P and €0, there
exists Hex% and Hes%fsuchthatHCF,, HCITTY(E), | u; Ao (Fi- H)=<¢/2
and |jull, (IT7 "(F)— H)Y<¢/2. Therefore,

Pk (F)— (Il (F)) )=

Sp(ui(F)— m(HVITL(H) ) + p(p(HUTL(H) ) —p (I (F))) =
Sultp (F— (HVIL(H) ) )+ )|, (017 (F)— H)<e;

and Fje &,

Moreover, if A, B;e & and A,C B, then B,— 4;¢ &*,; and U Ale & for
every increasing sequence (A}), v C 5”

Now it follows immediatley that 5% = 48,, and that u;(A,)=pu (1171 (4,})
for every i€ ] and A,€ #,, as we wanted to prove.

This ends the proof of Theorem 5.

Let us consider now a Hausdorff and complete locally convex space X
which is the projective limit of a projective system (X,, f3)); ;.; of Hausdorff
and complete locally convex spaces and denote by & a generating and
saturated famlly of seminorms on X; (we will assume that if i, je J, p;e & and
i< j, then p; fi;e %), and by f;: X— X;(iel) the canonical projection.

As we have made before, let ((E, %)), II;)); ;.; be a projective system of
topological spaces, with 4, the Borel o- algebra of E;, &7 a family of closed
subsets of E;, which is closed under finite unions, and u,;: %,— X; a Radon
measure of type (&77).

Let E=lim E; and denote by % the Borel g-algebra of E and by
Il;: E— E, (ie I) the canonical projection.

We will assume that
Hi(A) = fi; (1 (117 (A)) 3
for every A;e B, i,je I with i< j.
Definition 6. We say that a measure 1 : %—~ X is the projective limit (it

is easily proved that if the projective limit measure exists then it is unique) of
the last system of measures (u);.; if

:

Siw (U (A4)) )= pi(A)
Jor every A;e B;and iel.
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Let us assume that & is a class of closed subsets of E which verifies the

condition 3.1, and that for every iel and every p;e %% t' re exists a non
negative and finite measure

v¥i: 4, —= R* such that:
a) The equality

v (A)=inf{ 7" (G): A;CG, G open subset of E;} holds for every iel,
Pi€ % and A,‘G %;.

b) For every iel, p;e % and ¢>>0 there exists i,=>i and >0 such that
if je 7 and A;e %, are such that i,< j and ujp"f"f (A4,)=mn, then

11, 5, (A <e.

cy II; (uj""f"f)= v? holds for every i, jel with i< j and every seminorm
pie %

Then proceeding like in last proofs, the following results are obtained:

Proposition 7. For every Hel and iel (fiy(11;(H)) )iz;y is a
convergent net in X,; and the mapping A\ : &'— X such that

A(H)=Ilim (fz;n S ILCH) ) ) [7.1]
i J=
is well defined.

Theorem 8. The projective limit 1 of the (last) projective system of
measures (u);, ; exits and u: B— X is a Radon measure of type (&), if and
only if the following conditions are fulfilled:

8.1. Forevery He &, iel, p;e P, >0 and every open cover { G}, of
H, there exists a finite subset L’CL and i el such that i,Z1i, iy, , with
H,=H— UL‘G, , and

Wallp, £, AL (H =1 G))<e
holds for every j=1,.

8.2. Foreveryiel pie P, Hie&; and ¢>0, there exists He & such
that HCII7' (H) and

iyl p, £, (TG (HY)— T (H) )=e

for every j=1, iy .
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Morcover, if =lim g, exists and is a Radon measure of type (&), then
it is unique and u(H)=A(H) for every He<Z, X being the set function
defined in Proposition 7. Also, the measure g is of bounded semivariation if
and only if the semivariations { ||y, ‘p.-f;,- : j==i} are uniformly bounded for
every ie/ and every p;e Z.

3. ON THE PROJECTIVE LIMIT OF PRODUCT
MEASURES

Let us continue with the notations of last section and consider two
projective systems of Hausdorff and complete locally convex spaces
(Yo &)ijerand (Z;, hy); i with Q; (resp., %) a generating (and saturated)
family of seminorms on Y; (resp. on Z;) (i€ I), and suppose that ¢,g;,€ 0, and
rihi;€ #;for every pair of seminorms g;¢ Q;, rie %; and every i, je { with i< J.
We shall write Y=lmY,, Z=lim Z, ¥={p, fiip;€ &, iel}, O=lq:g:

qieQ,, iel} and P={rih;.rie F,;, iel} (g;:Y— VY, and h;: Z— 7, i€l
will be the natural projections as usual).

Let us consider another projective system of Radon measures of type
(F), ((F, ), 1L}, 11, w), e s, where ; is a family of closed subsets of F,,
closed under finite unions, %; is the Borel o-algebra of F; and v;: % — Y,
is a Radon measure of type (%), ie I (see definition 3).

Let %’ be the Borel g-algebra of F, where F=lim F;; we shall use the
following notation: II;: F— F; is the natural projection (ie /),
Hg;(ll,-j, IT), Li=(f; g, 1=, II}) and {,=(f, g;) for all i, je I with
i<

Suppose that, for every iel there exists a bilinear and .continuous
mapping §;: X;x ¥,— Z; such that the following diagram is commutative for

i<j(jeD:

d;

V1w
Xix¥— Z;
5.

i

and let 6; Xx ¥Y— Z be the function (8);,,.

Theorem 9. [f the projective limits y and v of the systems of measures
(widier and (vio; (w=Iim p;, v=1lim v;) and the product measures 1, @v, (i I)
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exist, then the product measure u Qv exists if and only if the projective limit

measure (lim_g,Qv;) of the system of measures (1, ®v,);.; exists, and in this
case they coincide.

Proof. Let us suppose that the measure y = lim u,®vp; exists: then it is
easily proved that for every A4,¢e 4, and ie [l the equality

y (7' (A)x By=8(u(T1; 1 (A)), v(B))
holds for every Be %°, from where it is deduced that
v{(Ax B)=08(n(A), v(B))
is verified for every A ¢ # and every 8¢ 48" and consequently y=u@».

The other implication is trivial,
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