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P—Adic Ascoli theorems

J. MARTINEZ-MAURICA and 5. NAVARRO

ABSTRACT. The aim of this paper is the study of a certain class of compact-like sets
within sorne spaces of continuous functions over tson-archimedean ground fields. As
a result, sorne p—adic Ascoli theorerns are obtained.

INTRODUCTION

In recent years, titere itas been a renewed interest in the study of analysis
over the ficíd O~, of p—adic numbers (or more in generah over any complete
non-archimedean vahued field t) in view of its new applications in sorne parts
of modern pitysics (see for instance [4], [5] and [15]).

Tite airn of titis paper is to give sorne p-adic AscoIl theorerns; this is, we
will exphore tite relationships between a certain kind of compact-like sets and
equicontinuous sets wititin sorne subspaces of tite space C(X) of alí
continuous functions f:X— K where X is a giVen separated topological
space. In order to ensure the existence of enough elernents in C (X) we sitalí
assume in addition that Xis zerodimensional. Also, tite valuation over & ís
supposed to be non trivial.

Ihe ftrst difference witit its arcitirnedean analog is tite class of compact-
lUce sets we are going to consider. For that it is wortit rnentioning itere that
(pre) cornpactness is not very interesting in p-adic anahysis; in fact. titere is no
compact convex subset of a hocally convex space over K witit more than one
point unless K is locally cornpact. Altough O~, is loeally compact, in many
occasions it is certainly useful to consider sorne otiter valued fields apart from
C~ (for instance, tite non locally compact fleld C~, defined as tite comphetion
of tite algebraic closure of Op).
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Quite a number of different variants of (pre)compact sets itave been
studied in p-adic analysis (see [19]), and it seems for many reasons that tite
most succesful ones are compactoids defined in [6] as follows: a subset A of
a hocafly convex space E is said to be compactoid if for every neighboritood
of zero U titere exists a finite set Yc E such that Ac U+ c0 (Y), where c0 (Y)
denotes tite absolutehy convex itulí of Y.

So, we sitalí study tite relationsitips between compactoids and equicontinuous
sets in sorne different spaces of continuous functíons.

1. THE CASE OF THE TOPOLOGY OF UNIFORM
CONVERGENCE

Following [16], we are going to indicate by PC(X) tite space of ah
continuous functions fcC(X) sucit titatf(X) is a precompact subset of K,
endowed witit tite topohogy of uniform convergence: tbk is tite topology
defined by tite norm IIfII=lIfII<0=sup If(x)I. If Xis also locallycompact,

xEX
C,. (X) will indicate tite subspace of PC(X) consisting of ah continuous
functions witicit vanisit at infinity.

Given a subset Y of K-vahued functions defined on X, we define
Y7x)={f(x):feY}. Also Be(O) wihI indicate tite closed bahh in PC(X) witit
center-O and radius c.

Theorem 1. A subseí Fc PC(X) is compactoid ~fand only (1 ihe
follo wing properties are satisfled:

(a) Y(x) is bounded ¡a K for every x eX.

and (b) For every c >0, diere exists a finite partition 2<1 X,, of X
consisíing of dopen seis such Ihal x,yeX1~¡f(x)—f(y)¡ =sforall
feY(i=I n).

Proof: First we assume that Y is compactoid. GiVen xEX, tite map
Hp PC(X)—. K defined by H~(f)=f(x) is hincar and continuous. Hence
Y%=H~~Y~ is compactoid in K.

Also, given E>O, titere exists Y={tpí 9mICPC(X) sucit titat
YcB~(O)+c,(Yj Now for everyjefh ,...,mJ we consider tite equivalence
relation 1% in 2< defined by.

xRff if Jq~(x)—p(y) <g (x,yEX)

It is wehl known that for eacit jE{1 m} titere is only a finite number of
equivalence classes and titat titese classes are dopen sets in 2<.
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Let us consider for every xCX and jG jI m} tite class Py which
contains x and let J%=fl P~ Since {P~:xC X} is finite, we obtain a Imite
partition 2< X~ of X consisting of dopen sets such titat

x,yEX,1tp1(x)—<pjy)¡=s for ahí ¡6 jI nj and j6{ 1 m}

Now iffei§ titere are ?4 A1,, c~. witit ¡M=l for ah jC{l m}
sucit that uf—E ?~<pjII =c.It fohlows tbat for x,ycX~.

J

J i

IZVp&)—fWL1=~.
J

ConVersely, take s>O and let 2<1 2<,, be dopen subsets of X satisfying
(b). Pick, for eacit ¡69 n},x1 wititin X,. Since UY(x,) is compactoid,
titere are u1,..., u,,, mn t sucit that

U.Y(xñC[XeK :¡A.I=sI+C’o{uí Dm1

Let us define for ¡69 ,..., n) and jejl ,..., m} q’yX— O~ by p0=u)x.
witere ~ stands for tite cbaracteristic funetion of 2<,.

It is obvious titat tp,~e PC(X). Also, if fe Ytitere are for each ic{l ~..,n}
?~eK (jc{I m»sucitthat ¡AJ<I and ¡f(x1)—ZX~ wI=s.Hence, given
x6X, we itave

If(x,hEX~1tp~(X)I = ¡f(x)—E?~~0 u¡<max jlf(x)—f(xQI,
ti

k,,y I=c
J

Remarks: (1) Condition (it) in the aboye theorem imphies equicontinuity
of 3’. Ahso, if X is compact botb properties coincide.

(2) Our titeorem ¡ is a generalization of a previous one of N. De Grande-
de Kimpe [2, titeorem 1.8] in whicit site citaracterizes compactoids in tite
space C(X)where Xis acompact subset of a nonarchimedean valued fseld K.

Corollary 2: A subset Y of C. (X) is compactoid ~fand only ~f

(a) Y (x) Ls bounded ¡ti K for every x eX.

atid (Li) For every 8>0, diere exisis a finite number of pairw¡se disjo¡nt
dopen compací seis 1% 1’,, ¡ti 2< such Ihal x,ye P, f(x) —f(y)I
Ccfor alt fe St ie{1 n} and If(x)I <sfor every xC X— (UF),

fe Y.
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Proof: First we assume titat Y Ls compactoid in C~ (2<) (witicit is tite sarne
as compactoid in PC(X), see [8] theorern 4. h). Titen property (a) is satisfied
and there is, for a given s>O, a finite number of dopen sets 2<~ >4
verifying condition (b) of theorern 1. On tite otiter itaud let tp m be in
042<) sucit titat YC 8, (0) + c0( 1 pí (Pm)) and het K be a cornpact dopen
set in 2< sucit titat Iw~(x)j<c for alí xeX—K and jejl ,..., ni). Now we
define P1=X~flKfor ex’ery ¡cfi ti); it is easy to cbeck titat 1’,
satisfy property (b).

In order to prove the converse, it is enough to take X~ = P~ for ¡ = 1 ,...,n
and >4+í =X----(ó P~) and then apply titeorem 1.

¡=1

Anotiter citaracterization of compactoids in 0.(2<) is contained in tite
following corollary witicit is an easy consequence of tite aboye results.

Corollary 3: A subsel Y of 0. (X) is compactoid ~fatid only ~f

(a) Y (x) is bounded ¡ti t for every x ex.

(Li) Y is equ¡conhinuous.

atid (c) Forevery g>O, thereex¡stva compact set Km Xsuch hat If(x.)¡ <e

for every fe Y and every x ex— K.

2. ULTRA K-SPACES

A topological space 2< is calhed a k-space witen a subset A CX is open if
A fl K is open in K for every compact set K in 2<. More generally 2< is called
a k rspace (for a given topogical space Y) if f: X— Y is continuous when f/K
is continuous for eacit compact KCX.

Definition 4: A zerodimensional space 2< is called ati ultra k-space (or a
k.,-space, see [16] p. 273) ~fU isa k1011-space, where [0, l}is endowed with (he
d¡screw topology.

Theorem 5: Thefollow¡ngproperties are equ¡valentfor a zerodimensional
topological space 2<.

(a) 2< is an ultra k-space.
(Li) A C 2< is dopen Watid otily ¡ji A fl K ¡s clopeti in Kfor each compací

set K iii 2<.
(c) 2< is a ky-space for every separa ted zerodimensional wpolog¡cal

space Y.
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(d) 2< Ls a k~-spacefor every noti-archimedean valuedfield t.
(e) There exisís a ¡ioti-arch¡medean valuedfield K for wh¡ch 2< Ls a

space.

Proof: (a)=.(b). Let A C X be sucit that A fl K is dopen in K for every
compact set K in 2< and let f= ~ :2<—. [0, 1} be tite characteristic funetion of
A. Titen, f/K is continuous for every compact set K and itence fis con-
tinuous; titat is, A is dopen.

(b)i.s<c), (c)(d) and (d).(e) are obvious. In order to prove (e)(a)
it is enougit to notice that [0, l} itas tite topology of a subspace of #~.

Remarks: (1) Tite aboye titeorem suggests the following question: Is every
zerodimensionah ultra k-space a k-space? Tite answer is no. Tite space 041 <,h
witit tite discrete topology and 1 an uncontable index set) endowed with tite
product topology is a zerodimensionah kR -space (whicit implies it is an ultra
k-space) but is not a k-space (see [1], p. 65).

(2) Tite preceding remark leads to tite following open question: Is every
zerodimensional ultra k-space a k~-space?

(3) Titere are examples of zerodimensional spaces witicit are not ultra k-
spaces; titat is tite case of tite so-called space of Arens (see [12], p. 77).

Ahso, if K is not locally compact, e0 = 0. (04) with tite weak topology
u (e0, ~) is anotiter zerodimensional space wbicb is not an ultra k-space: tite
unit bali [xEc0: ¡¡x¡¡ =11is not dopen for u(c0, P) witereas its intersection
with every weakhy compact set K is chopen in K because on K tite norm
topology and tite weak topology coincide [18, theorem 3.8].

3. EQUICONTINUOUS SETS IN C(X)

Now we are going to consider tite space C(X) endowed witit tite topology
of uniform convergence on compact sets.

Our first result, related to compheteness of C(X), is an obvious conse-
quence of our titeorem 5 and titeorem 3.2 in [II].

Proposition 6: Thefollow¡tigproperz¡es are equ¡valent,

(a) C(X)¡s complele.
(Li) C(X) Ls quas¡cornpleíe (íhat Ls. every bounded and closed subsez of

C(X) Ls complete).
(e) X Ls an ultra k-space.
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Theorem 7: IfX Ls an ultra k-space then, every compactoid subset in C (X~
Ls equicontinuous.

Proof: Let H:X— C(2<% be defined by H(x)= H~ witere as in titeorem 1
H~W=f(x). It is obvious that H is continuous if we choose tite topohogy
o(C(X)’, (C(X)) on C(X)’.

Also, for a given cornpact K in X, H(K) is equicontinuous because
fi (K) C{fc C(X): sup 1 f(x) =lf. Since on equicontinuouS sets of tite

xEK
dual of a locahhyconvex space tite weak topohogy coincides witit tite topology
r<~ of uniform convergence on compactoids (see [¡7], hemma ¡0.6), we deduce
titat H: X—. (C(X))’, ~ is continuous on compact sets of 2<. Hence, as Xis
an ultra k-space, it follows titat H is continuous.

Now let Ybe a conipactoid in C(X). By continuity of fi, given <>0 and
xEX titere is a neigitborhood U of x in 2< and vEf.C witit lvI<e sucit titat.

yeU~’H~—H~Ev Y0~If(y)~f(x)I<IuI<eforeacitfeY

Titus, every compactoid subset of C(X) is equicontinuous.

Theorem 8: Leí X be an ultra k-space atid leí YE C(X). Vien Y is
compaao¡d (latid only (lYLs equiconhnuous atidY(x) is bounded ¡n K for
every xeX.

Proof: By titeorem 7, Ycompactoid imphies Yequicontinuous and it is
obvious titat Y(x) is bounded in K for every xEX.

Conversely Iet K be a compact subset of X. By corohhary 3, 57K= [f/K:
feY] lis compactoid in C(K). Titis implies that for a given <>0 titere exist
fí f,,CC(K)sucittitat

Y/KC[geC(K):sup~g(x)l =eJ+c0jJj
xEK

Now, if we extend eacit f, to a continuous map f,:X—’ K [16, titeorem
5.24], we itave,

YG{gec(K):sup¡g(x)I=eI+c0lfí ,..., fil
xEK

which imphies titat Yis compactoid.
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4. THE CASE OF THE STRICT TOPOLOGY

Tite strict topology in tite space BC(X) of aH bounded continuous
funcxions f:X— [ was introduced in tite non-arcitirnedean setting by iB.
Prolla [14, citapter9] in case Xis locally compact. For general zerodimensional
spaces 2< tite strict topology itas been studied by A.C.M. Van Rooij [16] and
A.K. Katsaras ([9] and [10]).

Titis topology is defined by tite family of seminornis {p4, :q’ c B0. (2<) } witere
B,. (2<) is tite set of ah bounded functions g: 2<— K witich vanisit at inftnity
and

p~,(fl=sup iq’(x)f(x)
xE X

Tite strict topology r~ in BC(X) is between tite topohogy r~ of uniform
convergence on compact sets and tite topohogy r,, of uniform convergence;
titis is T <Fs=Fu ([10], 2.10).

In particuhar for X= II witit tite discrete topohogy, tite strict topology in
l~ coincides witit tite natural topology in tite sense of perfect spaces of
sequences (see [3]).

Proposition 9: Pie follow¡ng properties are equivalení for ¡he síricí
topology in BC(X>,

(a) BC(X) is complete.
(Li) SC (X) Ls quasicomplete.
(c) 2< Ls an ultra k-space.

Proof: (a)(b) is obvious. In order to prove (b)~(c) we consider
f:X —(0, 1 wbicit is continuous on compact sets. Let for every compact
subset Km 2<, ft:X— K be a continuous extension of f/Kto Xsucit titat

sup 1 A (x) 1 = sup ¡ f<’x> ¡ =¡
xEX xEK

[16, titeorem 5.24]. Let us see titat A=[gcBC(X): ¡¡g¡¡w=Ijis T<-chosed
(and itence r0-chosed); assume g«A and citoose xEX sucit that jg(x)¡ >1.
Titen, jheflC(X): ¡ h(x)—g(x) <1) itas empty intersection witb A. Ahso A
Is Tfl-bounded, witich imphies A is complete for tite strict topohogy. Furtiter-
more, A is complete for tite topohogy r~ of uniform convergence on cornpact
sets because r~ coincides witit tite strict topohogy on uniform bounded sets
([10], 2.9).

It we denote byS~’ tite directed set of ahí compact subsets of X ordered by
inclusion, it is easy to check titat (f~’Jxc ~r is a Caucby net in A for tite
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topology of uniform convergence on compact sets; let geA be its himit. On
tite otiter itand it is obvious that for each xeX, f(x)=lim (fK(x))Kc~,v.
Hence, we conclude that f= gis continuous. Tite proof of (c)~’(a) is tite same
as its arcitirnedean counterpart in witicit Xis assumed to be a k-space (see [7],
titeorem 9, p. 72).

Tlieorem 10: Leí 2< be an ultra k-space. A subsel YG BC(X) is com-
pactoid for ihe siricí íopology ¿f atid only ~fMe follow¡ng properties are
satisfied,

(a) sup{¡f(x)I:fCStxCX}<~.

(Li) Y is equiconíinuous.

Proof: First assume that gis compactoid. Titen, gis algo cornpactoid
in tite topohogy of uniform convergence on compact sets, witicit implies that
gis equicontinuous (theorem 7). Ahso if gis compactoid, titen gis
r~-bounded witicit implies (a) [10, prop.2.hl].

ConVersehy het e >0 and ~ e 5<,. (2<). Let K be a cornpact set in X such titat
g(x) <e if xeX-Kand het M=supig(x) ¡. Since M/K={ f/K: feY} is

xEX
compactoid in C(K) (tbeorem 1), titere are f, fn&C(K) such titat

Y/KG[geC(K):suplg(x)I=eI+c0{fí fil
xC 1<

Let f~: 2<— ~Z (¡=1 ,..., n) be a continuous extension of fi sucit titat
sup ¡ J(x>I <S witere S=max sup f(x)i [16, titeorern 5.24]. Titen,
xEX xEX
f~eBC(2<)fori=h ,~., nand

YG[geBC(X):sup¡g(x)i=e}+c0{fí ,..., fil
xE 1<

witicit implies

YGjgeBC(X):supiq’(x) g(x)j=Cej+c0{ 1’ fil
xCX

wbere C=rnax{suptlf(x)I:fEYXCXLM,SI.

In particular, Yc l~ is compactoid for tite strict topology if and only if
a=supj ¡f(n)i :nE 04, feYj<e~o. In titis case Y is contained in tite
normal ituil of tite constant map g X witere ¡Xi =a. Titis is a particular case
of [3, titeorem 3.6] and [13, proposition 2.1] witere rnore resuhts on
compactoids in perfect spaces of sequences are found.
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