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Sorne generalizahons iii the maÑemaitical
developmern’s of the ¡theory of (he geodefic

overdewrmined problerns

F. SACERDOTE and E. SANSÓ

ABSTRACT. Two particular cases of the oVerdetermined gravirnetry-gradiometry
problem are discussed:

a) the case of a latitude-dependent statistical weight for gradiometric data,
corresponding to a data distrihution coming from satellite polar orbits,

b) the case of a volume distribution, instead of a surface distribution, for satellite
gradiometric data.

In both cases a discussion of nurnerical rnethods for solVing the problem with
realistic data is started; for case b) an analytic solution is found under simplifying
assumptions.

1. INTRODUCTION

Tite titeory of overdetermined boundary-value problems in physical
geodesy itas been deVeloped in order to itandhe witit rigorous matitematical
procedures situations in witicit different kinds of data are aVailable from
satellite and ground measurements, and are used as boundary conditions to
solve tite boundary-value problem for tite eartit’s potential.

Usually tite different data sets are xnconsistent owing to measurement
errors and a «best» estimate of tite solution is hooked for, according to sorne
minimum principhe arising from tite stocitastic structure of tite errors.

A general formulation is giVen by Sansó (1988), wito describes tite sto-
citastie properties of tite boundary data by introducing Wiener measures on
tite boundary surface. A different starting point is assumed by Rummel and
Teunissen (1987), who consider tite problems witit data continuously distri-
buted ayer tite witohe surface as limit cases of situations in witich a growing
number of discrete data is given and a finite set of parameters is determined.
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Practicah examples are discussed by Sacerdote and Sansó (l985a, b, h987);
in particular, sorne simple cases of tite gravimetry-gradiometry probhem itave
been treated in titis titeoretical frame, and sorne results itave been obtained,
concerning the rehative influence of gravity and gravity gradient data in tite
determination of different ita?monic coniponents of tite eartit’s potential.

Yet, analyticah solutions can be obtained only under drastically simplifying
assumptions. First, only tite components of tite gravity gradient tensor
containing radial derivatives are introduced as data. Second, tite different
kinds of data - even tite different components of tite gravity gradient - are
assumed to be uncorrehated, and tite statistical weigitts are supposed to be
constant alh over tite surface. Finally, tite data are given on spiterical surfaces -
not necessarily on tite boundary surface. To take into account tite case of
sateihite measurements, buy anyway on a surface. A more realistie approacit
would require titat sateihite data be distributed in a sitehí between tite mini-
mum and tite maximum iteigitts of elliptic orbits.

Tite present paper deals witit computationah difficulties titat arise witen
sorne of titese simplifying assumptions are dropped. More prectsely, in
section 2 tbe case of a statistical weigitt depending on tite latitude is investi-
gated; in section 3 tite problem is reformuhated for data distributed on a
spherical siteil.

2. NON-CONSTANT STATISTICAL WEIGHTS

First, tite main features of tite matitematical devehoprnents discussed in
previous papers (Sacerdote & Sansó 1987), (Sansó l988) are briefly sum-
marized.

Assume for simplicity titat tite data sets are two different sealar quantities:
nne measured at ground hevel (for examphe, gravity anomaly), one got out
from satellite measurements (for examphe, tite doubhe radial derivative of tite
anomalnus potential). In addition, tite eartit’s surface is conventionally repre-
sented by a spitericah surface S1 witit radius R1, and tite satehhite orbits are
supposed to Ile on a concentric spberical surface S2 witit radius R2> R1.

Hence tite problem is formuhated as follows

I W T=0 in fi (outside S~)
Sí T= f(’» [2.1]
~2 T= qo>

where B~ and ~2 are operators titat citaracterize tite «boundary» condition on
S1 and S2 respectively. Tite data are represented by surface stocitastic meas-
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ures, that can be split into a deterministic part and a zero-mean Wiener
measure:

p~>(dSlQ)= ~1 T(Q)dSí0+¡4”(dSí~)
[2.2]

t4
0> (dS

2Q) = ~2 T(Q)dS22+ <(dS2Q)

dSw, dS22 are tite usual Lebesgue measures on S1 and S2; tite Wiener
measures p[”, ~7are farnilies of normal variables, indexed by subsets of S1
and S2 respectively, witit covariances

ELuY(Afl4~Ó49}=f w’ (QJdS12

Ej pr(D) <(D’) 1=1 pj
t (QJdS

2Q [2.3]

Ebip’(A)p~(D9}=O

witere Pí (2). P2 (2) are suitable weigitt functions.

Expressions [2.3] generalize formulas [2.4] of (Sacerdote & Sansó 1987) to
tite case of non-constant statistical weigitts. In titis frame, following
(Sacerdote & Sansó 1987), tite solution of problem [2.1] itas tite form of a
linear estimate in terms of tite observables:

T(F)=f g1 (1>, QLu¶0) (dSie)+f g2(P, 2’) itT) (dS2~) [2.4];
g1 (1>, Q) e g, (F, Q) itave to be determined from tite minimization of tite

quadratie error function

tj2(JJ)=E[(ftPYJ(P))2}=fpyl(Q)g2(P, Q)dSíQ+

+fP~’(Q’)g~(P. 2’) dS2Q [2.5]

under tite «unbiasedness» condition

T(P)=L g1 (P, Q)Rí T(Q)dSí2+f gftP, Q9~2 T(Q’)dS2Q’ [2.6]

In (Sacerdote & Sansé 1987) condition [2.6] was taken into account by
introducing a Lagrange multiplier; in tite present case titis procedure leads to
computational difficulties in tite evaluation of tite muhtiphier itself, witicit is
preliminary to tite determination of g1 and g2. Hence a more direct procedure
18 adopted, which does not enable to get rid of ahí tite difficulties, but at least
sbeds light upon tite expressions for g1 and g2.
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Assume for exarnple that tite boundary-vahue problem witit tite boundary
condition ~ be uniquely solvable and titat tite solution be expressed by
apphying an integral operator to the boundary known function:

T(P)=f R(P,Q)f(Q)dSIQ. [2.7]

In titis case g1 (P, 2) can be expressed in temis of g2 (P, 2) from condition
[2.6]. Introducing tite Poisson integral kernel G(Q’, Q), [2.6] can be written in
tite fon

g1(IP, QJB1 T(Q)dSíQ ± fdS2Q<g2(P, Q’)B2(f 6(2’, Q)T(Q)dSíQk

C(P,Q)T(Q)dS10 [2.8]
Assume now that B1 and ~2 be sehf-adjoint witit respect to tite scalar

products on S~ and S2 respectivehy (witicit is certainhy true if sphericah bar-
monics are eigenfunctions of B~ and B2); titen [2.8] can be written as

f dSljBl~gI(P, Q)+I dS2Q.(B2Q.g2(P, Q’))G(Q’, 2)— C(± ”,2))T(Q)=O

[2.9]

titat yields, owing to tite arbitrariness of T(Q),

B1Qgl(P, Q) +j dS2Q(B22g2(J’, Q’))C(Q’, QJ= 6ff. 2) [2.hO]

Finally, by virtue of [2.7], one obtains

g1 (P, Q) =1 dSíQR(Q, Q9[—f dS22
5

2Qg2 (P, Q’) G(Q’, Q9±6 (1’, 2’)]

[2.11];

Now, g1 in forniula [2.5] itas to be replaced by its expression [2.11]. Tite
result can be expressed in tite fon

2 ípi—( ácf -born rss~n n’’rx’n

bU-’, Q)+f dS2Qpj’(Q)g(P,Q)+ FU-’) [2.12],

where

K(Q1, Q2) =

Is, dSíQ f dSíQ f.dSí0.oy-I (QJR<’Q, Q’) R (Q, 2”)B~ G(QI, 2’>~
B2~, C(Q2, Q”)= f dS1~pp

t (Q) ~ H(Q, Qí) 82Q~ H(Q, Q2)
r2.h3]
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h(P.Qí)t=fdSíQf dSíQfdSíQ.pj~l (Q)R(Q,Q’)R(Q,Q’9G(P,Q’9.

52QG<’QI, Q’9=f dSíQ ¡~‘ (Q)H(Q, P)B~~, H(Q, Qí)•
[2.14];

FUU=fd5
12f dSí«fdSíQ.pj-l (Q)R(Q Q’)R(Q, Q’9G(P. 9V

~G(J”,Q’V=f dSíQ ~ví(Q)H½P.2)
[2.15]

Tite minimization of ~j
2(P) witit respect to tite variabhe g

2 (P. 9) Ieads to
tite integral equation

p~l(Q)g,(PQ)+fdS2Q,K¿cQÉQ)g2(pQv<h(p2) 9652 [2.16]

In order to carry on titese computations and to clarify tite meaning of tite
forrnulas obtained up to now, developments into spiterical itarmonics can be
used. Tite following expressions for tite operators S~ and ~2 are introduced:

14-1
Bí[( ) Yírn(up)]=Á¡ Yim(aio)

rp [2.17]

=1)

Consequently

1 lJ?~x1± l

Moreover

¡ 1+1
G(J-tQ)=—X(21+l) —1 P,(cos4PQ) , QcS~ [2.19]4wI ‘, r~

1 1

Tite integrais in [2.13] and [2.14] can be easily computed only under tite
additional assurnption titat tite weigitt Pí is constant. In titis case only tite
weight P2 is allowed to vary witit tite measurement point. Anyway, even titis
simphifted situation is interesting frorn tite point of view of tite geodetic
applications, as P2 is referred to satellite measurements and can be modelled



36 F. Sacerdote y E Sansá

frorn tite distribution of tite orbits. More precisely, in tite case of polar orbits,
witicit are closer near tite pohes, a reasonable assumption for Pz (9) ~

c
P2(Q9 [2.20]sin

corresponding to a statistical weigitt proportional to tite number of data per
unit area.

Introducing [2.17], [2.hS], [2.19], tite kernels defined by [2.13], [2.14] can
be written as

pi-ET 1 w 152 426 m 163 426 l S BT
4w

pi- E
4w f.m

(C, \ 2

E ~—) YIm(UQI) YIm(UQ
2) , Q1~ Q2CS2

f.m A, [2.2 1]

As for g2 (P, 9), its development into spiterical itarmonics itas tite general
fon

g,(P, Q)=~g¿~¡<rn<Y¡m(up) (RjI+l Ytm’(OQ) , QeS2 [2.22];

Only in the case of constant P2 tite assumption 1=1’, m = m’ can be done,
and tite resuht agrees witit tite formulas obtained in (Sacerdote & Sansó 1987);
in tite present case tite expression [2.22] must be taken as starting point.
Hence tite first term in equation [2.16] becornes

pr ~ \ rp sin O~ Prm’(cos 03.

[2.23]{ cosm’XQ if m’=0
sin ¡m’IXQ if m’<0

and can be itandied using tite formula

1
sinO Pim(CO5O) (

t¡+t m+l (cosú)—P¡...í m+t (cosO))
21±1

[2.24]

(cf. (Magnus et al. 1966), (4.3.3)).
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It is remarkabhe that, under tite assumption [2.20], as tite non-constant
statistical weigitt does not affect tite dependenee on X2. tite expression [2.22]
can be simplified by assuming

~Imrm{g,,, m=ni’ [2.25];

titen, equation [2.16] depends actually on tite difference Xp— XQ and, taking
ínto account [2.24], can be written in tite form

1 R ~E P¡~(cosOp) —l cosrn(Xp—XQ).
¿m=O rp j

.[~~um ( 2~~] (~¡+í,mi-í (cos
0Q) — ~n.í,m±í (cosOQ)) +pi-1 (ij.

R~ ‘~Pm (cos 0Q)) — P,,,, (cos0Q)] = 0 [2.26]

Tite expression between square brackets must vanisit for eacit fixed 1, m;
yet, it Ieads to an infinite-dimensional linear system in the unknowns g,rm.
that can be treated numerically, truncating at a suitable 1= L. Tite essential
point is that tite coefficients of g,,<,,, do not depend on 1, titat reduces
drastically tite amount of computations. [2.26] is transformed into a linear
algebraic system by multiplying by Fjm (cos 0Q) sin %,j=m L and inte-
grating over O~. Tite integrais

ji 1%,,, (cos O) ~jk (cos O) sinOdO

can be cornputed by iteration formulas (Mainville, 1986).

Tite particular case of gravimetry-gradiornetry corresponds to tite choice

1 1 (gravity anomahy)
R

1

[2.27]
(1+ 1) (1+ 2) ( ;~ )l+3 (radial gravity gradient)

It must be recalled that tite problem with gravity anomalies as boundary
vahues is not uniquely sohvabhe, unless it is suitably modified; correspondingly,
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in tite integrah kerneh R (P, 9) expressed by [2.18], titat in titis case is tite
Stokes kerneh, tite component of degreee 1= h is rnissing. On the otiter itand,
tite 1= h component of tite potential is not affected by gravity anomahies and
ís uniquely determined by tite corresponding component of tite radial graVity
gradient. Titerefore tite solution is split into two parts: a deterrninistic one,
whicit contains onhy tite 1= 1 component, and another one, containing ahl tite
remaining cornponents, whieit is obtained witit tite rnetitod previoushy
described and is affected only by tite components of tite data functions with
1!=!.It itas to be pointed out titat gravity anomalies sitould not contain /=1
ccornponents, but for measurement errors.

3. DATA DISTRIBUTED IN A SPHERICAL SHELL

As pointed out in tite introduction, satellite rneasurements are not usuahhy
distributed on a surface, but rather in a titin sitell. Hence such data are not
suitably described by a stocitastic surface rneasure. Yet, it is not diffi¿ult to
generahize tite computation procedure previously developed by introducing a
stochastic volume measure. Namely, in equation [2.2] ¡x0) (dS

2Q) is replaced
by

uf (dQ) = B2T(Q)dQ+ <(dQ) [3.1]

witere a zero-mean Wiener measure, witit covariance

~ (Q)dQ [3.2]

Tite estimated solution now has tite form

T(P)=f gí(P, 9)40) (dSlQ)+f gftP, 9’) uf (dQ’) [3.3]

witere y is tite volume in which tite data are distributed, namely the sitehí
between two concentric spiterical surfaces with radii R and 1? + 8 R
(BR«R).

Tite quadratie error function to rnínímtze is

2 ~
1JS

1 “í ~í ‘~‘ ‘~~<~Jv p;-l g~ (E, Q9dQ’ [3.4],

and tite unbiasedness condition is expressed by

T(F)=f5 gíU’, Q)B T(Q)dSQ+fV g2(P, Q9B2 T(Q9dQ’ [3.5]
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Tite formah developments of tite previous section can be carried out in titis
case exactly in tite same way, sirnply replacing tite integrais over tite surface
S2 witit integrals over tite volume 1< Tite result is tite integral equation

‘~ (Q)g2(J’, Q)±f~dQ’K(Q’, Q)g2(P, Qj=h(P, 9) , QE 1” [3.6]

witit K(Q’, 9) and h (P, 9) as in [2.21]; it can be investigated, as in tite previous
section, using developments into spitericah itarmonics. As an example, com-
putations are carried out in tite particular case of graVimetry-gradiometry,
witere tite data are expressed as in [2.17], witit tite specifications given in
[2.27]; tite only difference is that in tite radial gravity gradient tite constant
radius R2 is rephaced hy tite Variabhe r. Tite general development of g2 (P, 9)
is written in tite form

g2(P,Q)=~ Y¡m(ap) Gim(Q) [3.7]

If tite statistical weigitts are assumed to be constant, as in (Sacerdote &
Sansó, 1987), equation [3.6] becomes

pE Gp,4Q)+ ___________ 1+3 Yrm’(UQ).
4w Pm (1’— 1~R

fduQ. <,fR+aR rtdrQ<Gím(Q’)( ~ ) ~ [3.8]

p—
1 (1±l)(l+ 2) ( R

1

Equation [3.8] imphies 1=1’, ,n=m’; moreover Gím(Q) must assume tite
form

Glm(Q)=g¡mYImQJQ) ( R1 [3.9]~, rQ 7
Consequently, performing tite integration oVer S1, one obtains

It is remarkable titat, when ¿iR tends to O (i.e. if tite sitelí witere
gradiometric measurernents are performed is very titin witit respect to tite
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orbit radius, as in nearly circular orbits), this result agrees witit tite one
obtained in (Sacerdote & Sansó ¡987) (see for examphe formuha [2.33]).

In conclusion, no particular difficulty arises if «boundary» data are
distributed in a volume and not on a surface. Titis pecuhiarity obviousiy is due
to tite fact titat inaccuracies of tite data are taken into account and
represented stocitastically.

4. CONCLUSIONS

It is clear titat, as soon as tite assumptions are slighthy generahized witit
respect to tite drastically simplifying ones of tite previous papers, tite task of
analyticah¡y solving tite problems and even of finding useful formulas for
rougit estimations of tite results becomes out of reach. Titerefore tite
ínvestigations titat itave been carried out up to now bave tite main purpose to
provide a titeoretical basis for setting up nurnerical metitods in order to deal
witit real data.

It can be predicted titat, as it itas occurred with tite titeory of classical
boundary-vahue probhems, tite frarne of overdetermined problems wihh prove
more and more fitting to practical situations.
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