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P—Adic Ascoli theorems

J. MARTINEZ-MAURICA and S. NAVARRO

ABSTRACT. The aim of this paper is the study of a certain class of compact-like sets
within some spaces of continuous functions over non-archimedean ground fields. As
a result, some p—adic Ascoli theorems are obtained.

INTRODUCTION

In recent years, there has been a renewed interest in the study of analysis
over the field @, of p—adic numbers (or more in general over any complete
non-archimedean valued field K) in view of its new applications in some parts
of modern physics (see for instance [4], [5] and [15]).

The aim of this paper is to give some p-adic Ascoli theorems; this is, we
will explore the relationships between a certain kind of compact-like sets and
equicontinuous sets within some subspaces of the space C(X) of all
continuous functions f: X— K where X is a given separated topological
space. In order to ensure the existence of enough elements in C(X) we shall
assume in addition that X is zerodimensional. Also, the valuation over K is
supposed to be non trivial.

The first difference with its archimedean analog is the class of compact-
like sets we are going to consider. For that it is worth mentioning here that
(pre) compactness is not very interesting in p-adic analysis; in fact, there is no
compact convex subset of a locally convex space over K with more than one
point unless K is locally compact. Altough @, is locally compact, in many
occasions it is certainly useful to consider some other valued fields apart from
@, (for instance, the non locally compact ficld €, defined as the completion
of the algebraic closure of Q).
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Quite a number of different variants of (pre)compact sets have been
studied in p-adic analysis (see [19]), and it seems for many reasons that the
most succesful ones are compactoids defined in [6] as follows: a subset A of
a locally convex space E is said to be compactoid if for every neighborhood
of zero U there exists a finite'set YC E such that AC U+ ¢,(Y), where ¢,(Y)
denotes the absolutely convex hull of ¥.

So, we shall study the relationships between compactoids and equicontinuous
sets in some different spaces of continuous functions.

1. THE CASE OF THE TOPOLOGY OF UNIFORM
CONVERGENCE

Following [16], we are going to indicate by PC(X) the space of all
continuous functions f< C{X) such that f{X)}is a precompact subset of K,
endowed with the topology of uniform convergence: this is the topology
defined by the norm || f|| = ||f||°c—sup | f{x)l. If X is also locally compact,

Ce(X) will indicate the subspace of PC {X) consisting of all continuous
functions which vanish at infinity.

_ Given a subset ¥ of K-valued functions defined on X, we define
Fx)={f(x): f€ .F}. Also B, (0) will indicate the closed ball in PC(X) with
center-0 and radius &.

Theorem 1. A subset %" C PC(X) is compactoid if and only if the
Jfollowing properties are satisfied:

(a) & (x)is bounded in K for every xeX.

and (b) For every €20, there exists a finite partition X,,...,. X, of X
cons:stmg of clopen sets such that x, y€ X;=| f(x) —f(y)l =¢forall
fE (i=1... n).

Proof: First we assume that .%° is compactoid. Given x€X, the map
"PC(X)— K defined by H,({f)=f(x) is linear and continuous. Hence
9‘}() H, (%) is compactoid in K.

Also, given £2>0, there exists Y={@y,...,9,,]JC PC(X) such that

FCB, (O)+c0 (Y). Now for every j€{l,...,m} we consider the equivalence
relation R; in X defined by.

xRy if |o;(x)—;(v}|<=e (x,yeX)

It is well known that for each j€{l,...,m} there is only a finite number of
equivalence classes and that these classes are clopen sets in X.
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Let us consider for every x€ X and j€ {l,...,m} the class P; which
contains x and let P.= ﬂ P73 Since {P,:x€ X} is ﬁmte we obtain a finite
partition X,,..., X, of X conmstmg of clopen sets such that

X, yEX;==@;(x)—¢;(y}| <e forall i€ {l,...,n} and je{l,.., m}

Now if fe %, there are Ay, ..., A, €K. with [A;] =1 for all je{l,...,m}
such that ||f—Zl 9l =e. It follows that for x, yEX

|f(x)—f(y)|5max{ F— S 00,00 1l S (0;)—9;00)1
/ J
|3 0,0 —f () 3 =e.
K

Conversely, take £ >0 and let X, ..., X, be clopen subsets of X satisfying
(b). Pick, for each ie{l,. ., n},x; W1th1n X;. Since U F (x)) is compactoid,
there are v, ,...,v,, in K such that

UF (x)CIrek (M =eh Cofur e, U}

Let us define for ie{l,...,n} and je{l,...m} ¢;; X— K by ¢;=v,&y
where £, stands for the charactensuc functlon of X,

It is obvious that ¢,;€ PC(X). Also, if f€ & there are for each i€{1,..., n}
A EK (jell,..,m})such that |L;|=<1 and | f(x)—2, ;v <e. Hence, given
x€ X, we have J

| f(x)— Z;\-r'j(pr'j(x)l = |f(x)_§ 7‘:‘01‘-’;|£m3x “f(x)_f(xio)L
&
|f(xi0) _g )\-,'ojl)jl } =g
if x€ X, , which finally implies that %" C B, (0} + ¢, ({9;;}).

Remarks: (1) Condition (b) in the above theorem implies equicontinuity
of .%. Also, if X is compact both properties coincide.

{2) Our theorem 1 is a generalization of a previous one of N. De Grande-
de Kimpe [2, theorem 1.8} in which she characterizes compactoids in the
space C (X) where X is a compact subset of a nonarchimedean valued {ield K.

Corollary 2: A subset % of C. (X} is compactoid if and only if
(a) & (x)is bounded in K for every x€ X.
and (b) For every £2> o0, there exists a finite number of pairwise disjoint
clopen compact sets Py,..., P, in X such that x, y€ P=| f(x)— f(y)}

<gforall fe ¥, ieli...., n}and | f(x)| <eforevery xc X—(UP,),
fe 7. '
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Proof: First we assume that % is compactoid in Co(X) (which is the same
as compactoid in PC(X), sce [8] theorem 4.1). Then property (a) is satisfied
and there is, for a given €20, a finite number of clopen sets X|,..., X,
verifying condition (b) of theorem 1. On the other hand let ¢,..., 0, be in
C.o(X) such that & C B, (0)+ ¢, ({9, ,..., 9, } ) and let K be a compact clopen
set in X such that |¢;(x)| <e for all xée X—K and j&€{l,...,m}. Now we
define P;=X;N K for every ic{l,.,n}; it is easy to check that P,,..., P,
satisfy property (b).

In order to prove the converse, it is enough to take X;= P, fori=1.,...,n
and X,,;=X—() P) and then apply theorem 1.
=l

Another characterization of compactoids in C.(X) is contained in the
following corollary which is an easy consequence of the above resulis,

Corollary 3: A subset % of C.(X) is compactoid if and only if
(@) & (x) is bounded in X for every x€ X.
(b) & is equicontinuous.

and (c) Foreveryc>>0, there exists a compact set K in X such that | f(x)| <e
for every fe % and every xe X— K.

2. ULTRA K-SPACES

A topological space X is called a k-space when a subset 4 C X is open if
AN K is open in K for every compact set K in X. More generally X is called
a k y-space (for a given topogical space Y)if f: X — ¥ is continuous when f/ K
is continuous for each compact KC X,

Definition 4: A zerodimensional space X is called an ultra k-space (or a
k,-space, see [16} p. 273) if it is a kyg,y-space, where {0, 1} is endowed with the
discrete topology.

Theorem 5: The following properties are equivalent for a zerodimensional
topological space X.

(a) X is an ultra k-space.

(b) AC X is clopen if and only if AN K is clopen in K for each compact
set Kin X.

(c) X is a kyspace for every separated zerodimensional topological
space Y.
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(d} X is a ky-space for every non-archimedean valued field K.

{e) There exists a non-archimedean valued field K for which X is a ky-
space.

Proof: (a)=s(b). Let 4 C X be such that AM K is clopen in K for every
compact set Kin X and let f=¢,: X—{0, 1} be the characteristic function of
A. Then, f/K is continucus for every compact set K and hence f is con-
tinuous; that is, 4 is clopen.

(b}==s(c), (c)=%(d) and (d)==>(e) are obvicus, In order to prove (¢)==(a)
it is enough to notice that {{, I} has the topology of a subspace of K.

Remarks: (1) The above theorem suggests the following question: Is every
zerodimensional ultra k-space a k-space? The answer is no. The space N! (N
with the discrete topology and I an uncontable index set) endowed with the
product topology is a zerodimensional kr-space (which implies it is an ultra
k-space) but is not a k-space (see [1], p. 65).

(2) The preceding remark leads to the following open question; Is every
zerodimensional ultra k-space a kg-space?

(3) There are examples of zerodimensional spaces which are not ultra k-
spaces; that is the case of the so-called space of Arens (see [12], p. 77).

Also, if K is not locally compact, ¢,=G.(N) with the weak topology
o(c,, °) 1s another zerodimensional space which is not an ultra k-space: the
unit ball [x<¢,: || x|]| =1} is not clopen for o (¢,, ) whereas its intersection
with every weakly compact set K is clopen in K because on K the norm
topology and the weak topology coincide [18, theorem 3.8].

3. EQUICONTINUOUS SETS IN C(X)

Now we are going to consider the space C{X) endowed with the topology
of uniform convergence on compact sets.

Our first result, related to completeness of C(X), is an obvious conse-
quence of our theorem 5 and theorem 3.2 in [11].

Proposition 6;: The following properties are equivalen:,

(a} C(X)is complete.
(b) C(X)is quasicomplete (that is, every bounded and closed subser of
C(X) is complete).

(c) X is an ultra k-space.
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Theorem 7: If X is an ultra k-space then, every compactoid subset in C(X)
is equicontinuous.

Proof: Let H: X~ C(X) be defined by H (x)= H, where as in theorem 1
H.(f)=f(x). It is obvious that H is continuous if we choose the topology
o (C(X), (C(X)) on C(X)'.

Also, for a given compact K in X, H(K) is equicontinuous because
H(K)C{fe C(X): sup[f(x)|<l }°. Since on equicontinuous sets of the

dual of a locally convex space the weak topology coincides with the topology
7o of uniform convergence on compactoids (see [17], lemma 10.6), we deduce
that H: X—{(C(X))’, 1.,) is continuous on compact sets of X. Hence, as X is
an ultra k-space, it fol]ows that H is continuous.

Now let # be a compactoid in C(X). By continuity of H, given ¢>0 and
x€ X there is a neighborhood U of x in X and veK with v|<e such that.

yeU=H,—H,ev. % °=| f(y)— f(x)|=|v| <e for each fe F
Thus, every compactoid subset of C{X} is equicontinuous.

Theorem 8: Let X be an ultra k-space and lel FCTC(X). Then % is
compactoid if and only if 7 is equicontinuous and F (x)is bounded in K for
every xe X.

Proof: By theorem 7, % compactoid implies & equicontinuous and it is
obvious that % (x) is bounded in K for every x& X.

Conversely let K be a compact subset of X. By corollary 3, FIK={fIK:
f€.% 1} is compactoid in C(K). This implies that for a given ¢ >0 there exist
St yeees So€C(K) such that

%KC{gGC{K)-'SgEEg(x)I =eltc{fioe fu)

Now, if we extend each f; to a continuous map f,-:X—— K [16, theorem
5.24], we have,

?C{gecac):sgyg(x)tSeHco{f", yooes T}

which implies that & is compactoid.
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4. THE CASE OF THE STRICT TOPOLOGY

The strict topology in the space BC(X) of all bounded continuous
functions f:X— K was introduced in the non-archimedean setting by J.B.
Prolla [14, chapter 9] in case X is locally compact. For general zerodimensional
spaces X the strict topology has been studied by A.C.M. Van Rooij [16] and
A.K. Katsaras ([9] and [10]).

This topology is defined by the family of seminorms {p, :¢ € B« (X) } where
B.(X) is the set of all bounded functions ¢ : X— K which vanish at infinity
and

Po (N =sup|e(x) f(x)|
xc X

The strict topology 73 in BC(X) is between the topology 7. of uniform
convergence on compact sets and the topology 7, of uniform convergence;
this 1s 7. = =<7, ([10], 2.10).

In particular for X= N with the discrete topology, the strict topology in
I* coincides with the natural topology in the sense of perfect spaces of
sequences {(see [3]).

Proposition 9: The following properties are equivalent for the strict
topology in BC(X),

(@) BC(X)is complete.
{b) BC(X)is quasicomplete.
{c) X is an ultra k-space.

Proof: (a)=>{b) is obvious. In order to prove (b)=>(c) we consider
F:X—1{0, 1} which is continuous on compact sets. Let for every compact
subset Kin X, fx: X— K be a continuous extension of f/K to X such that

sup | f(x) | =sup| f(x)| <1
xEX xe K

[16, theorem 5.24]. Let us see that A={ge BC(X):|lgll-=1} is r.—closed
(and hence 7g-closed); assume g¢ A and choose x€ X such that | g(x)| > 1.
Then, { A€ BC(X):| h(x)—g(x)}| <1) has empty intersection with 4. Also 4
is 73-bounded, which implies A is complete for the strict topology. Further-
more, A is complete for the topology 7. of uniform convergence on compact
sets because 7. coincides with the strict topology on uniform bounded sets
({10], 2.9).

If we denote by’ the directed set of all compact subsets of X ordered by
inclusion, it is easy to check that (fg)ge » is a Cauchy net in A for the
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topology of uniform convergence on compact sets; let g€ A4 be its limit. On
the other hand it is obvious that for each x€ X, f{x)=lim (fx(x))xc %
Hence, we conclude that f— g is continuous. The proof of (c)=+(a) is the same
as its archimedean counterpart in which X is assumed to be a k-space (see [7},
theorem 9, p. 72).

Theorem 10: Let X be an ultra k-space. A subset ¥ C BC(X) is com-
pactoid for the sirict topology if and only if the following properties are
satisfied,

(@ sup{lf()):feF, xeX}<.
(b) F is equicontinuous.

Proof: First assume that % is compactoid. Then, ¥ is also compactoid
in the topology of uniform convergence on compact sets, which implies that

.is equicontinuous (theorem 7). Also if Z is compactoid, then .7 is
rg-bounded which implies (a) 10, prop.2.11].

Conversely let ¢ >0 and ¢ € B..(X). Let Kbe a co;pact set in X such that
lo ()| <eif x€ X-K and let M=sup|¢(x}|. Since F/K={ fIK: fe F}is

compactoid in C(K) (theorem 1),x§1§:re are f; ,.... fn€ C(K) such that
FIKC{geC(K):sup|g (N e ol finn fu)

Let f’,—:X—-K (i=1 ,..., n) be a continuous extension of f; such that
sup | f;(x}| =S where S=m?x fupl fi(x}| [l6, theorem 5.24]. Then,
;"",-EEXBC(X) fori=1,..., nand =

FClgeBO(X):suplg(x)|Se}+col St seess

which implies

?C{geBC(X):sgyw(x) g0 ECe} T el fi s fu}

where C=max{sup{]| f(x}|: fe.F xeX}, M, S}

In particular, % C /= is compactoid for the strict topology if and only if
a=sup{| f(n)|:neN, fe F}<o. In this case % is contained in the
normal hull of the constant map g=A where |A| = a. This is a particular case
of [3, theorem 3.6] and [13, proposition 2.1] where more results on
compactoids in perfect spaces of sequences are found.
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