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Some generalizations in the mathematical
developments of the theory of the geodetic
overdetermined problems

F. SACERDOTE and F. SANSO

ABSTRACT. Two particular cases of the overdetermined gravimetry-gradiometry
problem are discussed:

a) the case of a latitude-dependent statistical weight for gradiometric data,
corresponding to a data distribution coming from satellite polar orbits,

b) the case of a volume distribution, instead of a surface distribution, for satellite
gradiometric data.

In both cases a discussion of numerical methods for solving the problem with
realistic data is started; for case b) an analytic solution is found under simplifying
assumptions,

1. INTRODUCTION

The theory of overdetermined boundary-value problems in physical
geodesy has been developed in order to handle with rigorous mathematical
procedures situations in which different kinds of data are available from
satellite and ground measurements, and are used as boundary conditions to
solve the boundary-value problem for the earth’s potential.

Usually the different data sets are inconsistent owing to measurement
errors and a «best» estimate of the solution is looked for, according to some
minimum principle arising from the stochastic structure of the errors.

A general formulation is given by Sansd (1988), who describes the sto-
chastic properties of the boundary data by introducing Wiener measures on
the boundary surface. A different starting point is assumed by Rummel and
Teunissen (1987), who consider the problems with data continuously distri-
buted over the whole surface as limit cases of situations in which a growing
number of discrete data is given and a finite set of parameters is determined.
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Practical examples are discussed by Sacerdote and Sansd (1985a, b, 1987);
in particular, some simple cases of the gravimetry-gradiometry problem have
been treated in this theoretical frame, and some results have been obtained,
concerning the relative influence of gravity and gravity gradient data in the
determination of different harmonic components of the earth’s potential.

Yet, analytical solutions can be obtained only under drastically simplifying
assumptions. First, only the components of the gravity gradient tensor
containing radial derivatives are introduced as data. Second, the different
kinds of data - even the different components of the gravity gradient - are
assumed to be uncorrelated, and the statistical weights are supposed to be
constant all over the surface. Finally, the data are given on spherical surfaces -
not necessarily on the boundary surface. To take into account the case of
satellite measurements, buy anyway on a surface. A more realistic approach
would require that satellite data be distributed in a shell between the mini-
mum and the maximum heights of elliptic orbits.

The present paper deals with computational difficulties that arise when
some of these simplifying assumptions are dropped. More precisely, in
section 2 the case of a statistical weight depending on the latitude is investi-
gated; in section 3 the problem is reformulated for data distributed on a
spherical shell.

2. NON-CONSTANT STATISTICAL WEIGHTS

First, the main features of the mathematical developments discussed in
previous papers (Sacerdote & Sansd 1987), (Sanso 1988) are briefly sum-
marized.

Assume for simplicity that the data sets are two different scalar quantities:
one measured at ground level (for example, gravity anomaly), one got out
from satellite measurements (for example, the double radial derivative of the
anomalous potential). In addition, the earth’s surface is conventionally repre-
sented by a spherical surface §; with radius R,, and the satellite orbits are
supposed to lie on a concentric spherical surface S, with radius R; > R;.

Hence the problem is formulated as follows

ViT=0 in {} (outside §,)
B, T=fO [2.1]
B, T=f©

where B, and B, are operators that characterize the «boundary» condition on
S, and S, respectively. The data are represented by surface stochastic meas-
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ures, that can be split into a deterministic part and a zero-mean Wiener
measure:

O (dS )= B T(Q)dS g+ ul (dS)) 221
#%0) (dszg) =B,T(Q) dszg"’ #;/(dszg)

dS;p dS;p are the usual Lebesgue measures on S, and S,; the Wiener
measures uf, uy” are families of normal variables, indexed by subsets of S|
and S, respectively, with covariances

E{wf (Auf ()= p'(QdSig
E{wf (D)uf (D)} =[  p;'(Q)dS; [2.3]

E{u (A)ul (D) }=0

where p, (@), p, (Q) are suitable weight functions.

Expressions [2.3] generalize formulas [2.4] of (Sacerdote & Sansd 1987) to
the case of non-constant statistical weights. In this frame, following
(Sacerdote & Sanso 1987), the solution of problem [2.1] has the form of a
linear estimate in terms of the observables:

T(R)=[ a (P QuPESIQ[ &P OIuPES)  [24]

(P, Q) e (P Q) have to be determined from the minimization of the
quadratic error function

P (P=E{(T(R)—T(P)?}=[ p (QeHP QdSio+
+ [ @8R Q) dsy 23]

under the «unbiasedness» condition
I)=[ 5P QB T(QdSio+ [ &:(P.0)BT(Q)dSe  [26]
1

In (Sacerdote & Sanso 1987) condition [2.6] was taken into account by
introducing a Lagrange multiplier; in the present case this procedure leads to
computational difficulties in the evaluation of the multiplier itself, which is
preliminary to the determination of g, and g,. Hence a more direct procedure
is adopted, which does not enable to get rid of all the difficulties, but at least
sheds light upon the expressions for g, and g,.
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Assume for example that the boundary-value problem with the boundary
condition B, be uniquely solvable and that the solution be expressed by
applying an integral operator to the boundary known function:

T(P)=[ R(P,Q) f(QdSio- [2.7]

In this case g, (P, Q) can be expressed in terms of g; (P, Q) from condition
[2.6]. Introducing the Poisson integral kernel G (@', @), [2.6] can be written in
the form

[, 61(P.QBT(QdSio + [ dSiper(P. Q) B[ G(Q, QT(Q)dSio)=
= fS G(P, Q) T(Q)dS) [2.8]

Assume now that B, and B, be self-adjoint with respect to the scalar
products on S; and S respectively (which is certainly true if spherical har-
monics are eigenfunctions of B, and B,); then [2.8] can be written as

J; 4Si10Biog1 (P Q)+ [ dSs0 (Brgea (P, Q)G (', Q)= G(P. Q) T@=,

that yields, owing to the arbitrariness of T(Q).

Biggi (P, Q) +f%dszg'(329'g2(1’» Q))GQ, Q=GP Q) [2.10]

Finally, by virtue of [2.7], one obtains

5P Q=[ dSigR(Q. Q)= dSig Bigsa(P. Q)G(Q, Q)+ G 2]

Now, g, in formula [2.5] has to be replaced by its expression [2.11]. The
result can be expressed in the form

2 (B)=[ dSi [ dSip5:(P. Q)&:(P.QIK(Q Q)=2 Jy, 451082 (P. @

h(P Q[ dSry QP QO+ F(P) [2.12],
where
K(Q1, Q)=

f, d5ie [, @Sio [dSiop (QIR(Q. QIR(Q. Q") Bro, G(Q1, Q)

B, G (01, Q7)= deSIQP,“ (Q) Byg, H(Q, Q1) Bag, H(Q, O) 2131



Some generalizations in the mathemarical developments... 35

(H(Q Q)= dSigR(Q.Q)G(Q, 0));
P Q)=[ dSio [ dSig [ dSigpi! (Q)R(Q. QIR(Q.Q)G(P, 07).

"B G(Q, Q'9=fsI dSig pr' (Q)H(Q, P) Byp, H(Q, Q))- 2141

FB)=[ dSiq [ dSiq [ dSigpr! (QR(Q QIRQ )G (P, @),

"G(P.Q")=[ dSig p' (Q)H(P. Q) 15,

The minimization of 52 (P) with respect to the variable g, (P, Q) leads to
the integral equation

Py (Q)g: (P Q) + fs, dS:0 K(Q. Q)&:(P, @)=h(P, Q). Q€S, [2.16]

In order to carry on these computations and to clarify the meaning of the
formulas obtained up to now, developments into spherical harmonics can be
used. The following expressions for the operators B, and B, are introduced:

Ry i+l
B (=) Vo1 = A, Tinton
Tp [2.17]
RI I+1
B ) Yinon1=G Yinton
Consequently
1_ RI 1+1
R(P, Q):F ;xﬁ,‘(21+l) (_;'P_) P{(COSl,b'pQ) 5 QES] [218]
Moreover
| Ry v+
G(P,Q)="— §(21+1)(—;:) Pi(cos¥pg) , QES, [2.19]

The integrals in {2.13] and [2.14] can be easily computed only under the
additional assumption that the weight p, is constant. In this case only the
weight p, is allowed to vary with the measurement point. Anyway, even this
simplified situation is interesting from the point of view of the geodetic
applications, as p, is referred to satellite measurements and can be modelled
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from the distribution of the orbits. More precisely, in the case of polar orbits,
which are closer near the poles, a reasonable assumption for p; (Q) is

p2(0)= [2.20]

sin 8y

corresponding to a statistical weight proportional to the number of data per
unit area.

Introducing [2.17], [2.18], [2.19], the kernels defined by [2.13], [2.14] can
be written as

1

K o >, (E)ZY Y, €S
(G, )= 47 o\ 4, 1m(0Q|) Im(an) N 2 [2'21]
p! C R, 1+l
npov=7=3 (H)(55) Yinlon Yoo . @iES:
,m i

As for g, (P, Q), its development into spherical harmonics has the general
form

R, V!
22(P, Q)= 2.8 tmrwe Yim (0 ) (‘FP—) Yim(og) , Q€S [2.22];

Only in the case of constant p, the assumption /=/, m=m’can be done,
and the result agrees with the formulas obtained in (Sacerdote & Sanso 1987);
in the present case the expression [2.22] must be taken as starting point.
Hence the first term in equation [2.16] becomes

R\t _
P{l (Q)g: (P, A)=c"' 3 Gimtr Yim (0p) (‘#) sinflg Py (cos 0¢)-
[2.23]
cosm'hg i m=0
' [ sin |m'|Ag if m’<0
and can be handled using the formula
, i
$in 6 Py, (cos 0) =7 ( Pr1,m+1(c08 0) = Pi_y i1 (€05 0)) [2.24]

(cf. (Magnus et al. 1966), (4.3.3)).
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It is remarkable that, under the assumption {2.20], as the non-constant
statistical weight does not affect the dependence on A, the expression [2.22]
can be simplified by assuming

0 m#=m

Eimim — [ 2irm m=m' [225]’

Bitm=8ir,—m

then, equation [2.16] depends actually on the difference Ap— A, and, taking
into account [2.24], can be written in the form

_ Ry \/H!
Y P,(cosfp) (m) cos m{Ap—Ap).

Lm=0 rp
ol _ _ Cr\2
13 & ( (Prarmt1 (€0586) — Br_y i (c056) ) + - (——)
rzm 2F1 Ay
o
"RE Pr(c0s8p)) — —— —— Py, (cosfp)] =0 [2.26]

47 Af

The expression between square brackets must vanish for each fixed /, m;
yet, it leads to an infinite-dimensional linear system in the unknowns gy,
that can be treated numerically, truncating at a suitable I’=I.. The essential
point is that the coefficients of gy,, do not depend on / that reduces
drastically the amount of computations. [2.26] is transformed into a linear
algebraic system by multiplying by P, (cos o) sin 85, j=m, ..., L and inte-
grating over 8,. The integrals

7 Pi(cos 0) Pre(cos 8) sin 6 do
can be computed by iteration formulas (Mainville, 1986).

The particular case of gravimetry-gradiometry corresponds to the choice

-1 (gravity anomaly)
A=TR
]

[2.27)

C_(H- 1)(!-%-2)( R,
= 73%__ R,

It must be recalled that the problem with gravity anomalies as boundary
values is not uniquely solvable, unless it is suitably modified; correspondingly,

I+3
) (radial gravity gradient)
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in the integral kernel R (P, Q) expressed by [2.18], that in this case is the
Stokes kernel, the component of degreee /=1 is missing. On the other hand,
the /= I component of the potential is not affected by gravity anomalies and
is uniquely determined by the corresponding component of the radial gravity
gradient. Therefore the solution is split into two parts: a deterministic one,
which contains only the /=1 component, and another one, containing all the
remaining components, which is obtained with the method previously
described and is affected only by the components of the data functions with
/5% 1. It has to be pointed out that gravity anomalies should not contain /=1
ccomponents, but for measurement errors.

3. DATA DISTRIBUTED IN A SPHERICAL SHELL

As pointed out in the introduction, satellite measurements are not usually
distributed on a surface, but rather in a thin shell. Hence such data are not
suitably described by a stochastic surface measure. Yet, it is not difficult to
generalize the computation procedure previously developed by introducing a
stochastic volume measure. Namely, in equation [2.2] u{% (dS,0) is replaced
by

pOA(dQ) =B, T(Q)dQ+ ulf (dQ) [3.1]

where p! is a zero-mean Wiener measure, with covariance

Efpf My (VYI=]pn, P7 (D) dQ [3.2]

The estimated solution now has the form
Tp)=[; a(P. Qw0 dSigt [ &(P.OIpIEC)  [3]

where ¥ is the volume in which the data are distributed, namely the shell
between two concentric spherical surfaces with radii R and R+8R
(6§ R<<R).

The quadratic error function to minimize is

PP)=[s 8 (P QdSo [ pt 2 (P.0Ydg [34],

and the unbiasedness condition i1s expressed by

T(P)=[, &(P. QB T(QdSot [, &:(P. ) B, T(QYdQ  [3.5)
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The formal developments of the previous section can be carried out in this
case exactly in the same way, simply replacing the integrals over the surface
§; with integrals over the volume V. The result is the integral equation

Py (g (P, Q)+f,, dO'K(Q, Q)P Q)=h(P. Q) , Q& V [3.6]

with K (', Q)and h (P, Q)as in[2.21]; it can be investigated, as in the previous
section, using developments into spherical harmonics. As an example, com-
putations are carried out in the particular case of gravimetry-gradiometry,
where the data are expressed as in [2.17], with the specifications given in
[2.27]; the only difference is that in the radial gravity gradient the constant
radius R, is replaced by the variable r. The general development of g, (P, o)
is written in the form

R, it
& (P Q)= 2 (-FPL) Yim(op) Gy (Q) [3.7]

Lm

If the statistical weights are assumed to be constant, as in (Sacerdote &
Sanso, 1987), equation [3.6] becomes

iy IR RO\ Y, (0.
p;[ G[m(Q)-f- i I'Em' ( 1 ) I3 (OQ)

4 (F—12R; \ro
Rt3R 2 o R 3
Jpdog [ rE Gam(Q)(—) Vpm(0g) = [3.8]
A R rQ‘

_pt (H—H{-H—B-(R.-

)1+3
Yim
4 =1y ro m(o9)

Equation [3.8] implies /=/", m=m’; moreover G, (Q) must assume the
form
R, \!t3
Gin (Q)=Zim Yin (0) (—) [3.9]
re-
Consequently, performing the integration over §,, one obtains

- R\
tm=ga [P~ 1P pa 1722 [ (*f) e

It is remarkable that, when SR tends to 0 (i.e. if the shell where
gradiometric measurements are performed is very thin with respect to the
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orbit radius, as in nearly circular orbits), this result agrees with the one
obtained in (Sacerdote & Sanso 1987) (see for example formula [2.33]).

In conclusion, no particular difficulty arises if «boundary» data are
distributed in a volume and not on a surface. This peculiarity obviously is due
to the fact that inaccuracies of the data are taken into account and
represented stochastically.

4. CONCLUSIONS

It is clear that, as soon as the assumptions are slightly generalized with
respect to the drastically simplifying ones of the previous papers, the task of
analytically solving the problems and even of finding useful formulas for
rough estimations of the results becomes out of reach. Therefore the
investigations that have been carried out up to now have the main purpose {o
provide a theoretical basis for setting up numerical methods in order to deal
with real data.

It can be predicted that, as it has occurred with the theory of classical
boundary-value problems, the frame of overdetermined problems will prove
more and more fitting to practical situations.
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